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Abstract

In this paper a single circular inhomogeneity embedded within a solid circular cylinder whose curved
boundary surface is subjected to a given boundary displacement in axial direction is considered. The
displacement neutrality of the coupled system of host body and inclusion is studied. The neutral
inhomogeneity (inclusion) does not disturb the displacement, strain and stress fields in the host body.
In this paper the deformation of the considered inhomogeneous cylinder is a linear antiplane shear
deformation.
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1. Introduction

In the present paper the existence of neutral inhomogeneities in circular cylinder under the condition of
antiplane shear deformation with prescribed boundary surface displacement is analysed. The considered
solid circular cylinder is shown in Figure 1.

A similar problem is analysed by Benveniste and Chen in paper (Benveniste and Chen, 2003). This
work deals with the Saint-Venant torsion problem when the circular bar consists of cylindrically
orthotropic inclusions.

203


https://doi.org/10.35925/j.multi.2023.3.20
mailto:mechecs@uni-miskolc.hu
mailto:david.gonczi@uni-miskolc.hu
mailto:mechlen@uni-miskolc.hu
mailto:mechab@uni-miskolc.hu

Ecsedi, I, Gonczi, D., Lengyel, A. J., Baksa, A. Neutral inhomogeneity in circular cylinder

Figure 1. The solid circular cylinder

In our problem the solid cylinder occupies the space domain V whose boundary surfaces
dV = A; U A, U A5. On the curved boundary surface the axial displacement W is prescribed

w(x,y,z) = Rmox, (x,y,z) € As @

where Ro is the radius of the circular boundary surface 4z (Figure 1). On the boundary surface segment
A; and Az the stress boundary conditions are given

T (6, £1) = Gogy 0< 22 +y2 < Ry, @)

where Go is the shear modulus of the material of solid circular cylinder. Under the boundary conditions
(1) and (2) the deformation of elastic cylinder is antiplane shear deformation (Benveniste and Chen,
2003; Milne Thomson, 1962; Ting, 1966). The antiplane shear deformation is a special case of the state
of deformation of solid body. This state is achieved when the displacements in the body are zero in the
plane of interest but nonzero in the direction perpendicular to the plane. If the plane of antiplane shear
deformation is the plane Oxy of the rectangular Cartesian frame Oxy- and the displacement vector u is

represented as
u = ue, + ve, + we,, 3

where e,, e,, e, are the unit vectors in directions x, y and z, then the antiplane shear deformation is
defined by the following equations (Milne Thomson, 1962; Ting, 1966; Barber, 2010)

u=0 v=0 w=w(xy). (4)

This means that if we consider a cylindrical body whose generators are parallel to axis z, all cross
sections of this body have some deformations according to Equation (4). The strain field of the
infinitesimal antiplane shear deformation is expressed as

ow ow
sz(x:y) = ox’ sz(xry) =£: )
where ¥xz and ¥y, are the shearing strain, while the other strains are zero. The cross section of the
cylindrical body is a solid circle, it is denoted by A (Figure 1). The boundary curve A is indicated by
0A. It is assumed that the material of the considered host body is isotropic homogeneous and linearly
elastic, its shear modulus is denoted by Go-
The total load on the boundary surfaces A, and A, (Figure 1)
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X1 = 60WR07T on Al' (6)
XZ = _60WR07T on Az. (7)

The curved boundary surface 43 is loaded by axial forces whose intensivity is Pz, which is
v, = Gy ¥ cos Q. (8)

Ry

The resultant of the distributed force acting on the mantle of the cylindrical body vanishes

Z =2L fozn GoZ cospdg = 0. €)
Ro
The moment about axis X, the traction acting on the boundary surface segment 43 is zero, since
my = 2L fom G Rm cos p R?sinp dp = 2LG,WR, fozn cos@psingdp =0 (10)
0

The moment about axis y» the traction acting on the boundary surface segment 4z can be obtained
as

my, = —2L foznszO cosp Rdp = —2LG,WR,. (11)

The forces X1 and X2 forms a couple whose moment vector is parallel to axis ¥ and its value is
(Figure 1)

M, = 2LX; = 2LGoWR,m. (12)
The condition of equilibrium is satisfied, since
m,, + M, = 0. (13)
2. Host cylinder with inclusion

The considered configuration of the host cylinder with circular inclusion is shown in Figure 2.

Ay

Figure 2. The cross section of the circular cylinder with inclusion
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The inclusion consist of two parts, core and coating. The material of the core and the coating are
cylindrically orthotropic, the shear moduli for the components of inclusion are Girz Gigpz for the

coating material, G2rz G24 for the core. A cylindrical coordinate system Or¢_ is introduced. The radial
coordinate is denoted by r and the polar angle is indicated by ¢. The unit vectors of the cylindrical
coordinate system Orpz are €r, €, and €z (Figure 2). The connection between the coordinates x, y and
T, @ are as follows

x=a+rcose, y=rsing. (14)
The equation of the axial displacement of the host body in cylindrical coordinates is
wo (1, @) = Rﬂo (a +rcos ). (15)
The radial and circumferential stresses in cylindrical coordinates r, ¢ in the host body are
Torz = Go % = Gy RKO Cos @, (16)
Topz = —Go RKO sin ¢. (17)

The stress field in a cylindrical orthotropic body in case of antiplane shear deformation can be
expressed as

—n W _ Gpz 0w (18)
Tyrz = TZ 54’ Yz T 4 a(p-

The stress equilibrium equation for antiplane shear deformation is (Milne Thomson, 1962; Barber, 2010)

Oty 4 Trs | 10Tgz _ (19)
6r+r+r6(p_0' (r,p) € A.
Combination of Equations (17) and (18) gives
2 2 32
Ow 1w, 9 9W_ 0 (re)EA (20)

arz ' raor  r2agp?

where

Goz (21)
9= [
which is g = 1 for isotropic bodies.

The connections between the bodies (host body — coating, coating — core) are perfect.

3. Solution of the problem

According to Equations (15) and (16), we look for the solution of the differential Equation (20) in the
coating and core as

wy(r, @) = Rmoa + (Cyr91 + Cor™94)cosp, R, <r <Ry, 0< ¢ <2m, (22)
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wy(r, @) = R%a + (C3r92 4+ C4r792)cosp, 0 <r <R,;, 0< ¢ <2m, (23)

The functions w; (r, ) and w, (r, ) satisfy the differential Equation (20). For the bounded solution
w, = wy (1, @) We have

C, = 0. (24)

= /M = /% (25)
91 = Girz ' 92 = Gorz

On the whole body the axial displacement and the radial shearing stress are continuous functions.
From this fact it follows that

In Equations (22), (23) we have

g -91 _ W
CiRY' + CoR{ %" = 2Ry, (26)
CiRI* — C,R[9* = G—R—Rl, (27)
CiRJ* + C,R, %' = C3RY?, (28)
- G
CiRJ* =GR T = G_jcstgz' (29)

where

G, = N GlrzGl(pz' G, = N GZrzGZ(pz- (30)

The solution of the system of Equations (26), (27) for C1 and C2 are as follows

_ W pl-g 31)
€ = 50 Ry (142 ) (
— W pltg (1 _Go (32)
€, = 2R, Ry ™ (1 Gl)'
Form Equations (28), (31) and (32) C3 can be obtained as
1-g1 pg1—9 Go 1+91 p—91-92 (1 _ Go 33
C; = 2RO[R RYO (142 )+R Ry (1 al)]' (33)
From Equation (30) it follows that
_ Gw 1-91 p91—92 Go\ _ pl+t91p—91-92 _Go (34)
(3 = 2G,R, Ry Ry (1 + Gl) Ry ™R, (1 Gl)]'
It is very easy to show that the Equations (33) and (34) give the same value for C3 if
GO == Gl = Gz, (35)
and in this case
w 1- w S1- -
Co=p R C=0, Cy=-RIRI. (36)

Formulae for the axial displacement and shearing stresses in the composite cylinder
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wo(r, @) = Rmo(a +rcose), (37)
Torz = % cos ¢, (38)

Topz = — % sin ¢, (39)
wy(r, @) = Rﬂoa + Cir91icosq, (40)
Tiry = G1C;7917 1 cos @, (41)
T1pz = —G1,C17917 1 sin g, (42)
wy(r, @) = Rmoa + C3r92 cos @, 43)
Tory = G,C31927 1 cos @, (44)
Typz = —G2,C31r927  sin g, (45)

The equation of the boundary curve of the cross section in cylindrical coordinate is

R(p) = —acos@ + Rz —a?sin?¢p, 0<¢<2m. (46)
The axial displacement w(r, ¢) for the whole cross section is represented as

w(r, @) = [h(r) — h(r — R)]w, (1, ¢) + [A(r — Ry) — h(r — R)]w1(r, ) + h(r — R)w, (7, @),
0<r<R(p), 0<¢<2m. (47)

The shearing stresses Trz and Tez can be obtained from the following formulae

Trz(1, @) = [R(r) — h(r — R)]T21,(r, ) + [A(r — R2) — h(r — RT3, (r, ) +

+h(r — R)Torz(1,9), 0 <7 <R(p), 0 < ¢ < 2m. (48)
Tpz(1, @) = [A(r) — h(r — R2)]T242(r, @) + [R(r — Ry) — h(r — R)]t1.(r, ) +

+h(r — R)Topz(r,9), 0 <71 <R(p), 0 < ¢ < 2m. (49)

4. Numerical examples

The following data are used in the presented numerical example:
Ry =0.04m,a =0.02m,R; = 0.01 m,R, = 0.005m,G,, =6 10° Pa,
Gir = 8-10'° Pa,G,, = 6 - 10° Pa, G, = 8- 10" Pa, W = 0.0055 m.
In this case G, = G; = G, = 2.19089 - 101° Pa. Figures 3, 4, and 5 show the plots of axial

displacement and of shearing stresses for ¢ = =,
5
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Figure 3. Plot of the axial displacement for ¢ = g
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Figure 4. Plot of shearing stress ., for p ==
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Figure 5. Plot of shearing stress z,, for ¢ = g
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The contour lines of the axial displacement w(r, ¢) and shearing stresses z,.,(r, @) are presented in
Figures 6 and 7.

Figure 7. The contour lines of 7,, = ,.,(r, @)

5. Conclusions

The problem of a single circular elastic inhomogeneity embedded within a homogeneous circular
cylinder whose boundary curve has a prescribed axial displacement is investigated. The equilibrium
condition of the cylinder with finite length is analysed. Our paper formulates the existence of neutral
inhomogeneity if the material of neutral inhomogeneity is cylindrically orthotropic. To solve the
problem, the equations of antiplane shear deformation are used.
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