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Abstract  

Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that 

each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the 

flexible shear connection is a linear relationship. The curved composite beam is subjected to uniform 

bending. The paper presents solutions for stresses, radial displacement, and slip. 

The end cross sections of the layered curved beam are loaded by zero moment force couples, as a result 

of which each cross section of the beam is loaded by zero moment force couple resultant. 

Keywords: composite, curved beam, weak shear connection, bending, slip 

1. Introduction  

The problem of layered beam with straight centreline and with deformable shear connection has been 

studied for a long time. The first mathematical theories of this type of composite beams were developed 

by (Granholm, 1949), (Pleskov, 1952), (Stüssi, 1947) and (Newmark et al., 1951). Today the analytical 

and numerical solutions and refine of the theory of beams with flexible shear connections are presented 

by several authors such as (Girhammar and Gopu, 1993), (Planic et al., 2008), (Girhammar and Pan, 

2007) and (Goodman and Popov, 1968, 1969). Authors studied the two layered curved beam with partial 

shear interaction (Ecsedi and Lengyel, 2015). They considered static problems (Ecsedi and Dluhi, 2005). 

There exist many other works on this topic, it is not the aim of this paper to give a complete list on the 

layered beams with flexible shear connections. In this paper we consider two-layer composite curved 

beams with deformable shear connector. The curved beam is subjected to bending moments applied 

them at the its end cross-sections. The considered two-layer curved beam configuration is shown in 

Figure 1. In the cylindrical coordinate system 𝑂𝑟𝜑𝑧 the curved layer 𝑖 (𝑖 = 1,2) occupies the space 

domain 𝐵𝑖
 (𝑖 = 1,2) 

𝐵𝑖 = {(𝑟, 𝜑, 𝑧)|(𝑟, 𝑧) ∈ 𝐴𝑖 , 0 ≤ 𝜑 ≤ 𝜋}     (1) 

where 𝐴𝑖
 is the cross section of beam component 𝑖 (𝑖 = 1,2) Figure 1. The common boundary of 𝐵1

 

and 𝐵2
 is denoted by 𝜕𝐵12

 

https://doi.org/10.35925/j.multi.2024.2.10
mailto:attila.baksa@uni-miskolc.hu
mailto:istvan.ecsedi@uni-miskolc.hu
https://orcid.org/0000-0003-2727-2498
https://orcid.org/0000-0001-7444-5801


A. Baksa, I. Ecsedi  Bending of curved composite beam with interlayser slip 

105 

𝜕𝐵12 = {(𝑟, 𝜑, 𝑧)|𝑟 = 𝑐, 0 ≤ 𝜑 ≤ 𝜋, |𝑧| ≤
𝑡

2
}.    (2) 

Here 𝑡 is the thickness of the cross section in direction of axis 𝑧. The plane 𝑧 = 0 is the plane of 

symmetry for the whole two-layer curved beam. The connection between the beam component 1 and 

beam component 2  on their common boundary surface 𝜕𝐵12
 in radial direction is perfect, but in 

circumferential direction may be jump in the displacement field (Figure 1). This possible jump is called 

the interlayer slip. 

 

Figure 1. Two-layer curved beam loaded by bending moments 

2. Governing equations 

Denote the unit vectors of cylindrical coordinate system 𝑂𝑟𝜑𝑧  by 𝒆𝑟
, 𝒆𝜑

 and 𝒆𝑧
. The following 

displacement field is used to describe the in-plane deformation of the bending curved composite beam 

(Ecsedi and Dluhi, 2005) 

𝒖 = 𝑢𝒆𝑟 + 𝑣𝒆𝜑 + 𝑤𝒆𝑧      (3) 

where 

𝑢 = 𝑈(𝜑),     𝑤 = 0,     (𝑟, 𝜑, 𝑧) ∈ 𝐵1 ∪ 𝐵2 ,   (4) 

𝑣(𝑟, 𝜑, 𝑧) = 𝑟𝜙𝑖(𝜑) +
d𝑈

d𝜑
,     (𝑟, 𝜑, 𝑧) ∈ 𝐵𝑖   (𝑖 = 1,2).    (5) 
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Application of the strain-displacement relationships of the linearized theory of elasticity gives 

(Sokolnikoff, 1956) 

𝜀𝑟 = 𝜀𝑧 = 𝛾𝑟𝜑 = 𝛾𝑟𝑧 = 𝛾𝜑𝑧 = 0.     (𝑟, 𝜑, 𝑧) ∈ 𝐵1 ∪ 𝐵2,    (6) 

𝜀𝜑 =
1

𝑟
(d2𝑈

d𝜑2
+ 𝑈) +

d𝜙𝑖

d𝜑
,     (𝑟, 𝜑, 𝑧) ∈ 𝐵𝑖   (𝑖 = 1,2). 

   (7) 

In equations (6) and (7) 𝜀𝑟
, 𝜀𝜑

 and 𝜀𝑧
 are the normal strains and 𝛾𝑟𝜑,  𝛾𝑟𝑧

$, and 𝛾𝜑𝑧
 are the shearing 

strains. The strains given by equation (7) satisfy the requirements of the Euler–Bernoulli beam theory, 

only the one normal strain component 𝜀𝜑
 is different from zero and all the shearing strains vanish. From 

the definition of the interlayer slip 𝑠 = 𝑠(𝜑) it follows that (Figure 1) 

𝑠(𝜑) = 𝑐(𝜙1(𝜑) − 𝜙2(𝜑))    (8) 

Denote �̃� = �̃�(𝜑) the interlayer shear force acting on unit area of the common boundary surface of 𝐵1
 

and 𝐵2
, which is 𝑐 𝑡 d𝜑. The value of the interlayer shear force on this surface element is 

𝑇(𝜑)d𝜑 = �̃�𝑐𝑡 d𝜑 = 𝑘𝑐2𝑡(𝜙1(𝜑) − 𝜙2(𝜑))d𝜑   (9) 

that is 

𝑇(𝜑) = 𝑘𝑐2𝑡(𝜙1(𝜑) − 𝜙2(𝜑)).    (10) 

Here we assume that 

�̃�(𝜑) = 𝑘𝑠(𝜑)     (11) 

and we note that the unit of slip modulus 𝑘 is [force/length3]. According to paper (Ecsedi and Dluhi, 

2005) we define the stress resultants normal force 𝑁, shearing force 𝑆 and stress couple resultants 

𝑀𝑖 (𝑖 = 1,2) such as 

𝑁𝑖 = ∫ 𝜎𝜑d𝐴
𝐴𝑖

,    𝑆𝑖 = ∫ 𝜏𝑟𝜑d𝐴
𝐴𝑖

,     𝑀𝑖 = ∫ 𝑟𝜎𝜑 d𝐴
𝐴𝑖

, (𝑖 = 1,2).
  (12) 

The virtual work of the section forces and moment on a kinematically admissible displacement field 

�̃� = �̃�(𝜑),    �̃� = 0,    �̃� = 𝑟�̃�𝑖 +
d�̃�

d𝜑
, (𝑖 = 1,2)   (13) 

can be computed as 

�̃� = ∫ 𝜎𝜑�̃�d𝐴
𝐴

+ ∫ 𝜏𝑟𝜑�̃�d𝐴
𝐴

= 𝑀1�̃�1 + 𝑀2�̃�2 + 𝑁
d�̃�

d𝜑
+ 𝑆�̃�,

     

𝑁 = 𝑁1 + 𝑁2,      𝑆 = 𝑆1 + 𝑆2
   (14) 

From equation (14) we obtain the possible combinations of the boundary conditions at the end cross 

sections  

 𝑆 = 𝑆1 + 𝑆2
 or 𝑈 may be prescribed.  

 𝑁 = 𝑁1 + 𝑁2
 or 𝑉(𝜑) = d𝑈/d𝜑 may be prescribed.  

 𝑀1
 or 𝜙1

 may be prescribed. 

 𝑀2
 or 𝜙2

 may be prescribed. 
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Application of Hooke’s law yields the formula of normal stress 𝜎𝜑
 

𝜎𝜑 = 𝐸𝑖 [
1

𝑟
(d2𝑈

d𝜑2
+ 𝑈) +

d𝜙𝑖

d𝜑
]      (𝑟, 𝜑, 𝑧) ∈ 𝐵𝑖  (𝑖 = 1,2),

   (15) 

where 𝐸𝑖
 is the modulus of elasticity for curved layer 𝑖 (𝑖 = 1,2). Combination of equation (12) and 

(15) gives 

𝑁𝑖 =
𝐴𝑖𝐸𝑖

𝑅𝑖

(d2𝑈

d𝜑2
+ 𝑈) + 𝐴𝑖𝐸𝑖

d𝜙𝑖

d𝜑
 ,   (𝑖 = 1,2).

   (16) 

𝑀𝑖 = 𝐴𝑖𝐸𝑖 (d2𝑈

d𝜑2
+ 𝑈) + 𝑟𝑖𝐴𝑖𝐸𝑖

d𝜙𝑖

d𝜑
,    (𝑖 = 1,2).

   (17) 

Here, 

1

𝑅𝑖
=

1

𝐴𝑖
∫

d𝐴

𝑟𝐴𝑖
,   (𝑖 = 1,2),    (18) 

𝑟𝑖 =
1

𝐴𝑖
∫ 𝑟d𝐴

𝐴𝑖
,   𝑂𝐶̅̅ ̅̅

𝑖 = 𝑟𝑖,   (𝑖 = 1,2).    (19) 

It is evident in the present problem, shown in figure 1, 

𝑁 =
𝐴𝐸0

𝑅
𝑊 + 𝐴1𝐸1

d𝜙1

d𝜑
+ 𝐴2𝐸2

d𝜙2

d𝜑
= 0    (20) 

𝑀 = 𝑀1 + 𝑀2 = 𝐴𝐸0𝑊 + 𝑟1𝐴1𝐸1
d𝜙1

d𝜑
+ 𝑟2𝐴2𝐸2

d𝜙2

d𝜑
= 𝑀0 = const.  (21) 

Here, 𝐸0
 and 𝑅 are defined as  

𝐸0 =
1

𝐴
(𝐴1𝐸1 + 𝐴2𝐸2),     𝐴 = 𝐴1 + 𝐴2,    (22) 

𝐴𝐸0

𝑅
=

𝐴1𝐸1

𝑅1
+

𝐴2𝐸2

𝑅2
,     (23) 

and 

𝑊(𝜑) =
d2𝑈

d𝜑2
+ 𝑈(𝜑) ,

     (24) 

and the total bending moment is denoted by 𝑀0
. According to equation (10) of paper (Ecsedi and Dluhi, 

2005) we can write 

𝑆 = −
d𝑁

d𝜑
= − (𝐴𝐸0

𝑅

d𝑊

d𝜑
+ 𝐴1𝐸1

d2𝜙1

d𝜑2
+ 𝐴2𝐸2

d2𝜙2

d𝜑2
) = 0

  (25) 

Moment equilibrium equation for curved beam component 1 can be formulated as 

𝑑𝑀1

d𝜑
+ 𝑚1(𝜑) = 0,      (26) 

where the source of 𝑚1 = 𝑚1(𝜑) is the interlayer shear force (Figure 2), that is 

𝑚1(𝜑) = −𝑐𝑇(𝜑) = −𝑘𝑐3𝑡[𝜙1(𝜑) − 𝜙2(𝜑)].    (27) 

Substitution of equation (27) into equation (26) gives 
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𝐴1𝐸1
d𝑊

d𝜑
+ 𝑟1𝐴1𝐸1

d2𝜙1

d𝜑2
− 𝑘𝑐3𝑡[𝜙1 − 𝜙2] = 0.

    (28) 

Here, we note equation (26) follows from equation (12) of paper (Ecsedi and Dluhi, 2005). 

 

Figure 2. Stress and stress couple resultants and interlayer shear force on beam component 1 

From equations (20) and (21) it follows that  

𝑅
𝐴1𝐸1

𝐴𝐸0

d𝜙1

d𝜑
+ 𝑅

𝐴2𝐸2

𝐴𝐸0

d𝜙2

d𝜑
= −𝑊,    (29) 

𝑟1
𝐴1𝐸1

𝐴𝐸0

d𝜙1

d𝜑
+ 𝑟2

𝐴2𝐸2

𝐴𝐸0

d𝜙2

d𝜑
= −𝑊 +

𝑀0

𝐴𝐸0
.    (30) 

Solution of system of equations (29) and (30) for d𝜙1

d𝜑

 and d𝜙2

d𝜑

 is as follows 

d𝜙1

d𝜑
=

𝐸0𝐴

𝐸1𝐴1

𝑅−𝑟2

𝑟2−𝑟1

𝑊

𝑅
−

𝑀0

𝐸1𝐴1(𝑟2−𝑟1)
,    (31) 

d𝜙2

d𝜑
=

𝐸0𝐴

𝐸2𝐴2

𝑟1−𝑅

𝑟2−𝑟1

𝑊

𝑅
+

𝑀0

𝐸2𝐴2(𝑟2−𝑟1)
.    (32) 

Differentiation of equation (28) with respect to 𝜑 gives 

d2𝑊

d𝜑2
+ 𝑟1

d3𝜙1

d𝜑3
−

𝑘𝑐3𝑡

𝐴1𝐸1

(d𝜙1

d𝜑
−

d𝜙2

d𝜑
) = 0.

    (33) 

Substitution of equations (31) and (32) into equation (33) leads to a second order differential equation 

for 𝑊 = 𝑊(𝜑)  

d2𝑊

d𝜑2
(1 +

𝐸0𝐴

𝐸1𝐴1

𝑅−𝑟2

𝑟2−𝑟1

𝑟1

𝑅
) −

𝑘𝑐3𝑡

𝐴2𝐸2
( 𝐸0𝐴

𝐸1𝐴1

)
2 𝑅−𝑟3

𝑟2−𝑟1

𝑊

𝑅
+

𝑘𝑐3𝑡

(𝐸1𝐴1)2

𝐸0𝐴

𝐸2𝐴2

𝑀0

𝑟2−𝑟1
= 0.

  (34) 

In equation (34) 𝑟3
 is defined as 

𝑟3 =
𝑟1𝐴1𝐸1+𝑟2𝐴2𝐸2

𝐴1𝐸1+𝐴2𝐸2
 .     (35) 



A. Baksa, I. Ecsedi  Bending of curved composite beam with interlayser slip 

109 

3. Determination of 𝑾 = 𝑾(𝝋) 

The general solution of differential equation (34) can be represented as 

𝑊(𝜑) = 𝐾1 sinh(Ω𝜑) + 𝐾2 cosh(Ω𝜑) +
𝑀0𝑅

𝐸0𝐴(𝑅−𝑟3)
.   (36) 

where 𝑀0 = �̅�11 + �̅�21 = �̅�12 + �̅�22
, 𝐾1

 and 𝐾2
 are constants of the integration and  

Ω = [
𝑘𝑐3𝑡

𝐴2𝐸2
( 𝐸0𝐴

𝐸1𝐴1
)

2 𝑅−𝑟3
(𝑟2−𝑟1)𝑅

1+
𝐸0𝐴

𝐸1𝐴1
 

𝑅−𝑟2
𝑟2−𝑟1

 
𝑟1
𝑅

]

1

2

, 

     (37) 

𝐾1
 and 𝐾2

 are computed from the stress boundary conditions (see Figure 1) 

𝑀1(−𝛼) = �̅�11,     𝑀2(−𝛼) = �̅�21 = 𝑀0 − �̅�11,    (38) 

𝑀1(𝛼) = �̅�12,     𝑀2(𝛼) = �̅�22 = 𝑀0 − �̅�12.    (39) 

Application of equations (17), (31), (38) and (39) gives 

𝑊(−𝛼) =
𝑟2�̅�11+𝑟1�̅�21

𝐸1𝐴1(𝑟2−𝑟1)(1+
𝑟1
𝑅

 
𝑅−𝑟2

𝑟2−𝑟1
 

𝐸0𝐴

𝐸1𝐴1
)
, 
    (40) 

𝑊(𝛼) =
𝑟2�̅�12+𝑟1�̅�22

𝐸1𝐴1(𝑟2−𝑟1)(1+
𝑟1
𝑅

 
𝑅−𝑟2

𝑟2−𝑟1
 

𝐸0𝐴

𝐸1𝐴1
)
. 
    (41) 

Here we note, the boundary condition (38)1 and (38)2 give the same equations for 𝑊(−𝛼1) and similar 

statement is valid for the boundary conditions (39)1 and (39)2, they give the same results for 𝑊(𝛼1). 

From equations (40) and (41), assuming that 𝛼1
 is zero, we obtain 

𝐾2 =
𝑟2�̅�11+𝑟1�̅�21

𝐸1𝐴1(𝑟2−𝑟1)(1+
𝑟1
𝑅

 
𝑅−𝑟2

𝑟2−𝑟1
 

𝐸0𝐴

𝐸1𝐴1
)

−
(�̅�11+�̅�21)𝑅

𝐸0𝐴(𝑅−𝑟3)
, 
   (42) 

𝐾1 =
𝑟2�̅�11+𝑟1�̅�21

𝐸1𝐴1(𝑟2−𝑟1)(1+
𝑟1
𝑅

 
𝑅−𝑟2

𝑟2−𝑟1
 

𝐸0𝐴

𝐸1𝐴1
) sinh(Ωα2)

−
(�̅�12+�̅�22)𝑅

𝐸0𝐴(𝑅−𝑟3) sinh(Ωα2)
− 𝐾2

cosh(Ωα2)

sinh(Ωα2)
. 
 (43) 

4. Determination of stress and radial displacement 

The circumferential normal stress can be computed by the application of equation (15) 

𝜎𝜑(𝑟, 𝜑) = 𝐸𝑖 [
𝑊

𝑟
+

d𝜙𝑖

d𝜑
],         (𝑟, 𝜑, 𝑧) ∈ 𝐵𝑖  (𝑖 = 1,2),    (44) 

where 𝑊 = 𝑊(𝜑) and d𝜙𝑖 d𝜑⁄  are given by equations (36), (31) and (32). 

Assuming that the non-zero stresses are 𝜎𝜑 = 𝜎𝜑(𝑟,𝜑),  𝜏𝑟𝜑 = 𝜏𝑟𝜑(𝑟, 𝜑)  and 𝜎𝑟 = 𝜎𝑟(𝑟, 𝜑)  we can 

derive the following equilibrium equations 

𝜕

𝜕𝑟
(𝑟𝑡(𝑟)𝜎𝑟) − 𝑡(𝑟)𝜎𝜑 + 𝑡(𝑟)

𝜕𝜏𝑟𝜑

𝜕𝜑
= 0, 

    (45) 

𝜕

𝜕𝑟
(𝑟2𝑡(𝑟)𝜏𝑟𝜑) + 𝑟𝑡(𝑟)

𝜕𝜎𝜑

𝜕𝜑
= 0, 

    (46) 
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We reformulate equation (46) into a new form as 

∂

∂r
(r2t(r)τrφ) + rt(r)

∂σφ

∂φ
= 0. 

    (47) 

Integration of equation (47) yields 

𝜏𝑟𝜑(𝑟, 𝜑) = −
1

𝑟2𝑡(𝑟)
∫ 𝜌𝑡(𝜌)

𝜕𝜎𝜑

𝜕𝜑
d𝜌

𝑟

0
,      𝑏 ≤ 𝑟 < 𝑐,

   (48) 

 

𝜏𝑟𝜑(𝑟, 𝜑) =
𝑐2

𝑟2

𝑡2𝜏2(𝜑)

𝑡(𝜑)
−

1

𝑟2𝑡(𝑟)
∫ 𝜌𝑡(𝜌)

𝜕𝜎𝜑

𝜕𝜑
d𝜌

𝑟

0
,      𝑐 ≤ 𝑟 < 𝑎,

   (49) 

where  

𝜏2(𝜑) = lim
𝜀→0

𝜏𝑟𝜑(𝑐 − 𝜀2, 𝜑).    (50) 

 

The validity of formula (49) follows from the next equation 

𝑡2𝜏2(𝜑) = 𝑡1 lim
𝜀→0

𝜏𝑟𝜑(𝑐 + 𝜀2, 𝜑).   (51) 

 

The computation of the radial normal stress 𝜎𝑟 = 𝜎𝑟(𝑟, 𝜑) is based on equation (45). From equation 

(45) we obtain 

𝜎𝑟(𝑟, 𝜑) =
1

𝑟𝑡(𝑟)
∫ 𝑡(𝜌) (𝜎𝜑(𝜌, 𝜑) −

𝜕𝜏𝑟𝜑

𝜕𝜑
) d𝜌,

𝑟

𝑏
      𝑏 ≤ 𝑟 < 𝑐,

  (52) 

 

𝜎𝑟(𝑟, 𝜑) =
𝑐𝑡2𝜎2

𝑟𝑡(𝑟)
+

1

𝑟𝑡(𝑟)
∫ 𝑡(𝜌) (𝜎𝜑(𝜌, 𝜑) −

𝜕𝜏𝑟𝜑

𝜕𝜑
) d𝜌,

𝑟

𝑐
      𝑐 ≤ 𝑟 < 𝑎.

  (53) 

Here, 

𝜎2(𝜑) = lim
𝜀→0

𝜎𝑟(𝑐 − 𝜀2, 𝜑)    (54) 

and we use the continuity condition of radial normal stress resultant at 𝑟 = 𝑐, which can be formulated 

as 

𝑡2𝜎2(𝜑) = 𝑡1 lim
𝜀→0

𝜎𝑟(𝑐 + 𝜀2, 𝜑).     (55) 

Solution of differential equation 

d2𝑈

d𝜑2
+ 𝑈 = 𝐾1 sinh(Ω𝜑) + 𝐾2 cosh(Ω𝜑) +

𝑀𝑅

𝐸0𝐴 (𝑅−𝑟3)

   (56) 

 

for 𝑈 = 𝑈(𝜑) gives the expression of radial displacement  

 



A. Baksa, I. Ecsedi  Bending of curved composite beam with interlayser slip 

111 

𝑈(𝜑) =
𝐾1

1+Ω2
sinh(Ω𝜑) +

𝐾2

1+Ω2
cosh(Ω𝜑) +

𝑀𝑅

𝐸0𝐴 (𝑅−𝑟3)
+ 𝑈0(𝜑).   (57) 

 

In equation (57) 𝑈0 = 𝑈0(𝜑)  is the general solution of the homogeneous differential equation 

d2𝑈0

d𝜑2
+ 𝑈0 = 0

     (58) 

which is represented as 

𝑈0(𝜑) = 𝐾3 cos 𝜑 + 𝐾4 sin 𝜑.    (59) 

 

The values of the constants of integration 𝐾3
 and 𝐾4

 have no effect the stress, 𝑈0 = 𝑈0(𝜑) describes a 

possible rigid body motion of the two-layer composite curved beam. For the case 𝑘 = ∞  (perfect 

connection) the radial displacement, when the cross section at 𝜑 = 0 fixed, is determined by the next 

boundary conditions (Ecsedi and Dluhi, 2005) 

𝑈(0) = 0         and       (d𝑈

d𝜑
)

𝜑=0
= 0.    (60) 

To compare the radial displacement of curved beam with inter-layer slip with perfect bonded two-layer 

curved beam we use to get 𝐾3 and 𝐾4 equation (60). A simple computation yields the result 

𝐾3 = − ( 𝐾2

1+Ω2
+

𝑀 𝑅

𝐸0𝐴 (𝑅−𝑟3)
),      (61) 

𝐾4 = −
Ω

1+Ω2
𝐾1.     (62) 

The computation of the slip function is based on the next equation 

𝑠(𝜑) =
1

𝑘𝑐2𝑡
 
d𝑀1

d𝜑
= 𝑐(𝜙1(𝜑) − 𝜙2(𝜑)).    (63) 

A detailed computation yields the result 

𝑠(𝜑) =
𝐴1𝐸1

𝑘𝑐2𝑡
(1 +

𝑟1

𝑅

𝑅−𝑟2

𝑟2−𝑟1

𝐸0𝐴

𝐸1𝐴1

)
d𝑊

d𝜑
.    (64) 

5. Examples 

5.1. Example 1 

The cross section of the two-layer curved beam is shown in figure 3. The following data are used 

𝑎 = 0.04 m, 𝑏 = 0.02 m,     𝑐 = 0.03 m, 𝑡 = 0.005 m, 

𝐸1 = 10 × 1011 Pa, 𝐸2 = 8 × 1010 Pa, 𝑘 = 50 × 1010 N/m3, 

�̅�11  = �̅�12 = 300 Nm,           �̅�21 = �̅�22  =  −300 Nm, 

𝑀 = �̅�11 + �̅�21 = �̅�21 + �̅�22 = 0, 𝛼1 = 0,       𝛼2 = 𝜋. 
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Figure 3. The cross section of curved composite beam 

The graphs of 𝜎𝜑 = 𝜎𝜑(𝑟, 𝜑), 𝜎𝑟 = 𝜎𝑟(𝑟, 𝜑) and 𝜏𝑟𝜑 = 𝜏𝑟𝜑(𝑟, 𝜑) as a function of radial coordinate for 

cross sections given by polar angle 𝜑 = 0, 𝜑 = 𝜋/6, 𝜑 = 𝜋/4, and 𝜑 = 3𝜋/4 are shown in figures. 4, 

5 and 6. The graphs of radial displacement and slip function as a functions of polar angle 𝜑 are presented 

in figures 7 and 10. 

The circumferential displacement and the cross-sectional rotation are shown in figures 8 and 9 as a 

function of polar angle 𝜑. 

 

Figure 4. Plots of the circumferential normal stresses for example 1 
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Figure 5. Plots of the radial normal stresses for example 1 

 

 

Figure 6. Plots of shearing stresses for example 1 
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Figure 7. Plot of the radial displacement for example 1 

 

 

Figure 8. Plot of the displacement in circumferential direction for example 1 



A. Baksa, I. Ecsedi  Bending of curved composite beam with interlayser slip 

115 

 

Figure 9. Plot of the cross-sectional rotation for example 1 

 

 

Figure 10. Plot of slip function for example 1 
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5.2. Example 2 

The data of example 2 are the same as were used in example 1 except the applied end bending moments 

which as follows 

�̅�11  = �̅�12 = 200 Nm,           �̅�21 = �̅�22  =  −200 Nm, 

that is 

𝑀 = �̅�11 + �̅�21 = �̅�21 + �̅�22 = 0. 

The end loads at the cross section 𝛼1
 and 𝛼2

 are on equilibrium force system. 

In figures 11, 12 and 13 the graphs of the stresses 𝜎𝜑, 𝜎𝑟
 and 𝜏𝑟𝜑

 are illustrated. Figure 14 shows the 

graphs of the functions 𝑀1 = 𝑀1(𝜑) and 𝑀2 = 𝑀2(𝜑). 

 

Figure 11. Plots of the circumferential normal stresses for 𝑀 = 0  for example 2 

 

Figure 12. Plots of the radial normal stresses for 𝑀 = 0 for example 2 
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Figure 13. Plots of the shearing stress for 𝑀 = 0 for example 2 

 

 

Figure 14. Plots of the functions 𝑀1 = 𝑀1(𝜑) and 𝑀2 = 𝑀2(𝜑) for example 2 
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6. Summary  

The presented investigation gives an example of the pure bending of two-layered curved beams made 

of different elastic isotropic material. We work on the extension of this analysis to elastic anisotropic 

material. 

We are planning a detailed examination of the pure bending problem for mixed type boundary 

conditions, when for example, the bending moment is prescribed only the end cross sections of upper 

layer. The end cross sections of lower layer have given cross-sectional rotations. 

In this paper two-layer curved beam with deformable shear connection is analysed. The curved 

composite beam is subjected to bending moments applied them at its end cross section. A model 

developed to describe the static behaviour of the two-layer curved beam which is based on the Euler-

Bernoulli beam theory. It is shown that under the action of pure bending moment in the composite 

curved beam with imperfect shear connection the shearing stresses appear too. 
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