
Multidiszciplináris Tudományok, 14. kötet, 4. szám (2024) pp. 116–124. https://doi.org/10.35925/j.multi.2024.4.10

116

THERMOMECHANICAL ANALYSIS OF FUNCTIONALLY GRADED

COMPONENTS USING ABAQUS

Dávid Gönczi
senior lecturer, Institute of Applied Mechanics, University of Miskolc

3515 Miskolc, Miskolc-Egyetemváros, e-mail: david.gonczi@uni-miskolc.hu

Abstract

The main objective of this paper is to investigate the thermomechanical analysis of functionally graded

structural components using Abaqus complete environment. We present the capabilities offered by the

pre- and postprocessors of Abaqus finite element software for solving problems of bodies composed of

heterogeneous materials, and how these can be utilized in custom numerical methods. We investigate,

how we can utilize the built-in Python kernel of Abaqus complete environment and how we can use the

results to train neural network or for solving optimization problems.

Keywords: FGM, Abaqus, thermomechanics, optimization

1. Introduction

As technology advances at an ever-increasing pace, the demand for new materials with special properties

is also growing. In many fields, it is observed that engineers are researching the applications of these

new, advanced materials. Pure metals are rarely used in engineering practice due to the limitations of

their material behaviour. In many cases, solving a problem requires a material that is simultaneously

hard, heat-resistant, or ductile. To address this issue, metals are combined with other metals or non-

metal components to improve their material properties. One method for producing materials with

enhanced properties is to combine them in a solid state, known as composite materials. These advanced,

inhomogeneous materials are made from one or more solid-state substances with different mechanical

and chemical properties. Composites offer excellent properties that differ from those of the individual

components, and in most cases, they also have a lower mass. The use of these materials is often limited

by a phenomenon called delamination. This process is particularly problematic in high-temperature

environments when the base materials have different coefficients of linear thermal expansion.

To solve this problem, Japanese researchers developed the concept of Functionally Graded Materials

in the mid-1980s during a hypersonic spacecraft project. Functionally Graded Materials (FGMs) are

advanced materials whose composition and structure gradually change, resulting in corresponding

changes in their properties. In these materials, the sharp interfaces between the constituent materials are

eliminated. Instead of a sharp interface, where failure might initiate, a graded (gradual) interface is

formed, providing a smooth transition from one material to another.

Numerous studies have dealt with the mechanics of functionally graded materials (FGMs) from

various aspects. A variety of papers have proposed analytical, semi-analytical, and numerical methods

to solve thermomechanical problems in spheres, cylinders, beams, and disks (e.g. (Pen and Li, 2009;

Gönczi, 2017; Kim and Noda, 2002; Nayak et al., 2020; Kiss, 2020; Afsal et al., 2023; Khatir et al.,

2021)). These methods are restricted to special geometries, loading or specific material composition.

https://doi.org/10.35925/j.multi.2024.4.10
mailto:david.gonczi@uni-miskolc.hu
https://orcid.org/0000-0003-4624-7589

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

117

Several books provide solutions to linear elastic problems in non-homogeneous bodies, such as those

found in (Hetnarski and Eslami, 2010; Shen, 2009; Noda et al., 2000). The description of physical

phenomena that depend on time and space usually leads to systems of partial differential equations, for

which exact, closed-form solutions cannot be determined in most cases. With the advancement of

computing, numerical methods have come to the forefront in solving engineering problems, with one of

the most widespread methods today being the Finite Element Method (FEM), which is a numerical

technique where the desired fields are approximated over a finite number of subdomains (elements)

using approximation functions. By joining these subdomains, the parameters describing these fields are

then determined through an algebraic equation or inequality system derived from some error principle

or variational principle. Finite element analysis (FEA) greatly simplifies complex product design

processes. When properly integrated into the design workflow, it accelerates problem-solving and

optimization tasks (Gönczi, 2021) while reducing costs. Additionally, thanks to standardized data

formats and integrated modules, FEA can be easily incorporated into the design process, enhancing

efficiency and streamlining development.

2. The preprocessor of Abaqus CAE

Abaqus CAE (Complete Abaqus Environment) is one of the leading general-purpose finite element

software tools. It is widely used in the industry due to its ability to analyze a broad range of engineering

problems. Over the years, several modules have been developed, with the most important being (Abaqus

6.13):

- Abaqus/Standard and Abaqus/Explicit: A solver based on implicit integration schemes and a

module for handling highly nonlinear dynamic and thermomechanical problems.

- Abaqus CFD: A fluid dynamics solver for solving engineering tasks.

- Abaqus ElectroMagnetic: A module for solving electromagnetic problems.

The main steps of using the software are illustrated in Figure 1.

Figure 1. Modelling in Abaqus CAE.

In the early versions of Abaqus, only the processor module was implemented, which was written in

Fortran. In 1999, Abaqus CAE was introduced, expanding the software with pre- and post-processing

modules. These additions allowed users to work in a graphical interface, providing flexibility in model

creation. The pre- and post-processing modules were developed using the open-source Python language.

In summary, Abaqus CAE consists of components written in different programming languages, the

processor is responsible for the actual numerical simulation, written in a low-level language (Fortran).

The pre- and postprocessors are designed for user convenience and efficiency, these components are

written in a higher-level language (Python).

The processor is the essential part of the software, developed first and is the first to receive new

procedures. Often, new features are only later incorporated into the preprocessor, meaning it initially

has fewer functionalities compared to the processor. The communication between physical modules

often occurs through file exchanges. Figure 3 illustrates the interaction between modules and their

associated key files.

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

118

The main files generated and used during simulation include:
- .inp: The core input file for defining the modelling task; without this, no simulation can run, as it's

the processor's main input.
- .f or .for: Subroutines required for simulations, marked in the input file as optional inputs. Certain

modelling options are only accessible through these.
- .cae: Pre-processor file type, essential for setting up tasks in the pre-processor and version-

dependent. It offers more flexibility in areas like geometry compared to the input file.
- .jnl: A Python-based log file generated by the preprocessor, recording user activity step by step.
- .odb: Output file containing results, which is used by the postprocessor.

Figure 2. The architecture of Abaqus CAE.

Some of the files generated during simulations store information about the simulation's progress. The

input file is human-readable and easily editable. In the early versions of the software, these files were

manually created. Even in newer versions, the input file remains the primary driver of the simulation,

with the preprocessor generating it at the end of model setup and launching the simulation. Since the

input file offers more options than the preprocessor, manual editing is often unavoidable. Additionally,

subroutine files written in Fortran can be attached, allowing access to a wide range of functions, such as

user-defined material models (UMAT) that can be utilized for functionally graded materials or

specifying initial stress states. For these features to work, appropriate compilers must be installed.

To automate model creation, simulation execution, and data recording, we can utilize the powerful

features provided by the preprocessor. Python scripts can control the simulation's execution and make

decisions based on the results stored in the output file. Here we can create AI agents to control the

simulations.

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

119

Since the software's components communicate via files, they can also be controlled, written, and read

by custom code. The resulting data can be used for optimization tasks or even for training neural

networks.

There are several ways to program the Abaqus finite element software. If we want to modify the

equations or methods, we will need to write subroutines. We can also write code to generate input files,

especially if you want to add new functionality to the CAE preprocessor. Additionally, you can create

scripts to flexibly set up and control simulations, using Python-based code for these tasks.

The Abaqus CAE system extends the Python package with more than 500 classes (or objects) and

numerous methods that operate between them. These are grouped into three main categories: session,

mdb, and odb, as illustrated in the left part of Figure 3, which highlights its object-oriented approach.

Containers, in this context, refer to collections of similar objects.

Figure 3. The hierarchy of classes and objects of Abaqus and the structure of the preprocessor

(Abaqus 6.13).

These classes, containers, and objects can be effectively used for scripting. This way we can write

scripts that create models with given parameters. This allows us to write AI agents to run simulations

with given set of parameters based on previous results and other programmed logic. Objects can be

created using constructors. An example of this is mdb.models['Model-1'].Part(dimensionality=

TWO_D_PLANAR, name='curved_beam', type=DEFORMABLE_BODY). Objects have attributes,

and their values can be modified using the setValues() setter method. Some objects do not have

constructors and are created as part of other objects. Python scripts can be run from both the GUI and

the command line (without the GUI). Additionally, backward compatibility is maintained in this case,

unlike when using the original CAE files. The built-in Python kernel of Abaqus CAE is illustrated in

the right part of Figure 3.

3. Numerical example

Let us consider a curved beam in a cylindrical coordinate system (Orφz). The sketch of the problem can

be seen in Fig. 4. At first let us present the analytical solution of the problem. The displacement vector

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

120

𝐮 of the Euler-Bernoulli curved beam in the case of in-plane deformation can be represented as (Ecsedi

and Dluhi, 2006), (Ecsedi and Gönczi, 2022)

 𝐮 = 𝑢𝐞𝑟 + 𝑣𝐞𝜑 + 𝑤𝐞𝑧 , 𝑢 = 𝑈(𝜑), 𝑣 = 𝑟𝜙(𝜑) +
𝑑𝑈

𝑑𝜑
, 𝑤 = 0, (1)

where 𝜙(𝜑) is the rotation of the cross section and the beams deforms in its principal (rφ) plane. For

the stress resultant - displacement relations we introduce the following cross-sectional

properties:

𝐴𝐸0 = ∫ 𝐸𝑑𝐴

𝐴
, 𝑟𝑐 =

∫ 𝑟𝐸𝑑𝐴
𝐴

𝐸𝐴0
, 𝑅 =

𝐴𝐸0

∫ 𝑟−1𝐸𝑑𝐴
𝐴

, 𝑒 = 𝑟𝑐 − 𝑅.
 (2)

where A is the area of the cross section, E is the modulus of elasticity. The thermal loading is

characterized by two quantities (using 𝛼, 𝑡 linear coefficient of thermal expansion and temperature

field)

 ∫ 𝐸𝛼𝑡𝑑𝐴 = 𝐸0𝐴ℎ𝑛𝐴
, ∫ 𝑟𝐸𝛼𝑡𝑑𝐴 = 𝐸0𝐴ℎ𝑚.

𝐴
 (3)

Figure 4. The sketch of the curved beam.

The stress resultants are defined according to paper (Ecsedi and Dluhi, 2006) as

 𝑁(𝜑) = ∫ 𝜎𝜑𝑑𝐴
𝐴

, 𝑀(𝜑) = ∫ 𝑟𝜎𝜑𝑑𝐴
𝐴

, 𝑆(𝜑) = ∫ 𝜏𝑟𝜑𝑑𝐴
𝐴

, (4)

where 𝜏𝑟𝜑 is the shear stress and 𝜎𝜑
 is the tangential normal stress. Using the equilibrium

equations of the beam and adding the previously presented equations and notations the

following system of equations can be derived:

 𝑊(𝜑) =
𝑁0𝑅𝑟𝑐

𝐴𝐸0𝑒
𝑐𝑜𝑠 𝜑 −

𝑆0𝑅𝑟𝑐

𝐴𝐸0𝑒
𝑠𝑖𝑛 𝜑 +

𝑀0𝑅

𝐴𝐸0𝑒
+

𝑅𝑟𝑐ℎ𝑛

𝑒
−

𝑅ℎ𝑚

𝑒
, (5)

 𝑑𝜙

𝑑𝜑
= −

𝑁0𝑅

𝐴𝐸0𝑒
𝑐𝑜𝑠 𝜑 +

𝑆0𝑅

𝐴𝐸0𝑒
𝑠𝑖𝑛 𝜑 +

𝑀0

𝐴𝐸0𝑒
−

𝑅ℎ𝑛

𝑒
+

ℎ𝑚

𝑒
, (6)

 𝑑2𝑈(𝜑)

𝑑𝜑2
+ 𝑈(𝜑) =

𝑁0𝑅𝑟𝑐

𝐴𝐸0𝑒
𝑐𝑜𝑠 𝜑 +

𝑆0𝑅𝑟𝑐

𝐴𝐸0𝑒
𝑠𝑖𝑛 𝜑 +

𝑀0𝑅

𝐴𝐸0𝑒
+

𝑅

𝑒
(𝑟𝑐ℎ𝑛 − ℎ𝑚).

 (7)

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

121

In the previous equations 𝑁0, 𝑆0, 𝑀0 were reaction force components. From these equations

the displacement components can be calculated:

 𝜙(𝜑) = −
𝑁0𝑅

𝐴𝐸0𝑒
𝑠𝑖𝑛 𝜑 +

𝑆0𝑅

𝐴𝐸0𝑒
(1 − 𝑐𝑜𝑠 𝜑) +

𝑀0

𝐴𝐸0𝑒
𝜑 +

ℎ𝑚−𝑅ℎ𝑛

𝑒
𝜑, 𝜙(𝜑1) = 0. (8)

 𝑈(𝜑) = 𝐶1 𝑐𝑜𝑠 𝜑 + 𝐶2 𝑠𝑖𝑛 𝜑 +
𝑅

𝑒
(𝑟𝑐ℎ𝑛 − ℎ𝑚) −

𝑀0𝑅

𝐴𝐸0𝑒
+

𝑁0𝑅𝑟𝑐

2𝐴𝐸0𝑒
𝜑 𝑠𝑖𝑛 𝜑 +

𝑆0𝑅𝑟𝑐

2𝐴𝐸0𝑒
𝜑 𝑐𝑜𝑠 𝜑. (9)

 𝑉(𝜑) = 𝐶2 𝑐𝑜𝑠 𝜑 − 𝐶1 𝑠𝑖𝑛 𝜑 +
𝑁0𝑅𝑟𝑐

2𝐴𝐸0𝑒
(𝑠𝑖𝑛 𝜑 + 𝜑 𝑐𝑜𝑠 𝜑) +

𝑆0𝑅𝑟𝑐

2𝐴𝐸0𝑒
(𝑐𝑜𝑠 𝜑 − 𝑠𝑖𝑛 𝜑). (10)

The unknown constants 𝐶1, 𝐶2 and the unknown reactions 𝑁0, 𝑆0, 𝑀0 are obtained from the

boundary conditions.

After that we can create the model in Abaqus. We used scripts and parameters to automate

the simulation. Due to the complexity of the material (FGM), we needed a material class to

compute the values of the material properties. The simplest approach is to define layers in the

functionally graded body, in which the material parameters are constants. In our case every

element row has its own calculated constant set of values provided by the material class. We

used the built-in classes of Abaqus CAE to create the model using parameters, which include

the geometry, boundary conditions, meshing and loading: e.g. Class Runsimulation(Material:

material, internal_radius, external_radius, fi, thickness, temperature_field, number_of_layers,

boundary_1, boundary_2). When the simulation is ready, we can use the classes and objects of

the postprocessor in the odb class to get the results. These steps can speed up the calculations

because we can use the processor without starting the GUI of the preprocessor or postprocessor

(especially when a lot of shorter calculations are needed). For the calculations the following

data were used:

𝑎 = 0.085m, 𝑏 = 0.09m, ℎ = 0.2mm, 𝐸0 = 205GPa, 𝑇1 = 100℃, 𝑇2 = 80℃,

𝑡 = 𝑇2 +
𝑇1 − 𝑇2

𝑏 − 𝑎
(𝑟 − 𝑎), 𝛼0 = 3.9 ⋅ 10−6℃−1, 𝛼(𝑟) = 𝛼0 (

𝑟

𝑎
)

2

, 𝐸(𝑟) = 𝐸0 (
𝑟

𝑎
)

2

, 𝜑2 = 135°.

Figure 5. The mesh and the results of the curved beam.

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

122

The results were in good agreement, the maximum relative error for the dominant hoop or tangential

stresses is less, than 2%. We could easily refine the mesh with control parameters to execute the mesh

convergence test. The mesh presented in Fig. 5 was a balanced mesh which produced good accuracy.

Finer meshes lead to a very small accuracy increase for the stress distribution (less than 2%). If we want

to investigate the effect of the material distribution, we can do it easily by modifying the arguments of

the material class.

4. Discussion about the applications of scripts

The next question is how to use the previously created Python script to enhance the simulation of

functionally graded structural components. When a series of calculations is required, we can program

an AI agent, which controls the parameter inputs for the simulations. It ensures that the behaviour of the

system remains within reasonable range, which means for example – if certain parameters reach a

threshold that results in excessively high stresses, the agent resets the incrementation of that parameter.

It also plays an important role in handling errors during simulation and restarting the process if the

system shuts down. This approach allows for the generation of large datasets to train neural networks,

which means that we can use the previously presented method to calculate stresses and displacements

as an input for the network.

Neural networks can significantly reduce lengthy computational tasks. For larger models, especially

with complex geometries, it's beneficial to employ modelling sub-techniques to accelerate calculations,

as this can lead to a significant increase in speed when producing large amounts of data.

In many cases, we can also use optimization procedures for the design of engineering structures. One

example is evolutionary algorithms, which allow us to search for globally good solutions based on

various criteria (although we may not necessarily find the absolute best solution). In this context, we

have a variable array that stores the parameters to be optimized, along with settings such as the number

of generations, population size, elitism (how many of the best individuals are directly carried over to the

next population), and tournament size (how many individuals compete against each other). The main

components of genetic algorithms include:
- Data conversion to chromosomes: Often, variables are converted into a binary sequence. This

involves designating discrete values within the examined range based on the chromosome length

for our investigations.
- Conversion of chromosomes to data sets: The variable array is retrieved from the chromosome.
- Creation of the initial population: A set of chromosomes representing the initial population is

generated randomly.
- Running simulations and determining target values: Selected variable combinations are compared

based on results.
- Tournament selection: Using a tournament function, selected individuals compete against each

other (e.g., randomly).
- Chromosome mutation: Random changes are introduced to selected chromosomes using a

specified function.
- Creating a new population: The population is sorted based on simulation results. Some individuals

are carried over through elitism. The remaining individuals compete, and from the two tournament

winners (and their chromosomes), new offspring are generated, which may mutate with a certain

probability or inherit directly from the parents' chromosomes.

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

123

- The control function of the genetic algorithm: It runs calculations across populations, creates new

ones based on results, and manages the simulation process.

For optimization tasks, the system can be analyzed from multiple perspectives. In the case of

functionally graded materials, one of the most straightforward approaches is to examine the material

composition. Additionally, we can analyze the geometry or even optimize based on cost. There are a lot

of algorithms for optimization besides genetic algorithms. The gradient based method uses information

about the gradient of the objective function to iteratively improve the solution. They are highly efficient

for problems where the objective function is smooth and differentiable, but it can get trapped in local

minima for non-convex problems. Another method is the simulated annealing, which is inspired by the

annealing process in metallurgy, this method allows random exploration of the design space with

occasional acceptance of worse solutions to avoid local minima. As the algorithm progresses, the

probability of accepting worse solutions decreases. The particle swarm optimization is a population-

based optimization method inspired by the social behaviour of birds and fish. Each "particle" adjusts its

position in the search space based on its own experience and the experience of neighbouring particles.

It can be applied in various structural optimization problems, including material selection, shape

optimization, and topology optimization. It is simple to implement, suitable for large-scale and highly

non-convex problems, but it can converge prematurely or slowly if not well-tuned. Differential evolution

is a population-based optimization technique that relies on the differences between randomly selected

individuals to drive the search. It mutates and recombines solutions and selects the best ones for the next

iteration and is suitable for optimizing complex, non-differentiable, and non-linear functions. It can be

efficient for global optimization and robust against local extremum but can be computationally

expensive. Level set methods represent the design boundary implicitly as a level set of a higher-

dimensional function. The optimization process evolves the boundary to minimize the objective

function. These are useful in shape and topology optimization. These handle complex boundary

evolutions efficiently and are well-suited for large-scale structural optimization. They are

computationally expensive and require fine-tuning. In surrogate-based optimization, a surrogate model

(e.g., kriging, radial basis functions, neural networks) approximates the expensive-to-evaluate objective

function. The surrogate model is iteratively refined during the optimization process. It is preferable to

use when evaluating the objective function is computationally expensive (e.g., FE analysis of complex

problems). It reduces computational cost by limiting the number of expensive function evaluations, but

it requires careful modelling.

5. Summary

A method was presented to run simulations using Python scripts in Abaqus CAE. We investigated the

options to use the built-in Python kernel of the complete Abaqus environment. We solved a curved beam

problem using an exact solution based on the Euler-Bernoulli beam theory. Then we checked our finite

element script using the previously presented analytical solution. The results were in good agreement

and we could easily modify the model or further improve the accuracy of the simulation by adjusting

the parameters of the script. Then we investigated the methods that can use these scripts. We considered

the utilization of neural networks or the application of different optimization algorithms.

Gönczi, D. Thermomechanical analysis of functionally graded components using Abaqus

124

References

[1] Pen, X., & Li, X. (2009). Thermoelastic analysis of functionally graded annulus with arbitrary

gradient. Applied Mathematics and Mechanics (English Edition), 30(10), 1211–1220.

https://doi.org/10.1007/s10483-009-1001-7

[2] Gönczi, D. (2017). Thermoelastic analysis of thick-walled functionally graded spherical pressure

vessels with temperature-dependent material properties. Journal of Computational and Applied

Mechanics, 12(2), 109–125. https://doi.org/10.32973/jcam.2017.008

[3] Kim, K. S., & Noda, N. (2002). Green’s function approach to unsteady thermal stresses in an

infinite hollow cylinder of functionally graded material. Acta. Mech., 156, 61–145.

https://doi.org/10.1007/BF01176753

[4] Nayak, P., Bhowmick, P., & Saha, K. N. (2020). Elasto-plastic analysis of thermo-mechanically

loaded functionally graded disks by an iterative variational method. Engineering Science and

Technology, an International Journal, 23(1), 42–64.

https://doi.org/10.1016/j.jestch.2019.04.007

[5] Kiss, L. P. (2020). Nonlinear stability analysis of FGM shallow arches under an arbitrary

concentrated radial force. International Journal of Mechanics and Materials in Design, 16(1),

91–108. https://doi.org/10.1007/s10999-019-09460-2

[6] Afsal, K. P., Swaminathan, K., Indu N., & Sachin, H. (2023). A novel EFG meshless-ANN

approach for static analysis of FGM plates based on the higher-order theory. Mechanics of

Advanced Materials and Structures, 31(25), 6501–6517.

https://doi.org/10.1080/15376494.2023.2231459

[7] Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S., & Wahab, M. A. (2021).

An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage

assessment in FGM composite plates. Composite Structures, 273, 114287.

https://doi.org/10.1016/j.compstruct.2021.114287

[8] Hetnarski, R. B., & Eslami, M. R. (2010). Thermal Stresses – Advanced Theory and Applications.

Springer, New York, USA. https://doi.org/10.1007/978-3-030-10436-8

[9] Shen, H.-S. (2009). Functionally Graded Materials: Nonlinear Analysis of Plates and Shells.

CRC Press, London, UK. https://doi.org/10.1201/9781420092578

[10] Noda, N., Hetnarski, R. B., & Tanigawa, Y. (2000). Thermal Stresses. Lastran Corporation,

Rochester, New York, USA. https://doi.org/10.1115/1.1349549

[11] Gönczi, D. (2021). Topológiai optimalizálási feladatok alapvető sajátosságai Abaqus

végeselemes programrendszerben. Multidiszciplináris Tudományok, 11(4), 177–187.

https://doi.org/10.35925/j.multi.2021.4.22 (in Hungarian)

[12] Abaqus 6.13 online documentation. Dassault Systems. 2015.

[13] Ecsedi, I., & Gönczi, D. (2022). Thermal stresses in radially non–homogeneous curved beams.

Annals of the Faculty of Engineering Hunedoara, 20(4), 107–114.

[14] Ecsedi, I., & Dluli, K. (2006). A linear model for the static and dynamic analysis of

nonhomogeneous curved beams. Applied Mathematical Modelling, 29(1-2), 1211–123.

https://doi.org/10.1016/j.apm.2005.03.006

https://doi.org/10.1007/s10483-009-1001-7
https://doi.org/10.32973/jcam.2017.008
https://doi.org/10.1007/BF01176753
https://doi.org/10.1016/j.jestch.2019.04.007
https://doi.org/10.1007/s10999-019-09460-2
https://doi.org/10.1080/15376494.2023.2231459
https://doi.org/10.1016/j.compstruct.2021.114287
https://doi.org/10.1007/978-3-030-10436-8
https://doi.org/10.1201/9781420092578
https://doi.org/10.1115/1.1349549
https://doi.org/10.35925/j.multi.2021.4.22
https://doi.org/10.1016/j.apm.2005.03.006

