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Abstract 

In this paper a single circular inhomogeneity embedded within a solid circular cylinder whose curved 

boundary surface is subjected to a given boundary displacement in axial direction is considered. The 

displacement neutrality of the coupled system of host body and inclusion is studied. The neutral 

inhomogeneity (inclusion) does not disturb the displacement, strain and stress fields in the host body. 

In this paper the deformation of the considered inhomogeneous cylinder is a linear antiplane shear 

deformation. 

Keywords: antiplane shear deformation, circular cylinder, elastic inclusion, neutral inhomogeneity 

1. Introduction 

In the present paper the existence of neutral inhomogeneities in circular cylinder under the condition of 

antiplane shear deformation with prescribed boundary surface displacement is analysed. The considered 

solid circular cylinder is shown in Figure 1. 

A similar problem is analysed by Benveniste and Chen in paper (Benveniste and Chen, 2003). This 

work deals with the Saint-Venant torsion problem when the circular bar consists of cylindrically 

orthotropic inclusions. 
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Figure 1. The solid circular cylinder 

In our problem the solid cylinder occupies the space domain 𝑉  whose boundary surfaces  

𝜕𝑉 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3. On the curved boundary surface the axial displacement 𝑤 is prescribed 

  𝑤(𝑥, 𝑦, 𝑧) =
𝑊

𝑅0
𝑥, (𝑥, 𝑦, 𝑧) ∈ 𝐴3   (1) 

where 𝑅0 is the radius of the circular boundary surface 𝐴3 (Figure 1). On the boundary surface segment 
𝐴1 and 𝐴2 the stress boundary conditions are given 

  𝜏𝑥𝑧(𝑥, 𝑦, ±𝐿) = 𝐺0
𝑊

𝑅0
, 0 ≤ 𝑥2 + 𝑦2 ≤ 𝑅0, (2) 

where 𝐺0 is the shear modulus of the material of solid circular cylinder. Under the boundary conditions 

(1) and (2) the deformation of elastic cylinder is antiplane shear deformation (Benveniste and Chen, 

2003; Milne Thomson, 1962; Ting, 1966). The antiplane shear deformation is a special case of the state 

of deformation of solid body. This state is achieved when the displacements in the body are zero in the 

plane of interest but nonzero in the direction perpendicular to the plane. If the plane of antiplane shear 

deformation is the plane 𝑂𝑥𝑦 of the rectangular Cartesian frame 𝑂𝑥𝑦𝑧 and the displacement vector 𝐮 is 

represented as 

  𝐮 = 𝑢𝐞𝑥 + 𝑣𝐞𝑦 + 𝑤𝐞𝑧,  (3) 

where 𝐞𝑥 , 𝐞𝑦, 𝐞𝑧  are the unit vectors in directions 𝑥, 𝑦 and 𝑧, then the antiplane shear deformation is 

defined by the following equations (Milne Thomson, 1962; Ting, 1966; Barber, 2010) 

  𝑢 = 0, 𝑣 = 0, 𝑤 = 𝑤(𝑥, 𝑦). (4) 

This means that if we consider a cylindrical body whose generators are parallel to axis 𝑧, all cross 

sections of this body have some deformations according to Equation (4). The strain field of the 

infinitesimal antiplane shear deformation is expressed as 

  𝛾𝑥𝑧(𝑥, 𝑦) =
𝜕𝑤

𝜕𝑥
, 𝛾𝑦𝑧(𝑥, 𝑦) =

𝜕𝑤

𝜕𝑦
, (5) 

where 𝛾𝑥𝑧  and 𝛾𝑦𝑧  are the shearing strain, while the other strains are zero. The cross section of the 

cylindrical body is a solid circle, it is denoted by 𝐴 (Figure 1). The boundary curve 𝐴 is indicated by 

𝜕𝐴. It is assumed that the material of the considered host body is isotropic homogeneous and linearly 

elastic, its shear modulus is denoted by 𝐺0. 
The total load on the boundary surfaces 𝐴1 and 𝐴2 (Figure 1) 
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  𝑋1 = 𝐺0𝑊𝑅0𝜋          on  𝐴1, (6) 

  𝑋2 = −𝐺0𝑊𝑅0𝜋         on  𝐴2. (7) 

The curved boundary surface 𝐴3 is loaded by axial forces whose intensivity is 𝑝𝑧, which is 

  𝑝𝑧 = 𝐺0
𝑊

𝑅0
cos 𝜑. (8) 

The resultant of the distributed force acting on the mantle of the cylindrical body vanishes 

  𝑍 = 2𝐿 ∫ 𝐺0
𝑊

𝑅0
cos 𝜑

2𝜋

0
d𝜑 = 0. (9) 

The moment about axis 𝑥, the traction acting on the boundary surface segment 𝐴3 is zero, since 

  𝑚𝑥 = 2𝐿 ∫ 𝐺0
𝑊

𝑅0
cos 𝜑 𝑅2 sin 𝜑

2𝜋

0
d𝜑 = 2𝐿𝐺0𝑊𝑅0 ∫ cos 𝜑 sin 𝜑

2𝜋

0
d𝜑 = 0 (10) 

The moment about axis 𝑦, the traction acting on the boundary surface segment 𝐴3 can be obtained 

as 

  𝑚𝑦 = −2𝐿 ∫ 𝑝𝑧𝑅0 cos 𝜑 𝑅
2𝜋

0
d𝜑 = −2𝐿𝐺0𝑊𝑅0𝜋. (11) 

The forces 𝑋1 and 𝑋2 forms a couple whose moment vector is parallel to axis 𝑦 and its value is 

(Figure 1) 

  𝑚�̃� = 2𝐿𝑋1 = 2𝐿𝐺0𝑊𝑅0𝜋. (12) 

The condition of equilibrium is satisfied, since 

  𝑚𝑦 + 𝑚�̃� = 0. (13) 

2. Host cylinder with inclusion 

The considered configuration of the host cylinder with circular inclusion is shown in Figure 2. 

 

Figure 2. The cross section of the circular cylinder with inclusion 
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The inclusion consist of two parts, core and coating. The material of the core and the coating are 

cylindrically orthotropic, the shear moduli for the components of inclusion are 𝐺1𝑟𝑧, 𝐺1𝜑𝑧 for the 

coating material, 𝐺2𝑟𝑧, 𝐺2𝜑𝑧 for the core. A cylindrical coordinate system 𝑂𝑟𝜑𝑧 is introduced. The radial 

coordinate is denoted by 𝑟 and the polar angle is indicated by 𝜑. The unit vectors of the cylindrical 

coordinate system 𝑂𝑟𝜑𝑧 are 𝐞𝑟, 𝐞𝜑 and 𝐞𝑧 (Figure 2). The connection between the coordinates 𝑥, 𝑦 and 

𝑟, 𝜑 are as follows 

  𝑥 = 𝑎 + 𝑟 cos 𝜑 , 𝑦 = 𝑟 sin 𝜑. (14) 

The equation of the axial displacement of the host body in cylindrical coordinates is 

  𝑤0(𝑟, 𝜑) =
𝑊

𝑅0
(𝑎 + 𝑟 cos 𝜑). (15) 

The radial and circumferential stresses in cylindrical coordinates 𝑟, 𝜑 in the host body are 

  𝜏0𝑟𝑧 = 𝐺0
𝜕𝑤0

𝜕𝑟
= 𝐺0

𝑊

𝑅0
cos 𝜑, (16) 

   𝜏0𝜑𝑧 = −𝐺0
𝑊

𝑅0
sin 𝜑. (17) 

The stress field in a cylindrical orthotropic body in case of antiplane shear deformation can be 

expressed as 

  𝜏𝑟𝑧 = 𝐺𝑟𝑧
𝜕𝑤

𝜕𝑟
,        𝜏𝜑𝑧 =

𝐺𝜑𝑧

𝑟

𝜕𝑤

𝜕𝜑
. (18) 

The stress equilibrium equation for antiplane shear deformation is (Milne Thomson, 1962; Barber, 2010) 

  𝜕𝜏𝑟𝑧

𝜕𝑟
+

𝜏𝑟𝑧

𝑟
+

1

𝑟

𝜕𝜏𝜑𝑧

𝜕𝜑
= 0,        (𝑟, 𝜑) ∈ 𝐴.

 (19) 

Combination of Equations (17) and (18) gives 

  𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
+

𝑔2

𝑟2

𝜕2𝑤

𝜕𝜑2
= 0,       (𝑟, 𝜑) ∈ 𝐴, 

 (20) 

where 

  
𝑔 = √

𝐺𝜑𝑧

𝐺𝑟𝑧
,
 (21) 

which is 𝑔 = 1 for isotropic bodies. 

The connections between the bodies (host body – coating, coating – core) are perfect. 

3. Solution of the problem 

According to Equations (15) and (16), we look for the solution of the differential Equation (20) in the 

coating and core as 

  𝑤1(𝑟, 𝜑) =
𝑊

𝑅0
𝑎 + (𝐶1𝑟𝑔1 + 𝐶2𝑟−𝑔4) cos 𝜑 , 𝑅2 ≤ 𝑟 ≤ 𝑅1, 0 ≤ 𝜑 ≤ 2𝜋, (22) 
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  𝑤2(𝑟, 𝜑) =
𝑊

𝑅0
𝑎 + (𝐶3𝑟𝑔2 + 𝐶4𝑟−𝑔2) cos 𝜑 , 0 ≤ 𝑟 ≤ 𝑅2, 0 ≤ 𝜑 ≤ 2𝜋, (23) 

The functions 𝑤1(𝑟, 𝜑) and 𝑤2(𝑟, 𝜑) satisfy the differential Equation (20). For the bounded solution 

𝑤2 = 𝑤2(𝑟, 𝜑) we have 

  𝐶4 = 0. (24) 

In Equations (22), (23) we have 

  
𝑔1 = √

𝐺1𝜑𝑧

𝐺1𝑟𝑧
, 𝑔2 = √

𝐺2𝜑𝑧

𝐺2𝑟𝑧
.
 (25) 

On the whole body the axial displacement and the radial shearing stress are continuous functions. 

From this fact it follows that 

  𝐶1𝑅1
𝑔1 + 𝐶2𝑅1

−𝑔1 =
𝑊

𝑅0
𝑅1, (26) 

  𝐶1𝑅1
𝑔1 − 𝐶2𝑅1

−𝑔1 =
𝐺0

𝐺1

𝑊

𝑅0
𝑅1, (27) 

  𝐶1𝑅2
𝑔1 + 𝐶2𝑅2

−𝑔1 = 𝐶3𝑅2
𝑔2 , (28) 

  𝐶1𝑅2
𝑔1 − 𝐶2𝑅2

−𝑔1 =
𝐺2

𝐺1
𝐶3𝑅2

𝑔2 , (29) 

where 

  𝐺1 = √𝐺1𝑟𝑧𝐺1𝜑𝑧,       𝐺2 = √𝐺2𝑟𝑧𝐺2𝜑𝑧. (30) 

The solution of the system of Equations (26), (27) for 𝐶1 and 𝐶2 are as follows 

  𝐶1 =
𝑊

2𝑅0
𝑅1

1−𝑔1 (1 +
𝐺0

𝐺1
), (31) 

  𝐶2 =
𝑊

2𝑅0
𝑅1

1+𝑔1 (1 −
𝐺0

𝐺1
). (32) 

Form Equations (28), (31) and (32) 𝐶3 can be obtained as 

  𝐶3 =
𝑊

2𝑅0
[𝑅1

1−𝑔1𝑅2
𝑔1−𝑔2 (1 +

𝐺0

𝐺1
) + 𝑅1

1+𝑔1𝑅2
−𝑔1−𝑔2 (1 −

𝐺0

𝐺1
)]. (33) 

From Equation (30) it follows that 

  𝐶3 =
𝐺1𝑊

2𝐺2𝑅0
[𝑅1

1−𝑔1𝑅2
𝑔1−𝑔2 (1 +

𝐺0

𝐺1
) − 𝑅1

1+𝑔1𝑅2
−𝑔1−𝑔2 (1 −

𝐺0

𝐺1
)]. (34) 

It is very easy to show that the Equations (33) and (34) give the same value for 𝐶3 if 

  𝐺0 = 𝐺1 = 𝐺2, (35) 

and in this case 

  𝐶1 =
𝑊

𝑅0
𝑅1

1−𝑔1 ,     𝐶2 = 0,     𝐶3 =
𝑊

𝑅0
𝑅1

1−𝑔1𝑅2
𝑔1−𝑔2 . (36) 

Formulae for the axial displacement and shearing stresses in the composite cylinder 
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  𝑤0(𝑟, 𝜑) =
𝑊

𝑅0
(𝑎 + 𝑟 cos 𝜑 ), (37) 

  𝜏0𝑟𝑧 =
𝐺0𝑊

𝑅0
cos 𝜑, (38) 

  𝜏0𝜑𝑧 = −
𝐺0𝑊

𝑅0
sin 𝜑, (39) 

  𝑤1(𝑟, 𝜑) =
𝑊

𝑅0
𝑎 + 𝐶1𝑟𝑔1 cos 𝜑 , (40) 

  𝜏1𝑟𝑧 = 𝐺1𝐶1𝑟𝑔1−1 cos 𝜑, (41) 

  𝜏1𝜑𝑧 = −𝐺1𝜑𝐶1𝑟𝑔1−1 sin 𝜑, (42) 

  𝑤2(𝑟, 𝜑) =
𝑊

𝑅0
𝑎 + 𝐶3𝑟𝑔2 cos 𝜑 , (43) 

  𝜏2𝑟𝑧 = 𝐺2𝐶3𝑟𝑔2−1 cos 𝜑, (44) 

  𝜏2𝜑𝑧 = −𝐺2𝜑𝐶3𝑟𝑔2−1 sin 𝜑. (45) 

The equation of the boundary curve of the cross section in cylindrical coordinate is 

  𝑅(𝜑) = −𝑎 cos 𝜑 + √𝑅0
2 − 𝑎2 sin2 𝜑 ,      0 ≤ 𝜑 ≤ 2𝜋. (46) 

The axial displacement 𝑤(𝑟, 𝜑) for the whole cross section is represented as 

 𝑤(𝑟, 𝜑) = [ℎ(𝑟) − ℎ(𝑟 − 𝑅2)]𝑤2(𝑟, 𝜑) + [ℎ(𝑟 − 𝑅2) − ℎ(𝑟 − 𝑅1)]𝑤1(𝑟, 𝜑) + ℎ(𝑟 − 𝑅1)𝑤0(𝑟, 𝜑),
0 ≤ 𝑟 ≤ 𝑅(𝜑), 0 ≤ 𝜑 ≤ 2𝜋.  (47) 

The shearing stresses 𝜏𝑟𝑧 and 𝜏𝜑𝑧 can be obtained from the following formulae 

𝜏𝑟𝑧(𝑟, 𝜑) = [ℎ(𝑟) − ℎ(𝑟 − 𝑅2)]𝜏2𝑟𝑧(𝑟, 𝜑) + [ℎ(𝑟 − 𝑅2) − ℎ(𝑟 − 𝑅1)]𝜏1𝑟𝑧(𝑟, 𝜑) + 

  +ℎ(𝑟 − 𝑅1)𝜏0𝑟𝑧(𝑟, 𝜑), 0 ≤ 𝑟 ≤ 𝑅(𝜑), 0 ≤ 𝜑 ≤ 2𝜋. (48) 

𝜏𝜑𝑧(𝑟, 𝜑) = [ℎ(𝑟) − ℎ(𝑟 − 𝑅2)]𝜏2𝜑𝑧(𝑟, 𝜑) + [ℎ(𝑟 − 𝑅2) − ℎ(𝑟 − 𝑅1)]𝜏1𝜑𝑧(𝑟, 𝜑) + 

  +ℎ(𝑟 − 𝑅1)𝜏0𝜑𝑧(𝑟, 𝜑), 0 ≤ 𝑟 ≤ 𝑅(𝜑), 0 ≤ 𝜑 ≤ 2𝜋.  (49) 

4. Numerical examples 

The following data are used in the presented numerical example: 

𝑅0 = 0.04 m, 𝑎 = 0.02 m, 𝑅1 = 0.01 m, 𝑅2 = 0.005 m, 𝐺1𝜑 = 6 ⋅ 109 Pa, 

𝐺1𝑟 = 8 ⋅ 1010 Pa, 𝐺2𝑟 = 6 ⋅ 109 Pa, 𝐺2𝜑 = 8 ⋅ 1010 Pa, 𝑊 = 0.0055 m. 

In this case 𝐺0 = 𝐺1 = 𝐺2 = 2.19089 ⋅ 1010 Pa.  Figures 3, 4, and 5 show the plots of axial 

displacement and of shearing stresses for 𝜑 =
𝜋

5
.  
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Figure 3. Plot of the axial displacement for 𝜑 =
𝜋

5
 

 

Figure 4. Plot of shearing stress 𝜏𝑟𝑧 for 𝜑 =
𝜋

5
 

 

Figure 5. Plot of shearing stress 𝜏𝜑𝑧 for 𝜑 =
𝜋

5
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The contour lines of the axial displacement 𝑤(𝑟, 𝜑) and shearing stresses 𝜏𝑟𝑧(𝑟, 𝜑) are presented in 

Figures 6 and 7. 

 

Figure 6. The contour lines of 𝑤(𝑟, 𝜑) 

 

Figure 7. The contour lines of 𝜏𝑟𝑧 = 𝜏𝑟𝑧(𝑟, 𝜑) 

5. Conclusions 

The problem of a single circular elastic inhomogeneity embedded within a homogeneous circular 

cylinder whose boundary curve has a prescribed axial displacement is investigated. The equilibrium 

condition of the cylinder with finite length is analysed. Our paper formulates the existence of neutral 

inhomogeneity if the material of neutral inhomogeneity is cylindrically orthotropic. To solve the 

problem, the equations of antiplane shear deformation are used. 
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