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Abstract

Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that
each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the
flexible shear connection is a linear relationship. The curved composite beam is subjected to uniform
bending. The paper presents solutions for stresses, radial displacement, and slip.

The end cross sections of the layered curved beam are loaded by zero moment force couples, as a result
of which each cross section of the beam is loaded by zero moment force couple resultant.

Keywords: composite, curved beam, weak shear connection, bending, slip

1. Introduction

The problem of layered beam with straight centreline and with deformable shear connection has been
studied for a long time. The first mathematical theories of this type of composite beams were developed
by (Granholm, 1949), (Pleskov, 1952), (Stiissi, 1947) and (Newmark et al., 1951). Today the analytical
and numerical solutions and refine of the theory of beams with flexible shear connections are presented
by several authors such as (Girhammar and Gopu, 1993), (Planic et al., 2008), (Girhammar and Pan,
2007) and (Goodman and Popov, 1968, 1969). Authors studied the two layered curved beam with partial
shear interaction (Ecsedi and Lengyel, 2015). They considered static problems (Ecsedi and Dluhi, 2005).
There exist many other works on this topic, it is not the aim of this paper to give a complete list on the
layered beams with flexible shear connections. In this paper we consider two-layer composite curved
beams with deformable shear connector. The curved beam is subjected to bending moments applied
them at the its end cross-sections. The considered two-layer curved beam configuration is shown in
Figure 1. In the cylindrical coordinate system Or¢z the curved layer i (; = 1,2) occupies the space

domain B, (i = 1,2)
B, ={(r,p,2)|(r,z) € A;,0 < ¢ <} 1)

where 4, is the cross section of beam component ; (; = 1,2) Figure 1. The common boundary of B,
and B, is denoted by 9B,
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0By, ={(r,p,D)|r=c0< g <mlzl <. (2)

Here ¢ is the thickness of the cross section in direction of axis z. The plane z = o is the plane of
symmetry for the whole two-layer curved beam. The connection between the beam component 1 and
beam component 2 on their common boundary surface gB,, in radial direction is perfect, but in
circumferential direction may be jump in the displacement field (Figure 1). This possible jump is called
the interlayer slip.

Y, = ¢ 1 N
M[z Mzg M2I Mll

Figure 1. Two-layer curved beam loaded by bending moments

2. Governing equations

Denote the unit vectors of cylindrical coordinate systtm Orgz by e,., e, and e,. The following

displacement field is used to describe the in-plane deformation of the bending curved composite beam
(Ecsedi and Dluhi, 2005)

u=ue,+ve,+we, 3)
where
u=U(p), w=0, (r,¢,z)€B UB,, 4)
d .
v(r, @, z) =rp;(p) + ﬁ, (r,p,z) €B; (i =12). (5)
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Application of the strain-displacement relationships of the linearized theory of elasticity gives
(Sokolnikoff, 1956)

& =&, = YT‘(p =Vrz = Y(pz = 0. (T, Q, Z) € Bl U BZ! (6)
(€, ) 480 - 0
Ego_r(d(pz-l‘U)-l-d(p. (r,p,z) € B; (i=1,2).

In equations (6) and (7) ¢,., ¢ 0 and ¢, are the normal strains and .. o ¥V andy, oz aT€ the shearing

strains. The strains given by equation (7) satisfy the requirements of the Euler—Bernoulli beam theory,
only the one normal strain component &y is different from zero and all the shearing strains vanish. From

the definition of the interlayer slip s = s(¢) it follows that (Figure 1)
s(g) = c(91(9) = ¢2()) ®)

Denote T = T(¢) the interlayer shear force acting on unit area of the common boundary surface of g,
and B, which is ¢ ¢t de. The value of the interlayer shear force on this surface element is

T(p)de = Tct dp = kc?t(p1 () — 2 ())de )
that is
T(@) = kc?t(¢1 () — $2(0))- (10)
Here we assume that
T(p) = ks(p) (11)

and we note that the unit of slip modulus  is [force/length®]. According to paper (Ecsedi and Dluhi,
2005) we define the stress resultants normal force p, shearing force § and stress couple resultants
M; (i = 1,2) suchas

No=[, 0pdA, S;=[, 1,,dA, M, =], ro,dA, (i=12). (12)

The virtual work of the section forces and moment on a kinematically admissible displacement field

i=Up), w=0, #=r¢+5., (=12) (13)
can be computed as
% 5 ~ 7 T AT | o
W = fAO'(pvdA + fATr(pudA = M, + Myp, +N£+SU,
N=N+N, S=5+S, (14)

From equation (14) we obtain the possible combinations of the boundary conditions at the end cross
sections

e S§S=85,+S5,0ry may be prescribed.

e N =N, +N,O0rV(p) = dU/dp may be prescribed.

e M, or ¢, may be prescribed.

e M, Or ¢, may be prescribed.
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Application of Hooke’s law yields the formula of normal stress Ty

= ¢i : (15)
=E; [ (— + U) d(p] (r,p,2z) €B; (i =12),
where E; is the modulus of elast|C|ty for curved layer ; (i = 1,2). Combination of equation (12) and

(15) gives

N; = Afl (d 2 T U) + AE; ¢l , (i=12). (16)
doi (17)
M; = AE, ( U1+ U) + nAE, o, (i=12).
Here,
1_1gpdd (18)
Ri _Ai Ai r ) (l - 112)1
ri=oJ,rda, 0Ci=r, (i=12). (19)
It is evident in the present problem, shown in figure 1,
N=2Ew 44 E1d¢1+A E2d¢2_0 (20)
M = My + My = AEGW + 1141 Ey G2 + 1,4, 22 = M, = const. (21)
Here, E, and R are defined as
Ey = i(AlEl +AE,), A=A+ A4, (22)
ABy _ My | AEp (23)
R Ry Ry’
and
24
W) =221 ugp), @)

and the total bending moment is denoted by py,,. According to equation (10) of paper (Ecsedi and Dluhi,
2005) we can write

_ _4N_ _ (AB,dw 2¢, 42 _ (25)
s=-% (Rd + 4B +A2E2d2)—0
Moment equilibrium equation for curved beam component 1 can be formulated as
am, (26)

de + m1(§0) = 0'
where the source of m, = m, (¢) is the interlayer shear force (Figure 2), that is

my(p) = —cT(9) = —kct[p, () — P2 (¢)]. (27)
Substitution of equation (27) into equation (26) gives
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dw d2 28
AlElE + T1A1E1 d(:f)zl - kC3t[(I)1 - ¢2] =0. ( )
Here, we note equation (26) follows from equation (12) of paper (Ecsedi and Dluhi, 2005).
p=73
Nl(f{
0 T(p)
M(p) _/
My
Figure 2. Stress and stress couple resultants and interlayer shear force on beam component 1
From equations (20) and (21) it follows that
RAE1d¢y | pAE 4, _ s (29)
AE, do AE, d¢ !
AEy Aoy | ArBadgy _ o Mo (30)
1 4E, do "2 AE, do w +AEO'
Solution of system of equations (29) and (30) for d¢; and d¢, is as follows
do do
doy _ EqA R-mp W Mo (31)
dp  EjAimp-m R E1A1(rp—1y)
dg, _ EgA 1i—RW M, (32)
de EyAymy—1y R EpAy(ry—1y)
Differentiation of equation (28) with respect to ¢ gives
e?w . &y ket (de,  dep) _ (33)
dg? 1 dp3  A4E; (d(p d(p) =0.

Substitution of equations (31) and (32) into equation (33) leads to a second order differential equation
forw = w(e)

dzw (1 EqA R-1, r_l) _ ke3t (EoA )2 R-13 W kc3t EA My 0 (34)
de? E1A;1,-11 R AyEy \EjA;) 1o R (B A% ExA; 1p—1p )
In equation (34) r, is defined as
1y = T A E T AgE, (35)
A{E{+AyE,
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3. Determination of W = W ()
The general solution of differential equation (34) can be represented as
MR (36)
W () = K; sinh(Qg) + K, cosh(Qe) + FoAGR—T)
where M, = My, + M,; = My, + M,,» K, and K, are constants of the integration and

(37)
kc3t R-13
Q — A?E? (T')—T1)R]
1+ MM_:L
E1A1r2-T1 R
K, and g, are computed from the stress boundary conditions (see Figure 1)
M (—a) = Mll: My(—a) = le =M, - Mll' (38)
Ml(a) = MlZ' Mz(a) = Mzz = MO - MIZ' (39)
Application of equations (17), (31), (38) and (39) gives
W(—a) _ T2M11+T1M21 (40)
E1dy (ry=ry) (145 722 July
Myp+1 M 41
W(O()— T2Mi2+T Rzzr — ( )

1471 R=1r5 EgA .
E A (- (145 T

Here we note, the boundary condition (38). and (38). give the same equations for |/ (—¢,) and similar
statement is valid for the boundary conditions (39). and (39)z, they give the same results for w ().
From equations (40) and (41), assuming that , is zero, we obtain

K, = Ty My1+71 Moy (M11+1\7121)R (42)
T4 R-1y EgA. EoA(R-13) '
E1A1(r-1m) (147 — ElAl) 0 3
K., = Ty My +71 Maq (My2+Mpp)R _ cosh(Qa,) (43)
1= ; 2 :
ElAl(rz_rl)(1+_1M2_£ni) sinh(Qay) EOA(R—rs) sinh(Qa,) sinh(Qa,)

R ry—r1 E141
4. Determination of stress and radial displacement
The circumferential normal stress can be computed by the application of equation (15)
do; .
e (r, 9) = E [¥ + d%l] (r,p,2) € B; (i =1,2), (44)

where W = W (¢) and dg,/d¢ are given by equations (36), (31) and (32).
Assuming that the non-zero stresses are Op = Op(rp) Tre = Trp(T, ®) and g, = g,.(r, ) We can
derive the following equilibrium equations

S (t()0,) = tr)g, + () 52 = 0, (45)
% (r2e(,,) +1t(r) Z—fp‘e =0, (46)
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We reformulate equation (46) into a new form as

] do 47
E (th(r)rr(p) + rt(r);{‘)"— = 0. ( )
Integration of equation (47) yields
1 9 48
Trp (1, ) = ey forpt(p)a—(;‘ﬂdp, b<r<c, (48)
_ 2 1(9) 1T 9o, (49)
T (1, ) = T—Z%—ﬂt—mfo pt(p)a—(p‘ﬂdp, c<r<a,
where
2(p) = IEII)% Tro (c — €%, ). (50)
The validity of formula (49) follows from the next equation
t272(9) =t lim 7 (¢ + €2, ). (51)

The computation of the radial normal stress g, = g,.(r, @) is based on equation (45). From equation
(45) we obtain

1 dt, 52
Ur(r'(p) :rt(r)f; t(p) (O-(P(pi(p) _aL(p‘Z) dpl b <sr< c, ( )
__ Ctyo 1 e o1, (53)
or(r,p) = —th(r)z + v fc t(p) (%(p, @) — %ﬂ) dp, c<r<a.
Here,
02(¢) = lim o, (c — £2, ) (54)

and we use the continuity condition of radial normal stress resultant at » = ¢, which can be formulated
as

t,0,(p) = t; lim o (c + €2, ). (59)
&>
Solution of differential equation
d2u _ , MR (56)
dg? + U = K, sinh(Q¢) + K; cosh(Q¢) + oA (Rra)

for U = U () gives the expression of radial displacement
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__MR (57)
cosh(Qg) + FoA (R + Uy ().

U(p) = K >sinh(Qg) +

1+

K
02

1+

In equation (57) y, = U,(¢p) is the general solution of the homogeneous differential equation

d2u (58)
dgoZO + UO =0
which is represented as
Uo(@) = K3 cos ¢ + K, sin ¢. (59)

The values of the constants of integration g, and g, have no effect the stress, {j, = U,(¢) describes a
possible rigid body motion of the two-layer composite curved beam. For the case k = oo (perfect
connection) the radial displacement, when the cross section at ¢ = 0 fixed, is determined by the next
boundary conditions (Ecsedi and Dluhi, 2005)

Uu)=0 and (g—f;) . =0. (60)
o=

To compare the radial displacement of curved beam with inter-layer slip with perfect bonded two-layer
curved beam we use to get K5 and K, equation (60). A simple computation yields the result

_ (K MR (61)
Ks = (1+92 + EoA (R—r3))’

___Q 62

Ky = -1, K. (62)

The computation of the slip function is based on the next equation

1 d
$(9) = 57 S = c(91(9) — $2(0)). (©3)
A detailed computation yields the result
_ MiEi (1 | 1 Romy Bod)dW (64)
s(p) = ket (1 + 3 — E1A1) de’

5. Examples

5.1. Example 1

The cross section of the two-layer curved beam is shown in figure 3. The following data are used
a=0.04m, b=002m, c=0.03m, t =0.005m,

E,=10x10''Pa, E,=8x10Pa, k=50 10" N/m?,
Mi; = My, =300 Nm, My, = My, = —300 Nm,
M = My; + Myy = Mpy + Mpp = 0, a; =0, a,=m.
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a

b

0
Figure 3. The cross section of curved composite beam

The graphs of 0p =0y (r,¢): o, = o,.(r, ) and Trp = Trp(T, @) 852 function of radial coordinate for
cross sections given by polar angle ¢ = 0, ¢ = n/6, ¢ =1/4, and ¢ = 3m/4 are shown in figures. 4,
5and 6. The graphs of radial displacement and slip function as a functions of polar angle ¢ are presented
in figures 7 and 10.

The circumferential displacement and the cross-sectional rotation are shown in figures 8 and 9 as a
function of polar angle ¢.
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Figure 4. Plots of the circumferential normal stresses for example 1
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Figure 5. Plots of the radial normal stresses for example 1
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Figure 6. Plots of shearing stresses for example 1
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Figure 7. Plot of the radial displacement for example 1
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Figure 8. Plot of the displacement in circumferential direction for example 1
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Figure 9. Plot of the cross-sectional rotation for example 1
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Figure 10. Plot of slip function for example 1
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5.2. Example 2

The data of example 2 are the same as were used in example 1 except the applied end bending moments
which as follows

M;; = M;, = 200 Nm, My, = My, = —200 Nm,
that is
M = My; + Myy = Mpy + My, = 0.
The end loads at the cross section ¢, and ¢, are on equilibrium force system.
In figures 11, 12 and 13 the graphs of the stresses Op» Or and Ty 1€ illustrated. Figure 14 shows the
graphs of the functions M, = M, () and M, = M, (¢)-

2e+09 : , , : ]
le+09 : X g
8e+08 -
60008 | e eeene e X S ]
4e+08 - ‘

2e+08 -

0 |
-2¢+08 |- M

-4e+08

oy(r)[Pa]

; 0 X
-6e+08 . . . :
0.015 0.02 0.025 0.03 0.035 0.04 0.045
r{m]

Figure 11. Plots of the circumferential normal stresses for M = ¢ for example 2
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Figure 12. Plots of the radial normal stresses for p = 0 for example 2
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Figure 13. Plots of the shearing stress for p = ¢ for example 2
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Figure 14. Plots of the functions p, = M, (¢) and M, = M, (¢) for example 2
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6. Summary

The presented investigation gives an example of the pure bending of two-layered curved beams made
of different elastic isotropic material. We work on the extension of this analysis to elastic anisotropic
material.

We are planning a detailed examination of the pure bending problem for mixed type boundary
conditions, when for example, the bending moment is prescribed only the end cross sections of upper
layer. The end cross sections of lower layer have given cross-sectional rotations.

In this paper two-layer curved beam with deformable shear connection is analysed. The curved
composite beam is subjected to bending moments applied them at its end cross section. A model
developed to describe the static behaviour of the two-layer curved beam which is based on the Euler-
Bernoulli beam theory. It is shown that under the action of pure bending moment in the composite
curved beam with imperfect shear connection the shearing stresses appear too.
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