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Abstract 

The aim of this study is to improve the field of patient care in medicine by utilizing information 

technology, as well as to help, assist nurses and doctors in their work and accelerate patients’ recovery. 

In the case of long-term, mostly elderly patients, a condition known as chronic pressure ulcer, decubitus, 

or pressure sore may develop. Treating these decubitus ulcers takes time and patience. In order to find 

the appropriate treatment, it can be helpful to gather as much data as possible about the wound and 

categorize the severity type based on these collected data. This problem will be addressed and explored 

using the potential of artificial intelligence and three-dimensional digitisation. 
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1. Introduction 

In the case of immobile patients who permanently immobilized in one position, pressure ulcers develop 

due to prolonged pressure concentrated on a single point. The most common areas affected are the 

lumbar region, but pressure ulcers can also develop on the heels.  

Immobilized and wheelchair-bound patients experience reduced blood circulation in continuously 

pressured body parts, which can lead to skin and tissue damage in the affected areas. Ideally, pressure 

ulcers should be prevented by incorporating regular physical activity, frequent changes in body position, 

proper nutrition, and the use of various pressure-reducing mattresses (Anders et al., 2010). However, 

there are cases where intervention comes too late or preventive measures cannot be applied due to the 

patient’s condition. 

Furthermore, the development of pressure ulcers is facilitated by conditions such as diabetes, certain 

vascular diseases, or a weakened immune system (He et al., 2020). Once pressure ulcers have formed, 

they need to be properly treated and cared for to prevent worsening and, to the extent possible, promote 

healing. To facilitate healing, various measurements are taken at the wound site to assess its severity 

(Bansal et al., 2005). 

2. Neural network 

To perform the necessary measurements on the wound and obtain meaningful results, several 

preparatory steps are required. 
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After scanning, the measurement results are determined based on recognizing the wound, finding 

its contour, and covering it to reconstruct the original skin surface as much as possible. The solution 

to these tasks relies on a neural network. The neural network’s operation and training require a 

preliminary dataset to teach the network for the specific task. Various types of neural networks exist, 

depending on the problem to be solved. In this case, the appropriate type of network is a Convolutional 

Neural Network (CNN), which is designed for image processing and computer vision tasks. This type 

of network processes images and learns to produce a specific output for a given input through image 

analysis (Li et al., 2022). 

Among the convolutional neural networks, we utilize a pre-defined layer network called 

MobileNetV2. To analyze the wound, we need to determine precisely where the wound is located on 

the skin surface. After the training process, the convolutional neural network will assist us in this task. 

It takes an overhead image of the wound as input and provides an output mask, indicating the wound’s 

location. The mask is a black-and-white image, where colors between black (#000000) and white 

(#FFFFFF) represent the wound surface. Neural networks work in a way that the output is a probability 

value. This is why the masks obtained from the network contain shades of gray between pure black 

and white. 

The network determines the color of each pixel according to the likelihood of that pixel 

corresponding to a wound or healthy skin surface in the original image. A completely black color 

indicates a healthy skin surface, while a completely white color indicates a region with a pressure ulcer. 

The values on the grayscale between black and white indicate the probability of a pixel belonging to the 

wound region. 

2.1. Collecting data 

To train the neural network, we need data, specifically images that can be used as a training dataset for 

the Convolutional Neural Network (CNN). 

Data collection can be done in two main ways. There are internet databases where we can find data 

suitable for our neural network, and we can also create our own data. The advantage of using our own 

data is that we can fully customize the data collection conditions, the quality of sampling, and the amount 

of data we gather. However, this is a more time-consuming task. If others have worked on a similar 

problem we are trying to solve, and there is a good quality and accessible internet dataset available, it 

may be worth considering its use. However, there are cases where the field is completely unexplored 

and no free, pre-existing, and accessible data is available. In such situations, collecting our own data 

becomes necessary. 

For wound reconstruction, we use both pre-existing and self-generated data. The internet-sourced 

data helps augment the available dataset, but it might not cover the entire scope of our specific wound 

reconstruction problem. Since the wound scanner in this version is designed for scanning and processing 

pressure ulcers in the sacral region, the available internet images might primarily focus on masking 

tissue changes on the heels. To address this limitation and provide a comprehensive dataset for the neural 

network’s training, we create our own images of wounds using the scanner, ensuring that the data fits 

our specific requirements for wound reconstruction. 

2.2. Scanning 

To collect the data and perform the wound reconstruction, we need the three-dimensional digital 

representation of the wound, which is obtained through a 3D scanning technology (Abid et al., 2019). 



Molnár-Zékány, Sz., Árvai-Homolya, Sz.  Three-dimensional decubitus scanner 

165 

There are several scanning methods available, each providing solutions for different problems (Thali 

et al., 2003). The most well-known scanning technologies include (Pesce et al., 2015): 

• Photogrammetry 

• Structured light technology (Rashaan et al., 2016) 

• Stereo camera 

• LiDAR 

In our case, the most suitable solution is the LiDAR technology. LiDAR (Light Detection and 

Ranging) is a remote sensing technology that uses laser beams to measure the distance to objects and 

creates a three-dimensional point cloud of the object (Filko et al., 2023). The LiDAR system consists of 

an emitter that sends out laser beams and a sensor that detects the reflected laser beams. By knowing the 

time of emission and the time of arrival of the reflected beams, we can calculate the time it takes for the 

light to bounce back from the object. This information is then used to determine the position and spatial 

topography of objects and create the point cloud. (Raj et al., 2020) 

 

Figure 1. Thermal image of the wound 

LiDAR scanners can operate in different ranges of light, from non-visible wavelengths to the visible 

light spectrum. The visible light spectrum ranges from 400 to 700 nanometers. The LiDAR scanner used 

for scanning with the iPhone 13 Pro emits light with a wavelength of 940 nanometers, which falls outside 

the visible light spectrum. The built-in LiDAR scanner in the phone can be operated through various 

applications. It is designed to work more accurately with the help of the surrounding cameras and 

additional sensors built into the phone, such as motion sensors.  

When scanning wounds beside the patient’s bed, it is essential to use a user-friendly, wireless, and 

portable scanner that can be easily operated by nurses to efficiently digitize the three-dimensional 

surface of the wound. The iPhone’s cameras can also capture texture information of the three-

dimensional object, providing an RGB scan instead of a single-color grayscale scan. This will be helpful 

during network training to identify wound contours based on colors. Furthermore, a thermal camera can 

be attached to the phone to create a thermal map of the wound, which can provide additional information 

about the wound surface and refine the results obtained so far. For instance, the temperature of fresh 
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wounds is typically higher due to the early stage of inflammation. While this might be visible to the 

naked eye in many cases, there are smaller developing skin lesions where the extent of the newly formed 

wound may not be readily apparent. 

During the scanning process, to ensure patient data confidentiality and enable simple anonymous 

identification, QR codes are used and affixed to the skin surface for the duration of the scanning. The 

scanning procedure follows these steps: 

 Nurses position the patient correctly (usually lying on their side or, in certain cases, on their 

stomach). 

 The area around the wound is cleaned. 

 QR codes are placed on the intact skin surface near the wound. 

 If necessary, the hanging skin is lifted by the nurse. 

 Scanning is performed using the handheld iPhone LiDAR with the attached thermal camera, 

along with additional lighting. 

The files generated as a result of the scanning process include: 

 Point cloud/mesh: In .obj file format, with .jpg texture and the corresponding texture mapping 

in the .mtl file. 

 2D RGB images: Images captured from multiple angles and directions. 

 Thermal camera images. 

By using QR codes for identification and maintaining patient data discretion, the scanning process can 

be conducted efficiently while protecting the privacy of the patients. The resulting files, including the 

point cloud and images, provide valuable information for wound reconstruction and analysis (Filko et 

al., 2021). 

2.3. Data preparation, data cleansing and annotation 

To perform predictions using the neural network, which means obtaining an output from a given input, 

a well-trained neural network is required. The essence of training the network lies in associating the 

input data with the corresponding output data. By providing known outputs based on the input 

parameters, we train the network. To achieve this, the images of individual pressure ulcers must have 

their corresponding masks, which indicate the exact output for a given input. This process, where we 

determine the precise output for a given input, is called annotation. In our case, we have two-dimensional 

RGB images as inputs, and we need to determine the corresponding output, which is a black and white 

two-dimensional image. It is important to note that we only use two colors, black and white, because we 

are not providing probabilities to the network, but rather we know precisely which pixels represent the 

wound and which pixels represent healthy skin. 

Before creating the masks for the wounds, we need to prepare the images for annotation. Although 

we have taken 2D RGB images of the wounds, they might not have been captured from the appropriate 

angle. To address this, we use a solution where we utilize the scanned meshes and capture top-view 

images from them. The meshes may contain irrelevant parts or elements from the wound's surroundings 

(e.g., blankets, bed parts, the patient’s leg, or the hand of a nurse reaching in).  
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Figure 2. Mesh before and after cleansing 

In the first step, we need to clean the meshes by removing unnecessary areas. This is done by separating 

and deleting the unnecessary parts of the point cloud. After the cleaning process, we are left with a 

roughly rectangular-shaped mesh, which includes the wound, the surrounding healthy skin, and the QR 

code. The Figure 2 illustrates the wound before and after the cleaning process. 

 

Figure 3. Input mask for the convolutional neural netvork 

After the cleaning process, we still need to perform mesh alignment. The essence of alignment is to fix 

the origin, check the position of the mesh, adjust its orientation, and perform transformations 

(translation, rotation, scaling) until the wound surface becomes horizontal with the xy plane. Once this 

is done, we capture a top-view image of the wound, as shown in the left image of the figure. 

Subsequently, we can create the corresponding mask, as seen in the right image of the figure. The mask 

image should have the same width and length as the original RGB image. (Fangzhao et al., 2018)  
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2.4. Training 

Having a larger and more diverse dataset with training examples generally leads to better results and 

improved accuracy in the neural network. In your case, the dataset can be further expanded with self-

captured images. The top-view images of wounds and their corresponding masks are stored in separate 

folders, with matching names to enable the network to associate each image with its corresponding 

mask. (Wang et al., 2015). The training process involves using the MobileNet V2 convolutional neural 

network (Wang et al., 2020). The number of epochs is set to 100, meaning the entire training dataset 

passes through the network’s training process that many times.  

 

Figure 4. The original wound area and the one found by the neural network 

The batch size determines how many subsets of the training data are sent to the network in a single 

epoch. In this case, the batch size is set to 10. The learning rate is set to 0.0001, which determines the 

extent to which the model’s parameters are modified during each iteration. It adjusts the step size used 

to modify the weights during the learning process, effectively controlling the rate at which the network 

approaches the desired outcome and minimizes the error. Selecting an appropriate learning rate is 

important. If the learning rate is too large, it is possible to overshoot the global minimum of the loss 

function and not achieve the best results.  

The binary cross-entropy loss function is used, which summarizes the network’s error for each 

output. Based on this value, the network updates its weights at the beginning of the next learning cycle 

in steps defined by the learning rate. The Adam algorithm is used as the optimization function in the 

network, responsible for updating and adjusting the weights. To summarize, during the learning process, 

the network goes through multiple iterations (epochs) and reads the training dataset in smaller subsets 

(batch size).  
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During each iteration, it adjusts the weights using the Adam optimization function in steps 

determined by the learning rate to minimize the loss function’s value. After the training process is 

complete, you obtain a neural network that provides the best possible output accuracy based on the 

configured parameters. 

3. Contour detection 

After training the network, upon an input image, the network produces a mask prediction showing the 

probabilities of individual pixels being part of the decubitus. Within this mask, we need to locate the 

predicted boundary of the wound area.  

 

Figure 5. Finding contourpixels on the mask 

To cover the wound surface, we must find the contour of the wound. The discovery of the contour along 

the predicted wound area in the mask occurs by iterating through the pixels of the image and identifying 

those pixels that differ from black. These points are not only true for the outermost pixel points of the 

wound surface, so we precisely examine the surrounding pixels of a given pixel. For example, if we find 

a non-black pixel on the left edge of the wound, that pixel will only be a contour point if there is a black 

pixel to its left, a pixel with a different color than black to its right, and either a black or a different-

colored pixel above or below it, depending on whether it is on the top left or top right of the wound 

surface. In simple terms, there are two cases where a pixel point cannot be a contour point.  

One case is when its neighbors are pixels with colors different from black, as this would indicate that 

we are inside the wound. The other case is when all the surrounding pixels are black, which would mean 

that we are definitely outside the boundary of the wound. For visualization purposes, the contour is 

drawn in red, and you can see an example in Figure 5. 
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4. Contour pixels to 3D points 

Once we have the contour, we need to project it onto the three-dimensional mesh. The image containing 

the mask has a certain resolution, and as a result, the contour pixels have x and y coordinates. We will 

use these values in our calculations to project the contour onto the mesh.  

The mesh is surrounded by a so-called bounding box. The bounding box is the minimal rectangular 

prism that encloses the mesh completely. In three-dimensional space, the bounding box has coordinates 

for its eight corners, and for each corner, we know its spatial xyz coordinate values. We will need the 

coordinates of four corners that form a rectangle parallel to the xy plane and located in the positive 

direction of the z-axis. We will align the contour found on this plane/rectangle. However, we need a 

mathematical transformation because in most cases, the 2D mask image’s width and height do not match 

the dimensions of the top-view rectangle of the bounding box that surrounds the mesh. For each contour 

pixel, we need to convert its xy position relative to the bounding box, which can be done using the 

following formula: 

 𝑥 =
𝑐𝑜𝑛𝑡𝑜𝑢𝑟_𝑝𝑖𝑥𝑒𝑙𝑠_𝑥

𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ
∗ (𝑚𝑎𝑥_𝑥 − 𝑚𝑖𝑛_𝑥)  +  𝑚𝑖𝑛_𝑥 (1) 

 𝑦 =  
𝑐𝑜𝑛𝑡𝑜𝑢𝑟_𝑝𝑖𝑥𝑒𝑙𝑠_𝑦

𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡
∗ (𝑚𝑖𝑛𝑦 − 𝑚𝑎𝑥𝑦) + max _𝑦 (2) 

 

To obtain the new x-coordinate value step-by-step, we follow these calculations: 

 contour_pixels_x/img_width: The current x-coordinate value is divided by the width of the 

image. 

 (max_x-min_x): The max_x represents the outermost value of the bounding box on the x-axis in 

the positive direction, while the min_x represents the outermost value in the negative direction, 

with the center located at the origin. To obtain the size of the bounding box, we subtract the min_x 

from the max_x. This gives us the dimensions of the bounding box along the x-axis.  

 (contour_pixels_x/img_width * (max_x-min_x)): The scaled x-coordinate value obtained by 

calculating contour_pixels_x/img_width is multiplied by the size of the bounding box. This step 

rescales the x-coordinate value to fit within the dimensions of the bounding box along the x-axis. 

The result of this multiplication will be the new x-coordinate value relative to the bounding box. 

 (contour_pixels_x/img_width * (max_x-min_x)) + min_x: After multiplying the scaled x-

coordinate value by the size of the bounding box, you add the min_x value. This addition is 

necessary to shift the x-coordinate values properly so that they align with the bounding box. 

Without this step, the points would be shifted towards the negative direction on the x-axis. 

We perform the same calculation and translation along the y-axis to obtain the new y-coordinate values 

for the points. 

Along with the newly calculated x and y coordinate values, a z-coordinate value is added. This allows 

us to transform and position the 2D pixel points in the three-dimensional space, and from this point 

onwards, we refer to them as 3D points. These points can be considered as a point cloud, but they are 

situated on a plane parallel to the xy-axis, meaning that the z-coordinate is the same for all points. The 

example in Figure 6 shows the representation of the transformed 3D points of the contour pixels from 

the 2D image. 
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Figure 6. 2D contourpoints on a flat surface 

5. Projection 

Currently, the contour points are located on the xy plane of the bounding box. However, we need to map 

these points to the corresponding points on the 3D mesh, where the z-coordinate of the contour point 

represents the coordinate of the mesh surface at that point. To achieve this, we use a projection process.  

The projection involves casting a ray from each point in the -z direction, essentially extending it to 

infinity. However, the ray will intersect with the mesh surface at some point rather than continuing 

infinitely. Where the ray intersects with the mesh, we examine that point. This intersection point is not 

just a single point; rather, it corresponds to one of the vertices that make up the mesh.  

The mesh consists of vertices, edges connecting the vertices, and triangular polygons formed by these 

edges, which we call faces. The vertices have xyz coordinates, and we can save them in a sequence in 

an array. When performing the projection for each point, we determine which vertex it intersects and 

save the vertex coordinates. These saved points will be used for visualization, and we plot them as shown 

in Figure 7. 

This process enables us to project the 2D contour points onto the 3D mesh, and each point in the 

contour corresponds to a specific vertex on the mesh’s surface. 
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Figure 7. 2D points projected into 3D space 

6. Polarcoordinate-system and reconstruction 

To close the wound surface, we will utilize the points forming the contour of the 3D mesh. First, we 

need to find the center of the wound on the xy plane. To do this, we select the point with the largest and 

smallest x and y coordinates among the contour points, then, we take the average of these points.  

We perform the same calculation for the z-axis, resulting in an average value in the z-direction. Once 

we have the center point, we connect the rest of the points to it and cover the wound by creating polygons 

(vertices) placed between the edges formed by connecting these points. To achieve this, we need to 

iterate through the points of the contour area. However, it is crucial that the points are ordered 

sequentially in the array in a clockwise manner. Unfortunately, the order of the points may not always 

be obvious, and they could be randomly placed in the array, meaning that we need to sort them somehow. 

To arrange the points in order, we can switch to the polar coordinate system and sort them 

accordingly. In the polar coordinate system, the reference point is called the pole (the origin), and the 

radial axis is the ray starting from the pole in the reference direction (Tripathi et al., 2005). The distance 

from the pole is called the radial distance or simply the radius, and the angle is called the angular 

coordinate. In our case, the polar axis will be the positive x-axis. By applying a simple formula, we can 

calculate the distance and angle for each point in the polar coordinate system. This allows us to sort the 

points and arrange them in the desired clockwise order, facilitating the process of closing the wound 

surface by connecting the points with polygons. 

 𝑟 = √𝑥2 + 𝑦2 (3)

 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
) (4) 

After sorting the values, we can begin closing the wound. We have the wound center point and the array 

containing the projected points along the contour of the wound on the 3D mesh. To create the vertices 

that will enclose the wound surface, we take three points at a time, connect them with edges, and form 

a triangle in the three-dimensional space. We then fill this triangle with a polygon to create each vertex. 
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To connect the vertices properly, we need to iterate through the array to link each new vertex to the 

previous one.  

The essence of the iteration is to take the first element of the array, the second one, and the wound 

center point, connecting and covering them. In the next step, we take the second point (which was part 

of the previous vertex) and the third point, along with the wound center point, and again connect and 

cover them. This process continues until we return to the starting point. It can be observed that the 

algorithm’s steps can be generalized during each iteration. We take the i-th and i+1-th elements, along 

with the wound center point, connecting and covering them. We repeat this process until we return to 

the starting point. Furthermore, it is noticeable that each new vertex has two points that were part of the 

previous vertex, which means an edge is common between the new and the previous vertex.  

This logic ensures a seamless closure of the mesh, making it watertight. A watertight three-

dimensional object is one where there are no gaps, and every edge is connected to another vertex. This 

is essential to accurately measure the volume of the wound. If the three-dimensional object is not 

watertight, we cannot measure its volume accurately (Kriangkrai et al., 2020).  

  

Figure 8. Reconstruated decubitus 

The program was written and the neural network was implemented in Python. The three-dimensional 

object was visualized using the built-in functions of the Open3D library, which greatly simplifies the 

graphical representation. Open3D provides an easy-to-use interface for 3D visualization (Open3D, 

2021). For the calculations on the three-dimensional object, the PyMeshlab library was utilized 

(PyMeshLab, 2022). This library contains functions for performing geometric operations on meshes. It 

includes a function that can calculate the volume of the object if the mesh is watertight. Although the 

volume calculation can be manually implemented using the vertices of the wound and the enclosing 
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shell, thanks to the PyMeshlab library, this step is not necessary. However, as a sanity check, it might be 

useful to implement the manual volume calculation algorithm for verification purposes (Llorens, 2021).  

The perimeter of the wound can be easily calculated by summing the lengths of the lines connecting 

the contour points. In summary, the Python program uses the Open3D library for 3D visualization, 

PyMeshlab library for geometric calculations on the mesh, and the neural network for the wound 

segmentation task. The program’s functionality includes volume calculation (both using PyMeshlab and 

manual method for validation), perimeter calculation, and visualization of the 3D object with the wound 

and enclosing shell. 

7. Conclusion 

During the development, it became evident that proper treatment of pressure ulcers is essential to make 

patients’ long hospital stays more bearable. To achieve this, having as much information about the 

wound as possible is crucial. One way to collect data and perform measurements on the wound is through 

three-dimensional wound scanning and reconstruction. We have chosen to utilize the easily accessible 

and fairly accurate LiDAR technology of the iPhone 13 Pro smartphone for bedside scanning. The 

results of the development provide adequately accurate outcomes, which close to real measures. 

Like most research and program implementations, this one can also be further improved. The 

computation of evaluation results with decimal precision is achievable with some post-processing. 

Additionally, the reconstruction of the wound surface can be assisted by the use of further artificial 

neural networks, as well as a heuristic solution, which involves slicing the wound parallel to the x and 

y axes at specified intervals. The points where these slices intersect can be used to construct a 

graph/network structure, and the points on this network can aid in reconstructing the uneven surface of 

the skin in more detail. 

 

References 

[1] Tripathi, M. M. (2005). Coordinate Geometry: Polar Coordinates Approach. Alpha Science 

International. 

[2] Abid, M. J. (2019). 3D scanning applications in medical field: A literature-based review, Clinical 

Epidemiology and Global Health, (Vol. 7, pp. 199–210). 

https://doi.org/10.1016/j.cegh.2018.05.006  

[3] Pesce, L., Galantucci, L.M., Percoco,G. Lavecchia, F. (2015). A low-cost multi camera 3D 

scanning system for quality measurement of non-static subjects, 3rd CIRP Global Web 

Conference. https://doi.org/10.1016/j.procir.2015.04.015  

 [4] Li, Z., Yang, W., Peng, S., Liu, F. (2022). A Survey of Convolutional Neural Networks: Analysis, 

Applications, and Prospects. IEEE Trans. Neural Netw. Learn Syst., 2022 Dec, 33 (12), 6999–

7019, https://doi.org/10.1109/TNNLS.2021.3084827  

[5] Raj, T., Hashim, F. H., Huddin, A. B., Ibrahim, M. F., Hussain, A. (2020). Survey on LiDAR 

Scanning Mechanisms. Electronics, 9, 741, https://doi.org/10.3390/electronics9050741  

[6] Wang, C., Yan, X., Smith, M., Kochhar, K., Marcie, R., Warren, S. M., Wrobel, J., Lee, H. (2015). 

A unified framework for automatic wound segmentation and analysis with deep convolutional 

https://doi.org/10.1016/j.cegh.2018.05.006
https://doi.org/10.1016/j.procir.2015.04.015
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.3390/electronics9050741


Molnár-Zékány, Sz., Árvai-Homolya, Sz.  Three-dimensional decubitus scanner 

175 

neural networks. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2415-8, 

https://doi.org/10.1109/EMBC.2015.7318881  

[7] Wang, C., Ansiuzzaman, D. M., Williamson, V., Dhar, M. K., Niezgoda, J., Gopalakrishnan, S., 

Yu, Z. (2020). Fully automatic wound segmentation with deep convolutional neural networks. 

Sci. Rep., 10, 21897, https://doi.org/10.1038/s41598-020-78799-w  

[8] Bansal, C., Scott, R., Stewart, D., Cockerell, C. J. (2005). Decubitus ulcers: a review of the 

literature. Int. J. Dermatol., Oct. 44 (10), 805–10, https://doi.org/10.1111/j.1365-

4632.2005.02636.x  

[9] Li, F., Wang, C., Liu, X., Peng, Y., Jin, S. (2018). A Composite Model of Wound Segmentation 

Based on Traditional Methods and Deep Neural Networks. Computational Intelligence and 

Neuroscience, pp. 1–12, https://doi.org/10.1155/2018/4149103  

[10] Llorens J., (2021). Stockpile volume computation with Open3D [Online]. https://jose-llorens-

ripolles.medium.com/stockpile-volume-with-open3d-fa9d32099b6f  

[11] Open3D Documentation (2021). [Online] Open3D. http://www.open3d.org/docs/latest/index.html  

[12] PyMeshlab Documentation (2022). [Online] 

https://pymeshlab.readthedocs.io/en/latest/index.html  

[13] Filko, D., Nyarko, E. K. (2023). 2D/3D Wound Segmentation and Measurement Based on a 

Robot-Driven Reconstruction System. Sensors, 23, 3298, https://doi.org/10.3390/s23063298  

[14] Rashaan Z., Stekelenburg C., van der Wal M. et al. (2016). Three-dimensional imaging: a novel, 

valid, and reliable technique for measuring wound surface area. Skin. Res. Technol., 22 (4), 443–

450, https://doi:10.1111/srt.12285  

[15] Anders J., Heinemann A., Leffmann C., Leutenegger M., Pröfener F., von Renteln-Kruse W. 

(2010). Decubitus ulcers: pathophysiology and primary prevention. Dtsch. Arztebl. Int., 107 (21), 

371–382, https://doi:10.3238/arztebl.2010.0371  

[16] Filko, D., Marijanović, D., Nyarko, E. K. (2021). Automatic Robot-Driven 3D Reconstruction 

System for Chronic Wounds. Sensors, 21, 8308, https://doi.org/10.3390/s21248308  

[17] Kriangkrai T., Suriya N. (2020). An Integrated Hardware and Software Application to Support 

Wound Measurement Using a 3D Scanner and Image Processing Techniques. The Open 

Biomedical Engineering Journal, 14 (1), 55–73, https://doi:10.2174/1874120702014010055  

[18] He, X., Yang, S., Liu, C., Xu, T., Zhang, X. (2020). Integrated Wound Recognition in Bandages 

for Intelligent Treatment. Adv. Healthcare Mater., 9, 2000941. 

https://doi.org/10.1002/adhm.202000941  

[19] Thali, M. J., Braun, M., Dirnhofer, R. (2003). Optical 3D surface digitizing in forensic medicine: 

3D documentation of skin and bone injuries. Forensic Sci. Int., 137 (2–3), 203–208. 

https://doi:10.1016/j.forsciint.2003.07.009     

https://doi.org/10.1109/EMBC.2015.7318881
https://doi.org/10.1038/s41598-020-78799-w
https://doi.org/10.1111/j.1365-4632.2005.02636.x
https://doi.org/10.1111/j.1365-4632.2005.02636.x
https://doi.org/10.1155/2018/4149103
https://jose-llorens-ripolles.medium.com/stockpile-volume-with-open3d-fa9d32099b6f
https://jose-llorens-ripolles.medium.com/stockpile-volume-with-open3d-fa9d32099b6f
http://www.open3d.org/docs/latest/index.html
https://pymeshlab.readthedocs.io/en/latest/index.html
https://doi.org/10.3390/s23063298
https://doi:10.1111/srt.12285
https://doi:10.3238/arztebl.2010.0371
https://doi.org/10.3390/s21248308
https://doi:10.2174/1874120702014010055
https://doi.org/10.1002/adhm.202000941
https://doi:10.1016/j.forsciint.2003.07.009

