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Abstract 

The purpose of this paper is to study the displacements and stresses within radially graded spherical 

pressure vessels. The body of the sphere is made of a functionally graded material, the material 

properties are arbitrary functions of the radial coordinate. Our aim is to determine the stress state of 

the sphere using stress functions while the body is subjected to pressure and prescribed temperature 

field.  The results are used to train a neural network to predict the maximum equivalent stress for the 

design of the pressure vessel. 
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1. Introduction  

As technology advances rapidly, the demand for new, advanced materials with special material 

properties and behaviour is increasing. Engineers across various fields are exploring applications for 

these engineered materials instead of using pure metals and more traditional materials due to their 

material limitations. For example, a lot of problems require materials that are both hard, heat-resistant, 

or ductile. To improve these properties, metals are combined with other metals or non-metals, often 

forming composite materials. These advanced materials offer superior performance and lower weight 

compared to their individual components. However, their use is limited by delamination, particularly in 

high-temperature environments with different thermal expansion rates. To address the weaknesses of 

composites, Japanese researchers introduced Functionally Graded Materials (FGMs) in the mid-1980s 

during a hypersonic spacecraft project. FGMs feature a gradual change in composition and structure, 

resulting in gradual changes in their material properties and eliminating sharp interfaces, thus reducing 

failure risks. 

Numerous studies have addressed the mechanics of functionally graded materials (FGMs) from 

various perspectives. Several books provide solutions to linear elastic problems in non-homogeneous 

bodies, such as those found in (Hetnarski and Eslami, 2010; Lekhnitskii, 1981; Noda et al., 2000). A 

variety of papers have proposed analytical, semi-analytical, and numerical methods to solve 

thermomechanical issues in hollow spheres, cylinders, beams, and disks. Noda et al. (Obata and Noda, 

1994; Kim and Noda, 2002) examined one-dimensional steady-state thermal stress problems in isotropic 

functionally graded hollow circular cylinders and spheres, employing the perturbation method, 

multilayered approach, and Green's functions. Chen and Lin (Chen and Lin, 2008) conducted elastic 

analyses on thick cylinders and spherical pressure vessels composed of FGMs, where the material 

properties varied exponentially along the radial direction. Analytical solutions for radial, tangential, and 

effective stresses in thick spherical pressure vessels made from FGMs, subjected to axisymmetric 
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mechanical and thermal loads, were developed by Nayak et al. (Nayak et al., 2011) and Bayat et al. 

(Bayat et al., 2011). In their work, the material properties were modelled as a power-law function of the 

radial coordinate, while Poisson’s ratio remained constant. Pen and Li (Pen and Li, 2009) explored the 

steady-state thermoelastic behaviour of isotropic radially graded disks with arbitrary radial non-

homogeneity, reducing the numerical solution to a Fredholm integral equation. There are a lot of papers, 

such as (Gönczi and Ecsedi, 2015; Kiss, 2020; Gönczi, 2019; Kiss, 2014), that investigate the stress 

distribution of heterogeneous structural components. 

In this paper radially graded spherical bodies are investigated, in which the material properties are 

arbitrary functions of the radial coordinate. The temperature field is a given which is the thermal loading 

of the problem. We have constant pressure exerted on the boundary surfaces of the sphere. Additionally 

we consider the case, when kinematic boundary conditions are given. Our aim is to present a method to 

solve these problems using stress functions. Then we would like to train neural networks with the results 

coming from these calculations. Figure 1 shows the sketch of the problem, the mechanical loads are 𝑝1
 

and 𝑝2
 (constant pressure values) while 𝑇(𝑟) denotes the temperature field. 

 

Figure 1. The sketch of the problem. 

2. The formulation of the problem 

Let us consider functionally graded spherical pressure vessels examined in spherical coordinates 

(𝑟, 𝜑, 𝜗), where the material composition varies only in the radial direction. Consider a two-component, 

radially graded, axisymmetric structural element. If the material property values at the two boundary 

surfaces (inner radius 𝑎, outer radius 𝑏) are 𝑀1
 and 𝑀2

, then the following normalized exponential 

distribution function can be used: 

  𝑀𝐹𝐺𝑀(𝑟) = [𝑀1 − 𝑀2]
𝑟−𝑎

𝑏−𝑎
+ 𝑀2. (1) 

If we wish to incorporate temperature dependence in the future, the above equation can be extended 

by the 

  𝑀(𝑇) = 𝑃0(𝑃1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (2) 
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In this case, 𝑀 represents the elastic modulus (𝐸), Poisson's ratio (𝜈), the coefficient of linear thermal 

expansion (𝛼), or the thermal conductivity (𝜆). Due to the axisymmetric nature of the problem and its 

sole dependence on the radial coordinate, the kinematic equations can be written in the following form 

𝜀𝑟(𝑟) =
𝜕𝑢𝑟

𝜕𝑟
=

d𝑢𝑟(𝑟)

d𝑟
, 𝜀𝜑(𝑟) = 𝜀𝜗(𝑟) =

𝑢𝑟

𝑟
. 
 (3) 

In the previous equation 𝑢𝑟
 denotes the radial displacement, 𝜀𝑟 , 𝜀𝜑, 𝜀𝜗

 are the normal strains. 

Considering a linearly elastic, isotropic material, the normal stresses (from the constitutive equations) 

are 

𝜎𝑟(𝑟) =
𝐸(𝑟)

[1 + 𝜈(𝑟)][1 − 2𝜈(𝑟)]
{[1 − 𝜈(𝑟)]𝜀𝑟(𝑟) + 2𝜈(𝑟)𝜀𝜑(𝑟) − 𝛼(𝑟)[1 + 𝜈(𝑟)]𝑇(𝑟)},

 

𝜎𝜑(𝑟) = 𝜎𝜗(𝑟)  =
𝐸(𝑟)

[1 + 𝜈(𝑟)][1 − 2𝜈(𝑟)]
{𝜈(𝑟)𝜀𝑟(𝑟) + 𝜀𝜑(𝑟) − 𝛼(𝑟)[1 + 𝜈(𝑟)]𝑇(𝑟)}.

 
(4) 

The equilibrium equation can be expressed as 

d𝜎𝑟

d𝑟
+

2(𝜎𝑟 − 𝜎𝜑)

𝑟
= 0.

 (5) 

Let’s define the stress function 𝐹 as 

𝜎𝑟 = 𝐹𝑟−2, 𝜎𝜑 = 2𝑟−1
d𝐹

d𝑟
.
 (6) 

After some manipulation of the previous system of equations we get the following system of 

differential equations 

d

d𝑟
[
𝑢
𝐹
] =

[
 
 
 −

2𝜈

(1 − 𝜈)
𝑟−1 (1 − 2𝜈)(1 + 𝜈)

(1 − 𝜈)𝐸
𝑟−2

2𝐸

1 − 𝜈

2𝜈

1 − 𝜈
𝑟−1

]
 
 
 

[
𝑢
𝐹
] + [

1 + 𝜈

1 − 𝜈
2𝐸

1 − 𝜈
𝑟

] 𝛼𝑇.

 

(7) 

We have essentially reformulated the boundary value problem as an initial value problem in a non-

traditional sense. After this, we generate the actual initial values of the problem by combining two cases. 

Let us consider the problem, where we have two traction boundary conditions. In this case we have to 

solve the following two initial value problems: 

I. case:  𝑢(𝑟 = 𝑎) = 𝑢1: arbitrary value,   𝐹𝐼(𝑟 = 𝑎) = 𝐹𝐼 = −𝑝1𝑎
2, 

II. case:  𝑢(𝑟 = 𝑎) = 𝑢2 ≠ 𝑢1: arbitrary value,   𝐹𝐼𝐼(𝑟 = 𝑎) = 𝐹𝐼
. 

This can be done, for example, by using the Runge-Kutta method. From these calculations, we need 

the value of our stress function at the outer boundary 𝐹𝐼(𝑏) and 𝐹𝐼𝐼(𝑏). Then, for the final (third) initial 

value problem to be solved, we use the actual 𝐹𝐼
 value from the previous calculations and the actual 

displacement value at the inner radius, which can be expressed as 

𝑢1_𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑢1 −
𝑢2 − 𝑢1

𝐹𝐼𝐼(𝑏) − 𝐹𝐼(𝑏)
(𝑏2𝑝2 + 𝐹𝐼(𝑏)).

 (8) 



Gönczi, D. Analysis of functionally graded spherical pressure vessels 

170 

The previous expression comes from the statement, that the actual displacement value of the problem 

can be given as the linear combination of the solutions of the first two initial value problems. This means 

that 

 [
𝑢
𝐹
] = 𝐶1 [

𝑢
𝐹
]
𝐼
+ 𝐶2 [

𝑢
𝐹
]
𝐼𝐼

 (9) 

and we have two boundary conditions to calculate the unknown constants 𝐶1, 𝐶2
. Here we note, when 

there are kinematic boundary conditions, the initial value problems can be formulated as 

I. case:  𝑢(𝑟 = 𝑎) = 𝑢1: given value,   𝐹𝐼(𝑟 = 𝑎) = 𝐹𝐼: arbitrary value, 

II. case:  𝑢(𝑟 = 𝑎) = 𝑢1, 𝐹𝐼𝐼(𝑟 = 𝑎): arbitrary value, but 𝐹𝐼𝐼 ≠ 𝐹𝐼 . 

Then we can use equations (9) to calculate the initial value of the displacement field in this case. 

When the displacement field is known, the stress distributions can be calculated according to eqs. (6). It 

is important to highlight, that the temperature field is arbitrary (and given), furthermore the method 

works when the material parameters are arbitrary functions of the temperature field. 

3. Calculating the critical stresses using neural networks 

To train a neural network, we need a large input dataset. We can use the previously presented method 

to calculate stresses and displacements as an input for the network. Let the maximum equivalent stress 

of our system be the critical stress. Our input data are the inner radius of the tank, the ratio of the outer 

to inner radius, the dataset describing the material distribution, the pressure and temperature of the stored 

internal medium. The output data will be the information relevant to the design of the pressure vessel. 

This could be, for example, the maximum reduced stress value to be compared with the failure criterion. 

This means that these problems can be classified as regression problems. We want to use deep neural 

networks with multiple hidden layers to calculate the chosen data for our problem. 

The unit of a neural network is neuron, in which the input values (𝐱) are combined with weights (𝐰) 

and then with a bias value (𝑏) they provide the input (𝑧 = 𝐱 ∙ 𝐰 + 𝑏) for an activation function which 

produces the output of the neuron 𝜎(𝑧). A neural network can be built from multiple layers of such 

neurons. This includes an input layer, which typically contains as many neurons as the amount of input 

data. 

 

Figure 2. A Deep Neural Network (DNN). 
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The structure of the output layer is determined by the output data. For example, if we want to predict 

the maximum reduced stress value, we need 1 neuron in the output layer. Between these layers there are 

the hidden layers. The structure of these layers are hyperparameters of the system. An example of this 

is illustrated in Figure 2. Our most commonly used activation functions are the sigmoid function the 

hyperbolic tangent function (tanh) and the relu (Rectified Linear Unit), which are: 

 
𝜎(𝑧) =

1

1+𝑒−𝑧
, tanh(𝑧) =

𝑒2𝑧−1

𝑒2𝑧+1
, 𝑟𝑒𝑙𝑢(𝑧) = max{0, 𝑧}.

 (10) 

The next important question is the determination of the weight functions associated with the 

neurons, which is referred to as training. Here, we use a training sample through which we calibrate the 

values of the weight functions according to some strategy. To do this, we need to define a cost/loss 

function 𝐶(𝐰, 𝑏), which quantifies how well the output value approximates the actual value. We start 

with randomly chosen weight values and then iteratively adjust the weight values based on the training 

data (and the cost functions) to bring the results closer to the actual values. 

One such method is the gradient descent technique. The basis of this method is that we have a cost 

function that depends on the variables (𝐰, 𝑏). We calculate its gradient and shift the values in the 

appropriate direction, aiming to reduce our cost function. An important parameter here is the learning 

rate η (a small positive value). It needs to be set correctly because if it is too large, we might overshoot 

the sought minimum, while if it is too small, it will significantly slow down the algorithm. A commonly 

used variant of this method is the stochastic gradient descent technique, where calculations are 

performed not on the entire dataset (batch) but rather on a randomly selected smaller subset (mini-batch). 

The advantage of this variant is that it leads to more stable convergence. We then choose another subset 

and compute with it until we have gone through the entire training sample. At this point, we have 

completed what is known as an epoch. Another frequently used variant incorporates a momentum term 

to adjust the weights. Another efficient optimizer technique is the Adam (Adaptive Moment Estimation) 

optimization, which dynamically adjusts the rate of change of the parameters. This means that the 

learning rate adapts dynamically for each parameter. It keeps track of the learning rates for each 

parameter and remembers the gradients from the previous step, allowing it to make decisions based on 

the current and previous states. A potent version of Adam is Nadam, which combines Adam with the 

Nesterov technique, which tries to predict the future outcomes by introducing more parameters. 

There are two important (basic) numerical problem during the training. The unstable gradient 

problem is a common issue that arises during the training of deep neural networks. Within this, the 

vanishing gradient problem occurs during backpropagation when the gradient of the loss function with 

respect to the weights becomes very small, causing the weights to be modified negligibly and slowing 

down convergence. The opposite extreme occurs when the weight values are large and the changes are 

significant at each step. To address this, we can choose from several techniques. The first is a proper 

weight initialization paired with a non-saturating activation function. These pairs can be the Glorot 

initialization with sigmoid, tanh, or softmax activation functions. Additionally, the vanishing gradient 

phenomenon can be mitigated using the relu activation function compared to sigmoid or hyperbolic 

tangent functions, in which case it is advisable to set HE initialization. In the case of reduced stress 

predictions, the values are positive, allowing for the use of the simple relu function. A popular pairing 

is LeCun initialization with Scale ELU functions (shortened to selu, which are self-normalizing, non-

saturating activation functions). Furthermore, batch normalization and gradient clipping are also options 

to consider. Another commonly used technique is normalizing the data, mapping it to a range between 

0 and 1. 
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To combat the other important problem of training deep neural networks, the overfitting phenomena, 

we can use regularization (L1 and/or L2), as well as dropout regularization. In simpler cases, we can 

also use early stopping, but this is generally not recommended, as it means that the training process does 

not complete. 

When it comes to the training of the neural networks, we have a lot of hyperparameters to configure. 

There are a lot of strategies to do it. We used a simple grid search combined with zooming in methods 

to tune these parameters. 

Let us consider a functionally graded material, which consists of a high-strength steel and a heat-

resistant ceramic components. The material properties are: 

𝐸1 = 190GPa, 𝛼1 = 12 ∙ 10−6K−1, 𝜈1 = 0.3, 𝜆1 = 45
W

mK
,
 

𝐸2 = 330GPa, 𝛼1 = 5 ∙ 10−6K−1, 𝜈1 = 0.25, 𝜆1 = 6
W

mK
. 
 

The FGM of the sphere has the base parameters specified earlier based on equation (1). For this 

problem we loaded the tank with internal pressure and a constant temperature field, because the spherical 

pressure vessel is insulated at the outside surface and the temperature difference is negligible due to the 

smaller wall thickness range. For the tank failure condition, we chose the stress level associated with 

yielding. Therefore, we only recorded results that did not exceed 1000 MPa, as the theories used to solve 

the problem are only valid for small deformations. Additionally, we examined loads only up to a reduced 

stress level of 600 MPa for the reasons mentioned earlier. The parameter range we investigated was as 

follows: 

a = [0.5, 0.7, 0.9, 1.1, 1.3, 1.6, 2] 

bper = [1.002, 1.006, 1.01, 1.03, 1.05, 1.75, 1.1, 1.2] 

m = [0.001, 0.01, 0.1, 0.5, 0.75, 1, 2, 3, 5, 10, 40, 100, 300] 

p1 = [0.1, 1, 5, 10, 25, 50, 75, 100, 150, 200] 

T1 = [0, 20, 40, 50, 75, 100, 150, 200, 300] 

We obtain the outer radius in the form of 𝑏 = 𝑎𝑏𝑝𝑒𝑟
 , meaning that the wall thickness is a maximum 

of 20% of the inner radius. We kept the loading values within the conventional range. This produced 

31,626 results out of a possible 65,500. In the remaining cases, the theory is not applicable, as failure 

has occurred earlier. 

To solve this problem, we used Python programming language with the packages Panda, Sklearn and 

Tensorflow. The model has 5 input values and 1 output value. For the training metric we used mean 

average error (mae). We divided the dataset into two parts, a training set and a test set. The training set 

is further divided into a normal training set and a validation set to track overfitting during training. When 

it comes to the optimizers, nadam was the most efficient one. Dropout regularization produced inferior 

results (mostly worst accuracy and slower convergence) compared to normal dense structures. In table 

1 a few solutions coming from several investigated neural networks are shown. The best results coming 

from 3-5 layers with 256-512 neurons. Either relu or selu activations can be used to calculate the 

maximum stresses. In this case, within the test range, the error magnitude was sufficiently small. The 

model was able to produce acceptable results even for parameter combinations outside the examined 

range. However, the farther we moved from the test range, the greater the error became. The results also 

show that in some regions, more data would have been needed during the training of the network, as the 
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error in these areas noticeably increased compared to regions where sufficient data was available. In 

table 1, the errors for the individual examples are given in percentage. For table 1, the investigate 

parameter combinations are: 

1: [5 ∙ 10−3, 5.05 ∙ 10−3, 0.1, 90, 300], 2: [6 ∙ 10−3, 6.1 ∙ 10−3, 0.5, 240, 100],  

3: [8 ∙ 10−3, 12 ∙ 10−3, 2, 190, 130], 4: [4 ∙ 10−2, 4.1 ∙ 10−2, 0.2, 200, 157], 

 5: [5 ∙ 10−2, 7 ∙ 10−2, 50, 50, 150], 6: [0.2, 0.22, 2, 23, 55.0], 7: [0.5, 0.501, 0.5, 0.1, 300], 

 8: [0.5, 0.505, 50, 50, 150], 9: [0.65, 0.76, 2, 23, 55], 10: [1.76, 2, 0.3, 70, 102],  

11: [4, 5, 2.5, 100, 156], 12: [8, 11, 4.4, 200,188], 13: [8,9,0.6, 100, 111], 

 14: [10, 12.3, 0.12, 250, 320], 15: [35, 38, 3.6, 110, 130]. 

 

Table 1. The results of the neural networks on specific parameter combinations. 

Hidden 

Layers 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 16 

50 epoch, mae: 10, test mae: 9.1 

25.6 1.5 -9 22.4 1.6 -12.9 -4.4 1.8 -12 19 2.7 8.4 4.5 21.1 20.1 

100 epoch, mae: 9.65, test mae: 9.64 

30.0 8.1 -5.8 35 -0.8 -9.4 1.3 0.1 -9.6 25.6 5.6 9.4 
-

14.4 
21.2 19.2 

32 

50 epoch, mae: 6.4, test mae: 6.28 

17.6 -6.2 -8.5 5.4 1.6 3.7 -0.7 1.9 3.1 0.4 3.3 12 -8.8 17 -7.9 

100 epoch, mae: 7.08, test mae: 7.08 

25.7 1.8 -1.4 18.3 1.3 1.8 1.8 1.4 0.6 8.3 3.8 10.8 
-

12.8 
15.9 -1.4 

32-32 
50 epoch, mae: 7.86, test mae: 7.83 

22.5 7.0 -8 12.7 - 2.1 -1.3 3.5 1.3 -1.4 6.2 3.6 7.2 2.6 18.1 -0.7 

64 
100 epoch, mae: 12.2, test mae:12.3 

34.2 5.1 -5.7 35 - 0.1 -12 -0.3 0.4 9 21 0.2 10 12.9 20.1 4.5 

64-32 

100 epoch, mae: 7.05, test mae: 6.6 

13.9 -7.1 -6.3 -1 0.9 3.2 -0.9 1.1 1.6 -4.1 5.9 7.6 -0.7 12.6 -5.2 

100 epoch, increased batch size, mae: 4.77, test mae: 4.6 

17 0 2.9 7.5 -1.1 4.4 -0.2 0-9 2.5 -0.5 1.4 11.4 -7.9 13.1 30 

 3 x 

256 

relu, 200 epoch, mae: 3.82, test mae: 3.82 

13.1 -1.6 -1.7 8 0.3 -3.1 -0.3 0.6 -2.9 3 4.3 11.7 5.3 14.6 -70 

4 x 

512 

selu, 200 epoch, mae: 3.6, test mae: 3.59 

13 1 -7.9 9 0.1 0.8 -1.7 0.5 -0.1 4.1 2.4 5.1 3.1 15.6 23 

 

Simulations were run to test the accuracy of the previously trained neural networks on new data sets. 

We picked the last two networks in table 1, the results were similar, although the one with more neurons 

and selu activation had a bit better accuracy. For example, on a new dataset given by the values 

𝑅1: [0.7, 0.96, 1.55, 1.98], 𝑅2: [1.005, 1.032, 1.09, 1.125, 1.18], 

  𝑚: [0.006, 0.02, 3.5, 43, 143], 𝑝1: [7, 54, 96, 145, 182], 𝑇1: [30, 85, 125, 210] 

the average error was 3.3 MPa in case of 4 layers with 512 neurons in each layer. Outside of the training 

range, on the following data set 
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𝑅1: [0.03, 0.07, 0.15, 0.3], 𝑅2: [1.003, 1.042, 1.13, 1.3, 1.4], 

  𝑚: [0.002, 0.03, 2.5, 33, 216], 𝑝1: [3, 34, 75, 175, 300], 𝑇1: [30, 125, 225, 350] 

the average error was 16 MPa. This is one the advantages of neural networks, that they can provide 

somewhat useful data even outside its range. 

4. Summary 

A method was presented to determine the stress distribution and displacement field within a radially 

graded spherical body subjected to combined mechanical and thermal loads. The material properties and 

temperature field were arbitrary functions of the radial coordinate. Stress functions were used to 

formulate an initial value method and to solve the problem. Then a neural network was trained with 

datasets coming from the previously presented method. A numerical example was shown to investigate 

the accuracy of the neural networks. The results obtained with the neural network showed good 

agreement with the numerical solution of the original system of differential equations. Based on the 

data, it was found that the neural network produced usable outputs not only within the training domain 

but also beyond it, albeit with a reduction in accuracy. 
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