SOME REMARK ON THE FUNCTIONAL EQUATION

Tamás Glavosits
assistant professor, University of Miskolc, Institute of Mathematics
3515 Miskolc-Egyetemváros, e-mail: tamas.glavosits@uni-miskolc.hu

Attila Házy
associate professor, University of Miskolc, Institute of Mathematics
3515 Miskolc-Egyetemváros, e-mail: attila.hazy@uni-miskolc.hu

József Túri
associate professor, University of Miskolc, Institute of Mathematics
3515 Miskolc-Egyetemváros, e-mail: jozsef.turi@uni-miskolc.hu

Abstract
The appearance of function equations can be traced back to a long time ago. The oldest and perhaps
the best-known function equation is the Cauchy function equation. The Cauchy function equation is as
follow
\[ f(x + y) = f(x) + f(y) \quad (x, y \in \mathbb{R}^+) \]
The trivial solution of Cauchy equation is simple, but the general solution is very complex.
Later several function equations appeared, which either arose during some practical problem or became
known from a theoretical perspective.
The function equation Hosszú is also such a function equation, introduced by Miklós Hosszú based on
theoretical considerations. The function equation Hosszú has the form below:
We further generalize the above equation and give its solution. After the generalization, we get the
following function equation.
\[ f(|x + y - (x \circ y)|) + g(x \circ y) = g(x) + g(y) \quad (x, y \in \mathbb{R}^+) \]
with unknown functions \( f, g : \mathbb{R}^+ := \{x \in \mathbb{R} \mid x > 0\} \rightarrow \mathbb{R} \), and binary operation defined by \( x \circ y := (x^c + y^c)^{\frac{1}{c}} \)
for all \( x, y \in \mathbb{R} \), where \( c \in \mathbb{R}, c \in \{2, 3\} \) is a fixed constant.

Keywords: functional equations, additive functions, Hosszú type functional equations, Hosszú functional
equation, Hosszú cycle

1. Introduction
At the International Symposium on Functional Equation conference held on Zakopane (Poland) in 1967
the functional equation
\[ f(x + y - xy) + f(xy) = f(x) + f(y) \quad (1.1) \]
where the unknown function \( f : \mathbb{R} \rightarrow \mathbb{R} \) satisfies the equation for all \( x, y \in \mathbb{R} \) was proposed to investigate
in the first time by M. Hosszú. This equation is known as 1 Manuscript for the Annales Mathematicae
Problem B

(where log denotes the natural logarithm function).

Problem A

was given by K. Lajkó

Glavosits, T., Házy, A., Túri, J.

et Informaticaei June 23, 2023 Hosszú functional equation.

Z. Daróczy (Daróczy, 1969; Daróczy, 1971) D. Blanusa (Blanuša, 1970), and H. Swiatak (Świątak, 1968; Świątak, 1971) proved that the general solution of equation (1.1) is in the form

\[ f(x) = A(x) + C \]

for all \( x \in R \) where \( A : R \rightarrow R \) is an additive function [that is, \( A(x+y) = A(x) + A(y) \) is fulfilled for all \( x, y \in R \) (Aczél, 1966; Aczél and Dhombres, 1989; Kuczma, 1985)], and \( C \) is a real constant.

Since 1969, many researchers have investigated the Hosszú equation and its generalizations. In papers (Davison, 2001; Davison, 1974a; Davison, 1974b; Davison and Redlin, 1980) the equation (1.1) was investigated on various abstract structures. In paper (Fenyő, 1970) a Pexider version (that is functional equation with more unknown function [Aczél, 1983; Aczél and Dhombres, 1989; Kuczma, 1985; Glavosits and Lajkó, 2016]) of equation (1.1) and its locally integrable function solutions can be found. See also (Lajkó et al., 2009; Lajkó and Mészáros, 2015).

The general solution of equations

\[
\begin{align*}
    f(xy) + g(x + y - xy) &= f(x) + f(y) \\
    f(xy) + g(x + y - xy) &= h(x) + h(y)
\end{align*}
\]

was given by K. Lajkó (Lajkó, 2001) in the following cases:

Problem A: If the unknown functions \( f, g : ]0, 1[ \rightarrow R \) satisfy the equation (1.2) for all \( x, y \in ]0, 1[ \), then there exist additive functions \( A_1, A_2, \) and a constant \( C \in R \) such that

\[
\begin{align*}
    f(x) &= A_1(x) + A_2(\log x) + C, \quad (x \in R), \\
    g(x) &= A_1(x) + C, \quad (x \in R).
\end{align*}
\]

(where \( \log \) denotes the natural logarithm function).

Problem B: If the unknown functions \( f, g, h : R \rightarrow R \) satisfy the equation (1.3) for all \( x, y \in R \), then there exist an additive function \( A \) and constants \( C_i (i = 1, 2, 3) \) such that

\[
\begin{align*}
    f(x) &= A(x) + C_2 \quad (x \in R), \\
    g(x) &= A(x) + C_3, \quad (x \in R), \\
    h(x) &= A(x) + C_1, \quad (x \in R).
\end{align*}
\]

If the unknown functions \( f, h : R_0 := R \setminus \{0\} \rightarrow R \), and \( g : R \rightarrow R \) satisfy the equation (1.3) for all \( x, y \in R_0 \), then there exist additive functions \( A_1, A_2 \) and constants \( C_i (i = 1, 2, 3) \) such that

\[
\begin{align*}
    f(x) &= A_1(x) + A_2(\log |x|) + C_3 \quad (x \in R_0), \\
    g(x) &= A_1(x) + C_2, \quad (x \in R), \\
    h(x) &= A_1(x) + A_2(\log |x|) + C_1, \quad (x \in R_0).
\end{align*}
\]

If the unknown functions \( f : R \rightarrow R \), and \( g, h : R_1 := R \setminus \{1\} \rightarrow R \) satisfy the equation (1.3) for all \( x, y \in R_1 \), then there exist additive functions \( A_1, A_2 \) and constants \( C_i (i = 1, 2, 3) \) such that

\[
\begin{align*}
    f(x) &= A_1(x) + A_2(\log |1 - x|) + C_3 \quad (x \in R_1), \\
    g(x) &= A_1(x) + C_2, \quad (x \in R).
\end{align*}
\]
Glavosits, T., Házy, A., Túri, J.

Some remark on the functional equation

\[ h(x) = A_1(x) + A_2(\log |1 - x|) + C_1, \quad (x \in R_1). \]

In his paper (Daróczy, 1999) Z. Daróczy investigate the functional equation \( f \)
\[ (x + y - x \circ y) + f(x \circ y) = f(x) + f(y) \quad (x, y \in R). \] (1.4)
with unknown function \( f : R \to R \) where the binary operation \( \circ \) is defined by \( x \circ y := \ln(x + e^y) \) for all \( x, y \in R_+ \). The general solution of this equation is \( f(x) = A(x) + C \) for all \( x \in R \) where \( A \) is an additive function, \( C \) is a real constant. The main purpose of our present paper is to give the general solution of the functional equation
\[ f(|x + y - (x \circ y)|) + g(x \circ y) = g(x) + g(y) \quad (x, y \in R). \] (1.5)
with unknown functions \( f, g : R \to R \). The binary operation is defined by
\[ x \circ y := (x \cdot 1 + y \cdot 1 \cdot c) \cdot c \quad (x, y \in R), \] (1.6)
where \( c \in R \setminus \{0, 1\} \) is a fixed constant. We also consider the functional equation
\[ f(|x + y - (x \circ y)|) + g(x \circ y) = h(x) + h(y) \quad (x, y \in R). \] (1.7)
with unknown functions \( f, g, h : R \to R \) and binary operation \( \circ \) is defined by (1.6). The equation (1.5)
is a common generalization of equations (1.2) and (1.4). The equation (1.7) is a common generalization of equations (1.3) and (1.4). The devices needed to the problems we set out, and to the earlier problems are the theorems giving the solutions of the restricted Pexider additive functional equations (in the rest briefly Additive Extension Theorems) and the application of the Hosszú cycle. Let \( D \subseteq R^2 \) be a non-empty connected set. Define the sets
\[ D_x := \{ u \in R \mid \exists v \in R : (u, v) \in D \}, \]
\[ D_y := \{ v \in R \mid \exists u \in R : (u, v) \in D \}, \]
\[ D_{x+y} := \{ z \in R \mid \exists (u, v) \in D : z = u + v \}. \]

The functional equation \( f \)
\[ (x + y) = g(x) + h(y) \quad ((x, y) \in D) \]
with unknown functions \( f : D_{x+y} \to R, \quad g : D_x \to R, \quad h : D_y \to R \) is a restricted Pexider additive functional equation. According to Rimán’s Extension Theorem (Rimán, 1976), there exist an additive function \( A : R \to R \) and constants \( C_i (i = 1, 2) \) such that
\[ f(u) = A(u) + C_1 + C_2 \quad (u \in D_{x+y}), \]
\[ g(v) = A(v) + C_1 \quad (v \in D_x), \]
\[ h(z) = A(z) + C_2 \quad (z \in D_y). \]

Concerning the Additive Extension Theorems see also (Aczél, 1983; Daróczy and Losonczi, 1967; Kuczma, 1985; Radó and Baker, 1987; Glavosits and Karácsony, 2023; Glavosits, in preparation). A Hosszú cycle is a functional equation
\[ F(x + y, z) + F(x, y) = F(x, y + z) + F(y, z) \quad (x, y, z \in D). \]
Glavosits, T., Házy, A., Túri, J.  

Some remark on the functional equation

with unknown function \( F : A_2 \to D \), where \( A = A(+) \) is a semi-group, \( D = D(+) \) is an Abelian semi-group. The first appearance of this equation was in (Hosszú, 1971), although many researchers use the Hosszú Cycle to solve functional equations for example Equations (1.1), and (1.2).

2. The decomposition of equation (1.5) by Hosszú cycle

**Theorem 2.1.** If the functions \( f, g : \mathbb{R} \to \mathbb{R} \) satisfy the functional Equation (1.5) where the binary operation \( \circ \) is defined by (1.6), then \( f \) satisfies the functional equation

\[
f(|(x + y + z)^c - ((x + y)^c + z^c)|) + f(|(x + y)^c - ((x^c + y^c)|)
\]

\[
= f(|(x + y + z)^c - (x^c + (y + z)^c)|)
\]

\[
+ f(|(y + z)^c - (y^c + z^c)|) \quad (2.1)
\]

**Proof.** For the proof we shall use the well-known Hosszú Cycle (see Daróczy, 1999). Define the function \( F : \mathbb{R}^2 \to \mathbb{R} \) by

\[ F(x, y) := g(x) + g(y) - g(x \circ y) \quad (x, y \in \mathbb{R}_+). \]

Since the operation \( \circ \) is associated thus we have that

\[ F(x \circ y, z) + F(x, y) = F(x, y \circ z) + F(y, z) \quad (x, y, z \in \mathbb{R}_+). \]

By equation (1.5) we have that

\[ F(x, y) = f(|x + y - (x \circ y)|). \]

From equations (2.2) and (2.3) we have the equation (2.1).

**Proposition 2.2.** Let \( c \in \mathbb{R} \setminus \{0, 1\} \) and define the function

\[ \phi_c : \mathbb{R}_+ \to \mathbb{R}_+ \text{ by } \phi_c(x) := x^c \quad (x \in \mathbb{R}_+). \]

**a** If \( c > 1 \), then the function \( \phi_c \) is strictly superadditive in the sense that

\[ (x + y)^c > x^c + y^c \quad (x, y \in \mathbb{R}_+) \]

**b** If \( 0 < c < 1 \), or \( c < 0 \) then the function \( \phi_c \) is strictly subadditive in the sense that

\[ x^c + y^c > (x + y)^c \quad (x, y \in \mathbb{R}_+) \]

**Proof.** Let \( c \in \mathbb{R} \setminus \{0, 1\} \) be a fixed constant and investigate the functions \( \psi_c : \mathbb{R}_+ \to \mathbb{R}_+ \), and \( \delta_c : \mathbb{R}_+ \to \mathbb{R} \) by

\[ \psi_c(x) := \frac{1 + x^c}{(1+x)^c} \quad (x \in \mathbb{R}_+), \]

\[ \delta_c(x) := \frac{1}{|c|} \frac{d}{dx} \log(\psi_c(x)) = \text{sgn}(c) \frac{x^{c-1} - 1}{(1+x)^c(1+x)} \quad (x \in \mathbb{R}_+). \]

**Case 1.** Let \( 0 < c < 1 \). Since the function \( \delta_c > 0 \) on the interval \( ]0, 1[ \), and \( \delta_c < 0 \) on the interval \( ]1, +\infty[ \) thus the function \( \psi_c \) is increasing in the interval \( ]0, 1[ \), and it is decreasing on the interval \( ]1, +\infty[ \), moreover,
\[
\lim_{x \to 0^+} \psi_c(x) \lim_{x \to \infty} \psi_c(x) = 1,
\]
whence we have that \( \psi_c(x) > 1 \) for all \( x \in \mathbb{R}_+ \), that is
\[
1 + z^c > (1 + z)^c \quad (z \in \mathbb{R}_+).
\]

Take the substitution \( z = \frac{y}{x} \) for all \( x, y \in \mathbb{R}_+ \) in inequalities (2.6) then multiply both sides of the obtained inequality by \( x^c \) whence we obtain that the function \( \phi_c \) is subadditive.

**Case 2.** Let \( c > 1 \). Since \( 0 < \frac{1}{c} < 1 \), and by step 1 the function \( \phi_1^c \) is strictly subadditive, and strictly increasing thus the function \( \phi_c = \left( \phi_1^c \right)^{-1} \) is superadditive.

**Case 3.** Let \( -1 \leq c < 0 \). It is easy to see that the function \( \delta_c < 0 \) on the interval \( ]0, 1[ \), and \( \delta_c > 0 \) on the interval \( ]1, +\infty[ \) whence we have that the function \( \psi_c \) is decreasing on the interval \( ]0, 1[ \) and it is increasing on the interval \( ]1, +\infty[ \). Since \( \phi_c(1) > 1 \) thus \( \phi_c(x) > 1 \) for all \( x \in \mathbb{R}_+ \) thus the inequality (2.6) is satisfied again so the function \( \phi_c \) is subadditive again.

**Case 4.** Let \( -\infty < c \leq -1 \). Since \( -1 \leq \frac{1}{c} < 0 \) by step 3 the function \( \phi_1^c \) is strictly subadditive, and strictly decreasing thus the function \( \phi_c = \left( \phi_1^c \right)^{-1} \) is subadditive again.

**Example 2.3.** Since \( e^x = \sum x^n/n! \) thus by Proposition 2.2 it is easy to see that \( e^{x+y} + 1 > e^x + e^y \) for all \( x, y \in \mathbb{R} \), and \( \log(x + 1) + \log(y + 1) > \log(x + y + 1) \) for all \( x, y \in \mathbb{R}_+ \). It is also easy to see that \( \log(x + y) > \log(x) + \log(y) \) for all \( x, y \in ]0, 1[ \). Define the function \( \phi : \mathbb{R}_+ \rightarrow \mathbb{R} \) by \( \phi(x) := x + x^2 + x^3 \) for all \( x \in \mathbb{R}_+ \). Then function \( \phi \) is a strictly superadditive bijection.

Our references concerning subadditive, and superadditive functions is (Nikodem et al., 2000).

**Corollary 2.4.** Preserving the notations of Theorem 2.1 by Proposition 2.2 it is easy to see that

- if \( c > 1 \), then the function \( f \) satisfies the equation
  \[
  f((x + y + z)^c - (x^c + y^c + z^c)) + f((x + y)^c - (x^c + y^c)) + f((x + z)^c - (x^c + z^c))
  \]
  \[
  = f((x + y + z)^c - (x^c + y^c + z^c)) + f((x + y)^c - (x^c + y^c)) + f((x + z)^c - (x^c + z^c)) \quad (2.7)
  \]

- if \( 0 < c < 1 \) or \( c < 0 \), then the function \( f \) satisfies the equation
  \[
  f((x + y)^c + z^c - (x + y + z)^c) + f((x + y + z)^c - (x + y)^c) + f((x + z)^c - (x + y + z)^c)
  \]
  \[
  = f((x + y)^c + z^c - (x + y + z)^c) + f((x + y + z)^c - (x + y)^c) + f((x + z)^c - (x + y + z)^c) \quad (2.8)
  \]

**Corollary 2.5.** If the function \( f : \mathbb{R}_+ \rightarrow \mathbb{R} \) satisfy the functional Equation (2.7) or Equation (2.8) for all \( x, y, z \in \mathbb{R}_+ \) thus it is also satisfies the equation

191
3. On the equation (2.9) in the cases $c = 2, 3$

**Proposition 3.1.** If the function $f: \mathbb{R}_+ \to \mathbb{R}$ satisfies the equation

$$f(u) + f(v) = f(1) + f(u + v - 1) \quad ((u, v) \in D) \quad (3.1)$$

where the set $D \subseteq \mathbb{R}^2$ is defined by

$$D := \{(u, v) \in \mathbb{R}^2 \mid v > -u + 1, v < 1\}, \quad (3.2)$$

then there exists an additive function $A : \mathbb{R} \to \mathbb{R}$ and a constant $C \in \mathbb{R}$ such that

$$f(x) = A(x) + C \quad (x \in \mathbb{R}_+).$$

**Proof.** Define the function $g : ]1, \infty[ \to \mathbb{R}$ by

$$g(z) = f(z - 1) + f(1) \quad (z \in ]1, \infty[).$$

Then the functions $f$ and $g$ satisfy the equation

$$g(u + v) = f(u) + f(v) \quad ((u, v) \in D)$$

where the set $D$ is defined by (3.2). Thus by Rimán’s Extension Theorem (see Rimán, 1976; Glavosits, in preparation) we obtain that there exist an additive function $A : \mathbb{R} \to \mathbb{R}$ and a constant $C \in \mathbb{R}$ with

$$f(u) = A(u) + C \quad (u \in D x = \mathbb{R}_+).$$

**Theorem 3.2.** If the function $f : \mathbb{R}_+ \to \mathbb{R}$ satisfy equation (2.9) for all $x, y, z \in \mathbb{R}_+$, with constant $c \in \{2, 3\}$, there exist an additive function $A_1 : \mathbb{R} \to \mathbb{R}$ and a constant $C_1 \in \mathbb{R}$ such that

$$f(x) = A_1(x) + C_1 \quad (x \in \mathbb{R}_+). \quad (3.3)$$

**Proof. Case 1.** Let $c = 2$. By equation 2.9 the function $f$ satisfies the equation

$$f \left( \frac{(x+y)z}{x(y+z)} \right) + f \left( \frac{y}{y+z} \right) = f(1) + f \left( \frac{yz}{x(y+z)} \right) \quad (x, y, z \in \mathbb{R}_+). \quad (3.4)$$

Take the substitution in Equation (3.4)

$$y \leftarrow \frac{x(u+v-1)}{1-v} \quad z \leftarrow \frac{x(u+v-1)}{v}$$

thus we have that the function $f$ satisfies the equation (3.1) where the set $D \subseteq \mathbb{R}^2$ is defined by (3.2). By Proposition 3.1 we have that the function $f$ is in the form of (3.3).
Case 2. Let $c = 3$. By equation (2.9) the function $f$ satisfies the equation
\[ f\left(\frac{x+y}{x(y+z)}\right) + f\left(\frac{y(x+y)}{y(x+y+z)}\right) = f(1) + f\left(\frac{yz}{x(x+y+z)}\right) \quad (x, y, z \in \mathbb{R}^+) \tag{3.5} \]

Take the substitution in Equation (3.5)
\[ y \leftarrow \sqrt{\frac{uv}{x^2(u+v-1)+x(u+v-1)}} \quad z \leftarrow \frac{x(u+v-1)}{v} \]

whence we have that the function $f$ satisfy the equation (3.1) where the set $D$ is defined by (3.2). The rest of the proof of this case is analogous to the case $c = 3$.

4. Results and open problems

Theorem 4.1. If $\phi : \mathbb{R} \to \mathbb{R}$ is a strictly superadditive bijection, the binary operation $\circ$ is defined by
\[ x \circ y := \phi(x - 1)(x) + \phi(y) (x, y \in \mathbb{R}) \tag{4.1} \]

$f : \mathbb{R} \to \mathbb{R}$ is a function such that there exist an additive function $A_1 : \mathbb{R} \to \mathbb{R}$ and a constant $C \in \mathbb{R}$ with
\[ f(x) = A_1(x) + C (x \in \mathbb{R}) \tag{4.2} \]

$g, h : \mathbb{R} \to \mathbb{R}$ are functions such that
\[ f(x + y - (x \circ y)) + g(x \circ y) = h(x) + h(y) (x, y \in \mathbb{R}) \tag{4.3} \]

then there exist an additive function $A_2 : \mathbb{R} \to \mathbb{R}$ and constant $C_2$ with
\[ g(x) = -A_1(x) + A_2(\phi^{-1}(x)) + 2C_2 - C_1 (x \in \mathbb{R}), \]
\[ h(x) = -A_1(x) + A_2(\phi^{-1}(x)) + C_2 (x \in \mathbb{R}) \tag{4.4} \]

Proof. During the proof, $\circ$ will denote the usual function composition (for example $(g \circ \phi)(x) := g(\phi(x)))$. Since $\phi(x + y) > \phi(x) + \phi(y)$ thus from equation (4.3) we have that
\[ f(\phi(x + y) - (\phi(x) + \phi(y))) + g(\phi(x + y)) = h(\phi(x)) + h(\phi(y)) (x, y \in \mathbb{R}) \tag{4.5} \]

From Equations (4.2) and (4.5) we have that
\[ ((A_1 \circ \phi) + (g \circ \phi) + (h \circ \phi))(x + y) = ((A_1 \circ \phi) + (h \circ \phi))(x) + ((A_1 \circ \phi) + (h \circ \phi))(y) (x, y \in \mathbb{R}) \tag{4.6} \]

Define de functions $F, G : \mathbb{R} \to \mathbb{R}$ by
\[ F(x) := ((A_1 \circ \phi) + (g \circ \phi) + C_1)(x) (x \in \mathbb{R}), \tag{4.7} \]
\[ G(x) := ((A_1 \circ \phi) + (h \circ \phi))(x) (x \in \mathbb{R}) \tag{4.8} \]

From equation (4.6) we have that
\[ F(x + y) = G(x) + G(y) (x, y \in \mathbb{R}) \tag{4.9} \]

From equation (4.9) by Rimán’s Extension Theorem we have that there exist an additive function $A_2 : \mathbb{R} \to \mathbb{R}$ and a constant $C_2 \in \mathbb{R}$ such that
\[ F(x) = A_2(x) + 2C_2 (x \in \mathbb{R}) \tag{4.10} \]
Some remark on the functional equation

Glavosits, T., Házy, A., Túri, J.

\[ G(x) = A_2(x) + C_2 \, (x \in \mathbb{R}^+). \quad (4.11) \]

From equations (4.8), and (4.11) we obtain equation (4.4).

**Theorem 4.2.** Let \( \phi : \mathbb{R}_+ \to \mathbb{R}_+ \) be a strictly subadditive bijection. Preserving the notation of Theorem 4.1 the functions \( g, h \) is in the form

\[
\begin{align*}
    (x) &= A_1(x) + A_2(\phi^{-1}(x)) + 2C_2 - C_1 \, (x \in \mathbb{R}_+), \\
    h(x) &= A_1(x) + A_2(\phi^{-1}(x)) + C_2 \, (x \in \mathbb{R}_+).
\end{align*}
\]

(4.12) \hspace{1cm} (4.13)

**Proof.** The proof is analogous to the proof of Theorem 4.1.

**Theorem 4.3.** If the functions \( f, g : \mathbb{R}_+ \to \mathbb{R} \) satisfy the functional Equations (1.5) where the operation \( \circ \) is defined by (1.6) where \( c \in \{2, 3\} \), then there exist an additive functions \( A_1, A_2 : \mathbb{R} \to \mathbb{R} \) and a constant \( C \in \mathbb{R} \) such that

\[
\begin{align*}
    f(x) &= A_1(x) + C \, (x \in \mathbb{R}_+), \\
    g(x) &= A_1(x) + A_2\left(\frac{1}{x^c}\right) + C \, (x \in \mathbb{R}_+).
\end{align*}
\]

(4.14) \hspace{1cm} (4.15)

**Proof.** The proof is evident by Theorem 2.1, Corollary 2.4, Corollary 2.5, Theorem 3.2, and Theorem 4.1.

Theorem 4.1, Theorem 4.2, and Theorem 4.3 suggest the following open problems.

**Problem A:** Does Theorem 4.3 hold for all \( c \in \mathbb{R}_+ \setminus \{0, 1\} \)?

Our conjecture is that it remains true.

**Problem B:** Find the general solution of Equation (1.7) with unknown functions \( f, g, h : \mathbb{R}_+ \to \mathbb{R} \) and binary operation \( \circ \) is defined by (1.6) where \( c \in \mathbb{R}_+ \setminus \{0, 1\} \).

**Problem C:** In particular, the authors of the present article would like to know the solution of Problem B in the case of \( c = -1 \), in more details, find the general solution of functional equation

\[ f \left( x + y - \frac{xy}{x+y} \right) + g \left( \frac{xy}{x+y} \right) = h(x) + h(y) \]

\((x, y \in \mathbb{R}_+)\)

with unknown functions \( f, g, h : \mathbb{R}_+ \to \mathbb{R} \).

**References**


Glavosits, T., Házy, A., Túri, J.  
Some remark on the functional equation


