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Abstract 

Hedge trimmers are used for various applications, from lighter vegetations to tree-like plants. A key 

component of the hedge trimmer is the eccentric disk within its drive train, that can be looked at as a 

cam-follower mechanism. The eccentric is responsible for transforming the rotating motion into an al-

ternating one. Another important thing about the eccentric is the acceleration it generates during the 

operation for the blades, this acceleration must be considered when considering the cutting force. With 

different eccentric profiles different acceleration can be achieved. This paper aims to create an electro-

mechanical model for the drive train of a hedge trimmer and to examine the behavior of the system 

based on its variables. 

Keywords: hedge trimmer, cam-follower mechanism, Lagrange-equation, differential equation, Scilab 

1. Introduction 

Hedge trimmers are used mostly in households, in some cases as professional equipment as well, i.e. gar-

dening companies. A key aspect for a hedge trimmer – based on the fact that it is a handheld power tool – 

is, that it has to be lightweighted. In technical systems engineers widely use linkage systems for translating 

a rotating motion into an alternating one. The reason for this is, that the linkage system is a known and 

applied solution, but its size is a limitation when it comes to handheld applications. For this reason, in 

handheld power tools (jigsaws, hedge trimmers, shrub shears) a cam-follower mechanism is used. 

The biggest advantage of this solution is its size and shape, but it must be mentioned, that these 

systems are sensitive against lubrication and the lack of it. Another advantage of the cam – follower 

mechanism that by alternating the curvature of the cam, different displacement, velocity, and accelera-

tion functions can be achieved. These can result in more beneficial cutting force characteristics, which 

can improve user satisfaction – which is one of the most important things to be considered when the 

topic is consumer goods. As every technical solution, the altered cam – follower profile has its limita-

tions as well. The altered profile can cause higher noise and vibration results, that have to be avoided. 

Therefore, the task is given for the engineer to create a profile, that provides an appropriate cutting force 

profile, however, will not cause unwanted noise and vibration results. 
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There are different techniques to determine the cam profiles, the often applied is the analytical solu-

tion (Iriarte et al., 2024; Hsieh, 2010). To improve the efficiency of the designed profile, optimization 

techniques are used (Qiu et al., 2015; Borboni et al., 2020; Angeles et al. 2012). 

This paper aims to create a mechanical model that can be used when examining a system of a hedge 

trimmer. 

2. The electromechanical model for the hedge trimmer 

The first step is to create an electromechanical model for the examined mechanism (Rothbart, 2004; 

Norton, 2009). Figure 1 shows the schematic model of a hedge trimmer with its main parameters. 

 

Figure 1. Electromechanical model of the drive train of a hedge trimmer 

In Figure 1 q is the electric charge flowing in the electric circuit of the tool [C], q is the electric current 

flowing in the electric circuit of the tool [A], Rb is the inner resistance of the battery [Ω], L is the induct-

ance of the motor [H], R is the resistance of the coil of the motor [Ω], U0 is the supply voltage of the 

battery [V], Jm is the moment of inertia of the motor [kgm2], zm is the number of teeth of the smaller 

gear, on the rotor [–], φm is the angular displacement of the rotor [–], zw is the number of teeth of the 

bigger gear, on the driven axis [–], φw is the angular displacement of the driven axis [–], Jw is the moment 

of inertia of the driven axis, including the inertia of the driven gear [kgm2], Ff2 is the friction force 

between the fixed support bar and the upper knife [N], Ff1,2 is the friction force between the upper and 

lower blade [N], x1 is the longitudinal displacement of the upper knife [m], x2 is the longitudinal dis-

placement of the lower knife [m], Fc is the cutting force [N], mw m wk z z  is the drive ratio between the 

driver and driven axis, considering that the system has a speed reduction, it will be lower than 1 [–]. The 

system now can be described with a Lagrangian function, where the variables will be the angular dis-

placements and the longitudinal displacements. The general form of the Lagrangian function may be 

written as 

 m e potW W T U    L  (1) 

where the variables are L  is the Lagrangian function, mW   is the complementary magnetic energy, We 

is the electrical energy, T* is the complementary kinetic energy, Upot is the potential energy. This equa-

tion may be simplified, since a hedge trimmer has no capacitor in it, therefore it will not include any 
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electrical energy, furthermore the parts in the model are rigid bodies, thus the potential energy will be 

zero. The Lagrangian function can be unfolded with the considerations mentioned above as 

 
2 2 2 2 2

1 1 2 2

1 1 1 1 1

2 2 2 2 2
m m w wLq J J m x m x     L  (2) 

where m1 is the mass of the upper knife [kg], and m2 is the mass of the lower knife [kg]. The other 

quantity that has to be considered is the virtual work associated to the non-conservative elements, for 

this system this work takes the sum of  

 
     

       

0 2 2 2

1 2 12 1 2 1 1 2 2

nc b i m m m f
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       

    
 (3) 

where Ui is the voltage induced in the motor [V], b is the air drag of the motor [Nms], the signum 

function [–] is 

 

1  0

0  0

1  0

i

i i

i

if x

sgn x if x

if x




 
 

 

It is advantageous to express x1 and x2 longitudinal displacements, and their derivates to as the de-

pendents of the angular displacements of the driven axis (φw), this is shown in Figure 2. 

 

Figure 2. Expressing variables using φw 

The x1 and x2 longitudinal displacements and the angular displacement are connected through the e 

eccentricity [m] and trigonometric functions according to 

  1 cos ,wx e    (4) 

  2 cos ,wx e      (5) 

  1 sin ,w wx e     (6) 

  2 sin ,w wx e        (7) 

  1 sin ,w wx e      (8) 

  2 sin .w wx e       (9) 
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To decrease the number of unknown quantities it is beneficial to write Equations (4)–(9) not as de-

pendents of the angular displacement of the driven axis, but as dependents of the angular displacement 

of the rotor. First a connection is needed between the angular displacement of the rotor and angular 

displacement of the driven axle, this can be written as 

 .m
w m mw m

w

z
k

z
     (10) 

If both sides of Equation (10) are derivated, the result is the 

 w mw mk   (11) 

correlation between the angular velocity of the driven axle and the rotor. Using Equation (10) and (11), 

Equation (9) can be rewritten as 

  2 sin .mw mw m mx e k k       (12) 

Using Equations (5)–(8), (10) and (12) the main Equation (2) and (3) can be readjusted as 

     2 2 2 2 2

1 2

1 1
sin ,

2 2
m mw w mw m mLq J k J m m e k        L  (13) 
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 (14) 

where the new variables ke is the electrical machine coefficient [Vs/rad], km is the torque machine coeffi-

cient [Nm/A], i e mU k   is the induced voltage [V], m mM k q  is the torque of the motor [Nm]. Now the 

Lagrange – equations can be created from Equation (13) and (14), with variables q and φm. The Lagrange 

– equations of the second kind are showing how the derivates of the Lagrangian function and the virtual 

work associated to the non-conservative elements are related, their general form may be written as 

 ,i

d
Q

dt q q

  
  

  

L L
 (15) 

where qi is the generalized displacement coordinate (it can be spatial displacement, angular displace-

ment, electrical charge, etc.) and Qi is the nonconservative load belonging to the generalized coordinate 

(e.g.: Fi, Mi, U0). Using Equation (15) for q it can be written, that 

     .b e m

d
U t R R q k

dt q q


  
     

  

L L
 (16) 

After executing the partial derivation on the left side of the equation, and doing some reorganization, 

the equation becomes 

    .b e mLq R R q k U t     (17) 

Similarly, to q the same can be done to φm, so the Lagrange – equation is 
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In order to have less components in the equations it is worth to introduce new quantities, their purpose 

is to combine relevant components one of them for the friction –Mf(φm) and the other for the cutting 

force –Mc(φm) according to the 

          2 2 12 1 2sin 2 sin ,f m f mw m mw f mw m mwM F sgn x ek k F sgn x x ek k         (19) 

      12 sinc m c mw m mwM F sign x ek k    (20) 

formulas. After executing the derivation in Eq. (18) and using Equations (19)–(20), the equation takes the 
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nonlinear form. Introducing a new quantity for the inertias as well, marked as JΣ according to the fol-

lowing 
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Rewrite Equation (21) into the 

  
 

   21

2

m

m m m m m f m c m

m

J
J b k q M M


     








    


 (24) 

simplified form. To solve the nonlinear Equation (2.17) and (2.24) it is worth to introduce new variables 

for ,  ,  mq q   and m  as of 

 1 ,y q  (25) 

 2 ,my   (26) 

 3 ,my   (27) 

 4 ,y q  (28) 

 4 1,y y  (29) 

 2 3.y y  (30) 
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It is obvious, that 1y q  and 3 my  , this means that after dividing (17) with L, and using Equations 

(25)–(28) we receive the 
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y y y
L L L
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differential equation. Applying similarly to Equation (24), this resulting the 
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differential equation. Equations (2.29)–(2.32) can be solved with numerical software, such as MATLAB 

or Scilab. 

3. Solving the differential equations 

The differential equations were solved in Scilab software by Adaptive Runge-Kutta of order 4 (RK4) 

method. One temporary limitation is that the model considers unloaded operation. This is because of 

two reasons: the hedge trimmer during its operation in a soft vegetation is almost running in a no-load 

environment, the other reason is that introducing various cutting forces would make the calculations 

way more complicated and the aim of this paper is to examine the overall electromechanical model of 

the hedge trimmer. The parameters used for the calculations were: Jm = 5.510–6 kgm2, Jw = 1.4510–4 kgm2, 

kmw = 4/57, e = 7.5 mm, m1 = 0.299 kg, m2 = 0.3 kg, Ff = 8 N, Fc = 3 N, L = 10–3 H, R = 0.2 Ω, 

Rb = 0.135 Ω, ke = 0.0145 Vs/rad, km = 0.0145 Nm/A, U0 = 36 V and b = 1.2410–4 Nms. 0 shows the 

knives movement of the examined hedge trimmer. 

 

Figure 3. Movement of the knives in the hedge trimmer 

 

The two knives move as the mirror images of each other, which reflects the reality. The rotor speed 

of the driving mechanism can be seen in Figure 4. 
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Figure 4. Change of rotor speed in the hedge trimmer 

 

It can be seen that the Scilab computation results the actual rotor speed of the examined hedge trim-

mer. The speed of the driven axle, including the eccentric is shown in Figure 5. 

 

 

Figure 5. Change of driven excenter speed in the hedge trimmer 

 

The actual speed of the driven axle is 1600 rpm, therefore the model computes this value as well. 

Finally, only the current consumption remains to be examined, this can be seen in Figure 6. 
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Figure 6. Change of driven excenter speed in the hedge trimmer 

The steady state current consumption of the machine is approximately 2 A, this can be seen on the 

graph as well. The question mark for the future studies is that whether the peak at the beginning of the 

graph is reliable or not. 

4. Summary 

In this paper after a short introduction a longer elaboration was done about the electromechanical model 

of a hedge trimmer based on its drive train. It was shown how the Lagrangian – function can be derived, 

and how the Lagrange – equation can be written using it. After some work two nonlinear differential 

equations were created. At the end these two equations were solved using Scilab software. The major 

aim of this paper was to create a model, and this aim was fulfilled – even though there is still place for 

minor adjustments. 
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