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Abstract 

In this paper-series, we investigate the performance of 12 explicit non-conventional algorithms. All of 

them have the convex combination property, thus they are unconditionally stable and preserve the pos-

itivity of the solution when they applied to the heat equation. In this part of the series, we construct 

several 2D systems to find how the errors depend on the time step size. Sweeps for other key parameters 

will be presented in the next part of the series.  

Keywords: explicit numerical methods, unconditional stability, heat equation, parabolic PDEs 

1. Introduction and the studied problem 

In recent years, our research group developed new numerical algorithms for the heat conduction or dif-

fusion equation and similar diffusion-reaction equations. The conduction of heat and many other diffu-

sion-like phenomena can be modelled by the following partial differential equation (PDE), the heat 

equation: 

 2u
u

t



 


, (1) 

where u is the temperature and α is the thermal diffusivity. However, the problem of heat conduction 

and diffusion arises in this very simple form very rarely. The general form of the heat equation is the 

following 

  
u

c k u
t




 


, (2) 

where  u u r ,t  is the unknown function, while  k k r ,t ,  c c r ,t ,  r ,t  are the heat con-

ductivity, the specific heat, and the (mass) density, respectively. The relation / ( )k c   connects these 

non-negative quantities, but apart from this, the , , ,k c   are arbitrary functions. Moreover, several 

nonlinear equations, such as the Fisher, the Huxley, the Kardar-Parisi-Zhang and the FitzHugh-Nagumo 

(Agbavon and Appadu, 2020) equations, contain a diffusion term besides the nonlinear reaction term. 
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These equations have a few analytical solutions, old as well as new ones (Mátyás and Barna, 2022), 

but when the material properties are non-continuous functions of space, as in most cases in engineering, 

numerical integration is necessary to solve Equation (2). Although many efficient methods are proposed 

and tested recently (Mbroh and Munyakazi, 2021; Ali et al., 2021), the numerical solution of the equa-

tion is still a challenging problem in the case of large systems. The usual finite difference methods are 

either explicit or implicit methods, and both groups have advantages and disadvantages. Explicit algo-

rithms are easier to code and parallelize, moreover, they are faster for the same time step size than 

implicit methods, but they are considered as less reliable. This is because the majority of them are only 

conditionally stable, which means that if the time step size is below a certain threshold, sometimes called 

the CFL limit, then instabilities necessarily appear. Implicit methods require the solution of a system of 

algebraic equations at each time step, which can be slow and memory-demanding in the case of large 

matrices. 

It is well known that the true solution of the heat or diffusion equation always follows the maximum 

and minimum principles (Holmes, 2007) (p. 87) reflecting the Second law of thermodynamics. Numer-

ical schemes should also have this property or, at least, should preserve the positivity of the solution, 

because the modelled quantities, e.g. the temperature, concentrations of chemical species, size of popu-

lations or number of particles, are positive. However, most well-known finite difference or finite element 

methods do not necessarily produce non-negative solutions. Even if they usually yield positive values, 

sometimes the solution can go below zero and then it can start non-physical oscillations. That is why 

some scholars have investigated unconditionally positive schemes. The first example of these algorithms 

was the so-called UPFD (unconditionally positive finite-difference) method of Chen-Charpentier et al. 

(Chen-Charpentier and Kojouharov, 2013), developed for the advection-diffusion-reaction equation. 

This was then tested for several systems by (Appadu, 2017; Drljača and Savović, 2019). Then, the so-

called enhanced unconditionally positive finite difference method (Ndou et al., 2022) was introduced, 

which employs proper orthogonal decomposition. 

This work, consisting of two papers, can be considered as the continuation of our previous paper 

(Omle et al., 2022), in which we tested some recent numerical algorithms to solve the heat or diffusion 

equation. Since then, we have created numerical methods with third- and fourth-order accuracy (Kovács 

et al., 2024). In this work, we perform more extensive and systematic tests to examine how the perfor-

mance of the methods changes and which of them is the best choice under various circumstances. All of 

the examined algorithms fulfil the maximum and minimum principles, and sometimes, for the sake of 

brevity, we call them positivity preserving methods. 

In Part 1 of this paper-series, we describe the discretization and the 12 used numerical methods. Then 

we perform numerical experiments in stiff and non-stiff 2D systems to examine the numerical error as 

a function of the time step size and the running time. Part 2 will present five further numerical tests with 

a parameter sweep for the stiffness ratio and other key parameters and then our conclusions and 

recommendations about which numerical techniques should be used in different cases. 

2. Description of the space-discretization 

Let us first present the discretization in the case of a one-dimensional homogeneous system. In the case 

of an equidistant spatial grid with nodes 1ix , i ,...,N  fixed, where N denotes the number of grid points, 

the central difference formula is the most common starting point: 
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2
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f x t f x t f x t f x t

x xf x t
x x

 


  
 

. 

Using this for the spatial derivative we obtain the semi-discretized form of Equation (1) 

 
2

1 12 ii i iu u udu

dt x
   




. (3) 

The system matrix M has the following elements:  

, 1 , 12 2

2
(1 ), (1 )ii i i i im i N m m i N

x x

 
        

 
, 

thus is tridiagonal in the one-dimensional case. The matrix-form of equation-system (3) is: 

 
du

Mu
dt

 . (4) 

We approach the discretization of Equation (2) by considering a one-dimensional, equidistant grid 

first, but with space-dependent material properties. In this case can write 

1 ( ) ( ) ( ) ( )
( ) ( )

2 2x

u x u x x u x x u x x u x
c x x k x k x

t x x x


           
       

       
. 

The next point is the change to cell variables, where the subscripts refer to whole cells: 

1 1
, 1 1,

i ii i i
i i i i

i i

u u u udu S
k k

dt c S x x x
 

 

  
  

   
, 

where ui is the temperature of the cell indexed by i, 
i i i i i iC c m c V    is the heat capacity, x  is the 

length, m is the mass, S is the cross-section area, while i i iV S x   is the volume of the cell, respectively. 

The thermal resistance between the cell i and its arbitrary neighbour j is ij
ij

x
R

k S


 . The time-develop-

ment of each cell-temperature is now determined by the equation: 

, 1 , 1

1 1

i i i i

i ii i i

i i

u u u udu

dt R C R C 

  
  , 

which can be straightforwardly generalized to two dimensions. Indeed, if we have a rectangular grid 

with yxN N  elements and the numbering of the cells is along the x direction from 1 to xN , etc., then 

 

 1, 1, ,
,

i i i jj
i Nx i Nx

j ii

i

u udu

dt R C 


 


  . (5) 
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The equation system above can, of course, be written into a similar matrix form as (4). Further details 

on this manner of discretization can be found e.g. in (Nagy et al., 2021a). From this point we will use 

this capacity-resistivity model to simulate heat conduction in 2D. Random values will be generated for 

the heat capacities and the resistances with a log-uniform distribution using the formulas: 

 , ,
( )( ) ( )

10 10 1, 0, Ry RyC C Rx Rx
i x i y i

a b randa b rand a b rand
RC R

    
   . (6) 

If one varies the a and b parameters, one can produce highly different systems. Here rand is a random 

number generated by the MATLAB uniformly in the (0,1) interval for each quantity. The running times 

will be measured using the tic-toc command of MATLAB. However, in this way, not the CPU time is 

measured which is necessary to the execution of the algorithms, but the elapsed time, which can be 

larger since other processes are running at the background, which can cause random fluctuations in the 

measured running times. To get rid of the effect of these, the calculations will be performed Nrun times 

subsequently, and then the average running times will be calculated. 

In this work, the simplest zero Neumann boundary conditions will be assumed in all cases, which is 

equivalent to thermal isolation. Because of this, the matrix M has a zero eigenvalue due to the conser-

vation of heat. All other eigenvalues are negative, which is necessary to fulfil the Second law of ther-

modynamics. Let us denote the smallest (largest) absolute value eigenvalues with ( )MIN MAX  , where, 

of course, the zero eigenvalue is excluded. The stiffness ratio is usually given as 
MAX MIN/Sr   . For 

the standard explicit (Euler) method, the maximum possible time step size or CFL limit is 
EE

MAX MAX 2 /h  , and a similar threshold is valid for other conventional explicit methods. 

3. Presentation of the tested methods and their properties 

The time is discretized uniformly, i.e. 0
fint t , t 

 
 and 0 0

fin1nt t nh , n ,...,T , hT t t     . The numer-

ical methods for the general linear heat Equation (2) can be simply presented if we introduce the fol-

lowing notations 

 
1

 and i ii i ij

j i j i j i

n
j n

j
i ij i ij

u
r h hm A h h m u

C R C R  

      . (7) 

The first quantity is the generalization of the widely used mesh ratio, which, for a one-dimensional 

equidistant mesh with constant diffusivity, has the form 
2

0, 0 1
2

iim hh
r i N

x


      


. Therefore, in 

this most simple case 

  1 1
1 12  and , thus 

2

i
i i

i

n n
n n i i
i i

u uA
r r A r u u

r

 
 


    , 

while, in a 2D equidistant mesh 

 1 14  and i i
n n n n

i Nx i Nxi ir r A r u u u u       , 

thus 
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1 1

4

i

i

n n n n
i Nx i Nxi iu u u uA

r

    
 . 

Due to the simplicity of these relations, we present only the generalized formula of the numerical 

algorithms. 

3.1. The applied 12 convex-combination scheme for the diffusion equation 

1. The UPFD method (Chen-Charpentier and Kojouharov, 2013) is a simple one-stage scheme. For 

Equation (2), it is defined by the formula: 

1

1 2

i

i

n
n i
i

u A
u

r

 



. 

2. The constant neighbour (CNe) method (Kovács, 2020a; Kovács, 2020b) is a little bit similar, but 

contains the r quantities in the exponents:  

 1 1i iin n
i i

i

r rA
u u e e

r

      . 

In the case of one-stage methods 1 and 2, the successive displacement implementation is used to en-

hance accuracy and speed. This means that when the program goes through the mesh points one by one, 

and calculates the new value 
1n

iu 
, it uses the already obtained value 

1
1

n
iu 
 , and, in 2D, 1n

i Nxu 
  as well. 

3. The LH-CNe (Nagy et al., 2021b) is member of the family of odd-even hopscotch methods, thus the 

space must be discretized by a special, so-called bipartite grid, where the cells are labelled as odd and 

even. It is necessary that all the nearest neighbours of the even nodes are odd, and vice versa, like in a 

checkerboard. The leapfrog-hopscotch (LH) is a space-time structure as follows: a half time step comes 

first for e.g. the even cells, when only the values at the beginning of the time step are used. After this, 

full-size time steps must be taken strictly alternately for the odd and even cells until we approach the 

end of the simulation. The last timestep have to be halved for the even cells to span exactly the same 

simulation time as for the odd cells. It is essential to use the latest values of the neighbours when a new 

value of ui is calculated. In the case of the LH-CNe method investigated in this work, the CNe formula 

is employed in each stage with the appropriate (half or full) time step size. For the sake of programming 

simplicity and low running times, the number of cells in the x (horizontal) direction was always odd. 

With this convention, the vertical (z-directional) neighbours i Nxu   and i Nxu   of the odd cells are auto-

matically even. Without this, the parity of each cell must be checked in each stage, which would increase 

running times. 

4. The CpC method (Kovács et al., 2021) calculates new predictor values of the temperature with the 

CNe formula, but with a h/2 time step: 

 /2 /2pred
1i ir rn i

ii
i

A
u u e e

r

 
   . 

The second stage takes a full time step size corrector step using the CNe formula of point 2 again. 

Thus, the final values at the end of the time step are:  
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 i i

pred
1 1in n

i i
i

r rA
u u e e

r

     , 

where the predictor values provided by the first stage are used to obtain the pred
iA  quantities. 

5. The linear-neighbour (LNe) method has also a predictor and a corrector stage (Kovács, 2020b). Its 

first stage uses the CNe method to obtain the new pred
iu  values valid at the final time of the actual time 

step. Using these predictor values we can calculate  

pred

j i

pred

i

j

i ij

u
A h

C R

  . 

Then, in the second stage, the corrector values are obtained as follows: 

pred pred
1 1 i

i i i

i

n n i i
i i i

i i

r
r A A A Ae

u e A
r r r

u



  

   
 
 

 . 

6. The values provided in the LNe corrector stage can be used to calculate pred
iA  again, thus we can 

repeat the predictor stage to refine the results. In this case, there are three stages altogether, thus the 

algorithm is abbreviated as LNe3 (Kovács, 2020b). 

7–8. The LNe4 and the LNe5 algorithms are four- and five-stage algorithms, which are obtained by 

continuing the iteration explained in the previous point after the calculations of the LNe3 and the LNe4 

scheme, respectively. Unfortunately, these iterations do not improve the order of convergence, but in-

crease the accuracy of the results. The question we want to answer in this work is that in which cases it 

is worth to iterate. 

9. The three-stage Constant-Linear-Quadratic neighbour (CLQ) method (Kovács et al., 2024) has two 

stages first, which are the same as those of the LNe method. However, the second, LNe stage values has 

to be calculated with not only a full, but a half time step size as well. Let us denote these values by 
L
iu  

and 
1

2
L

iu , respectively. Using them we can calculate pred,L
iA  and 

1pred,L
2

iA  such as above, and then the 

quantities 
1pred,L pred,L24 3i ii iS A A A     and 

1pred,Lpred,L 22 2i ii iW A A A
 

   
 

, where iA  is already 

calculated at the beginning of the first stage. The final temperatures at the end of the time step are given 

by the formula 

 
2

Q 1 221 i
i i i ii i

i
i i ii

n
ii

r
r W / r SW S e

u e u A
r r rr




   
     

 
 

. 

10. The above obtained CLQ function values can be used to add one more stage, with which we have a 

four-stage algorithm called the CLQ2 method. To make it possible, the midpoint values must be calcu-

lated at the third stage: 
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2 2

Q 21

4 2

i

i

/
/ i i i i i

i
i i i ii i

n
ii

r
r W S W W Se

u e u A
r r r rr r




 
       

 
 

. 

In Stage 4, we use pred,Q
iA , 

1pred,
2

Q

iA  to obtain the new values of S and W and then we repeat what 

we have done in third stage. 

11–12. The iteration of point 10 is further repeated. In this way, we obtain the CLQ3 scheme (5 stages 

altogether), as well as the CLQ4 scheme (6 stages altogether) (Kovács et al., 2024). 

The order of convergence is one for the UPFD and the CNe algorithms, two for the LH-CNe, CpC, 

and LNe-LNe5 algorithms, three for the CLQ and four for the CLQ2-4 methods. Their outstanding 

stability is the consequence of the convex combination property, which have been analytically proved 

in the original publications mentioned above. 

Theorem 1. If schemes 1–12 are applied to the spatially discretized linear heat Equation (3), then the 

new 1n
iu   temperature values are the convex combinations of the initial values

0
ju . The same is true for 

the methods 1–8 when are applied to the more general Equation (5). 

According to a large number of our numerical experiments, the convex combination property holds for 

the CLQ-CLQ4 algorithms in the case of Equation (5) as well, but this has not been proved analytically. 

Corollary 1: The algorithms are not only preserve positivity, but satisfy the Maximum and Minimum 

principle (Holmes, 2007) (p. 87). It means that the extreme values of the function u occur among the 

initial or the boundary values, which is a physical property of heat conduction (without external heat 

sources). This also implies the stability of the algorithms for any time step sizes. 

The corollary above means that the CFL limit does not affect the stability of the methods. However, 

it does affect their accuracy, and this is the main question we would like to numerically investigate in 

the remaining part of the paper. 

4. Numerical experiments 

We perform numerical case studies to test the above defined numerical methods. We calculate the error 

as the maximum of the absolute value of the difference between the reference temperature 
ref

iu  and the 

temperature 
num

iu  obtained by the studied numerical method at final time fint , the end of the examined 

time interval:  

ref num

i fin i finmax ( ) ( )
i

Error u t u t  . 

The reference solution is a numerical solution obtained by applying the MATLAB ode15 solver with 

absolute and relative tolerances below 10–10. We examine the errors of the numerical algorithms as a 

function of the time step size h and the running time. The results will be displayed in log-log diagrams. 

When the running times are measured, the calculations are performed Nrun > 1 times and the average 

of these Nrun running times are considered to reduce random fluctuations. 
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4.1. Case study 1: long-wave initial function 

We solve the spatially discretized PDE (1) on a square-shaped system with 41, 41x yN N  , and 

fin 2.4t  . All a and b exponents in Equation (6) are zero, which means 1  1x zC , R R    for all cells, 

which yields 3 EE
MAX1 36 10 0 25Sr . , h .   . The initial condition is the product of two cosine functions 

with wavelengths equivalent to the system size: 

   ( , , 0) cos(2 ) 1 cos(2 ) 1 / 4u x y t x y     . (8) 

The results of this numerical experiment are presented in Figure 1 and 2, where Nrun = 25 has been used. 

 

 
Figure 1. The error as a function of time step size h for Case study 1 

  

Figure 2. The error as a function of the running time for Case study 1 
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4.2. Case study 3 shortest wavelength initial function 

Now 21, 20x yN N  , and  fin 0.2t  . The initial condition is an alternating sequence of zeros and 

ones, which is a function with the shortest possible wavelength in the mesh: 

   0 ceil 1 2
i

iu /  , (9) 

where the ‘ceil’ function returns the smallest integer value which is greater than or equal to the argument. 

The capacities and the resistances are again set to unity, thus EE
MAX365 0 25Sr , h .  . The results of this 

numerical experiment are presented in Figure 3 and 4, where Nrun = 150 has been used, because this 

system is relatively small. 

 
Figure 3. The error as a function of time step size h for Case study 2 

 

Figure 4. The error as a function of the running time for Case study 2 
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4.3. Case study 3: a very stiff system 

Now 91, 100x yN N  , and  fin 0.2t  . The initial condition is 0
iu rand  to ensure that short and 

long-wavelengths components are present. The distribution of the capacities and the resistances has a 

width of six order of magnitude: 6,3C Rx Ry C Rx Rya a a b b b      . This yields a very large stiff-

ness and low CFL limit: thus 11 EE 6
MAX1 17 10 1 4 10Sr . , h .     . Since the system is quite large and there-

fore the fluctuations in the running times are relatively low, only Nrun=6 has been used. The results of 

this numerical experiment are presented in Figure 5 and 6. 

 

Figure 5. The error as a function of time step size h for Case study 3 

 

Figure 6. The error as a function of the running time for Case study 3 
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4.4. Case study 4: uniform anisotropy with random initial function 

Now 41, 41x yN N  , and fin 0.2t  . The initial condition is function (9) again. The capacities are 

again set to unity, but the resistances in the x direction are 10 thousand times larger than in the y direc-

tion: 0 2 0, , ,2C C Rx Rz Rx Rya b a a b b       , thus 100 0 01x zR ,R .  . This yields 66 8 10Sr . 

and EE
MAX 0 005h . . The results of this numerical experiment are presented in Figure 7 and 8, where 

Nrun = 18 has been used. 

 

Figure 7. The error as a function of time step size h for Case study 4 

 

Figure 8. The error as a function of the running time for Case study 4 
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4.5. Case study 5: random anisotropy with smooth initial function 

Now 51,x yN N  , and fin 0.2t  . The parameters of the system have a quite wide range again:

,3 6 2 2 0 2, , , ,C C Rx Rx Ry Rya b a b a b      . One can see that the resistances in the x direction 

are two orders of magnitude larger than in the y direction, but now this is a random variable. We obtained 

that 10 EE 5
MAX1 11 10 1 84 10Sr . , h .     . The initial condition is the same product of cosine functions as 

in (8). The results of this numerical experiment are presented in Figure 9 and 10, where Nrun = 20 has 

been used. 

 

Figure 9. The error as a function of time step size h for Case study 5 

 

Figure 10. The error as a function of the running time for Case study 5 
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5. Discussion and conclusions 

We studied 12 numerical algorithms which obey the Maximum and Minimum principle for arbitrary 

time step size when they are applied to the heat conduction equation. The numerical case studies pre-

sented here confirmed this statement, since the methods behaved well without the slightest sign of in-

stability even for the stiff cases. 

If a low or medium accuracy is required, generally the LH-CNe is the most efficient among the 

methods since it serves quite accurate results in very short time according to the running time measure-

ments. If higher accuracy is required, the higher order CLQ family is the best choice, even if one time 

step is much slower than in the case of the low order algorithms. If the stiffness is very large, the differ-

ences between the methods in accuracy and efficiency is low due to order-reduction. If the initial tem-

perature function is smooth, the multi-stage LNe methods can be as accurate as the higher order CLQ 

and CLQ2 methods for large time step sizes. On the other hand, when the very short wavelength initial 

function was used, there was a large gap between the accuracy of the first, the second and the higher 

order algorithms. In these cases, the LH-CNe scheme can lose its advantage in the low and medium 

accuracy region. 

We note that in the Conclusion section of Part 2, a more detailed comparison of the properties and 

performance of the methods will be presented based on much more numerical experiments. 
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