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Abstract 

This research collected 12 numerical algorithms that solve the transient diffusion equation with 

Dirichlet boundary conditions in one space dimension. Some of these methods are explicit and 

unconditionally stable simultaneously. A nontrivial analytical solution, recently obtained by a self-

similar Ansatz, served as the reference solution. The errors were calculated and plotted as a function of 

the time step size and execution times. The conclusion is that there are explicit and stable methods that 

provide acceptable results faster than the traditional Runge-Kutta style methods. 

Keywords: Heat conduction, diffusion equation, stable numerical methods, explicit time integration, 

Runge-Kutta methods 

1. Introduction 

The following partial differential equation (PDE) describes the movement of both thermal energy and 

particles: 

    
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝛼

𝜕𝑢2(𝑥,𝑡)

𝜕𝑥2
,  𝑢(𝑥, 𝑡 = 0) = 𝑢0(𝑥).      (1) 

In this equation, 𝑡, 𝑥 ∈ ℝ represent variables for time and space, while 𝑢: ℝ × ℝ ↦ ℝ; (𝑥, 𝑡) ↦ 𝑢(𝑥, 𝑡) 

denotes the function that needs to be determined. In the context of simulations, the variable 𝑢 takes on 

different meanings: It represents the temperature in heat conduction models (Yunus et al., 2015) and the 

concentration in particle diffusion studies (Agbavon et al., 2019). The positive constant α\alphaα is called 

the diffusion coefficient or diffusivity. The function u0u^0u0 is supposed to be given and usually called 

the initial condition. The significance of this equation persists, even though it was discovered more than a 

century ago. Notably, recent advancements in this field have yielded novel analytical solutions (Barna et  
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al., 2022; Barna et al., 2024; Mátyás et al., 2022; Mátyás et al., 2023; Kovács et al., 2024), further 

enhancing their relevance in contemporary research. This equation, along with other equations 

incorporating diffusion terms, is commonly addressed through numerical approaches. Among these, 

finite difference schemes (FDMs) stand out as a particularly popular method for solving such 

equations (Köroğlu et al., 2021). The categorization of these approaches encompasses both explicit 

and implicit methodologies, with intermediate variants such as semi-explicit and semi-implicit 

strategies existing within this spectrum (Beuken et al., 2022; Fedoseev et al., 2022). Explicit methods 

are more straightforward to implement and computationally efficient. However, they exhibit 

instability if the time step size exceeds the stability threshold, commonly referred to as the CFL 

(Courant–Friedrichs–Lewy) limit. Implicit methods, conversely, typically demonstrate unconditional 

stability for this linear equation. Nevertheless, their computational time is substantial and increases at 

a rate greater than linear when one increases the number of spatial nodes, e. g., to obtain a better 

resolution. Explicit algorithms often prove to be more efficient, even when constrained by the small 

time step size necessitated by the CFL condition (Essongue et al., 2022). Still, numerous scholars 

prefer implicit methods due to their reliability. 

It is not widely recognized that the choice between the disadvantages of the explicit and implicit 

methods is, in fact, unnecessary, as there exist explicit methods that are simultaneously 

unconditionally stable. A substantial number of these methods have been evaluated in the literature 

(Saleh et al., 2022; Saleh et al., 2023). Two examples which have been known for decades are the 

odd-even Hopscotch (Gourlay, 1970) and the Dufort–Frankel schemes. Both of them are quite 

accurate and reliable. Recently, new members of this family were proposed (Nagy et al., 2021; Nagy 

et al., 2021), which can outperform these old schemes. It was demonstrated that explicit and stable 

methods can efficiently solve not only the diffusion equation but nonlinear reaction–diffusion 

equations such as the Fisher equation (Khayrullaev et al., 2024), the Huxley equation, the Nagumo 

equation (Kovács et al., 2024), the sine–Gordon equation (Liang et al., 2014), the Frank–Kamenetskii 

equation (Harley, 2010), and the Kardar–Parisi–Zhang equation (Sayfidinov et al., 2022; Kovács et 

al., 2024) as well. Furthermore, they were utilized to simulate heat transfer in a photovoltaic solar 

panel (Nagy et al., 2024), moisture transfer in porous media (Gasparin et al., 2018), the heat storage 

in phase-change materials (Jalghaf et al., 2024), and the effect of thermal bridges in insulators on 

building walls (Omle et al., 2023). 

This work attempts to compare the effectiveness of a couple of stable and explicit techniques with 

commonly used methods, including the Explicit and Implicit Euler, Crank–Nicolson, and fourth-order 

Runge–Kutta approaches. The analysis involves the plotting of the errors for each method not only as a 

function of the time step size but also of the execution time. 

2. The discretization and the numerical algorithms 

2.1. The spatial and temporal discretization 

The time variable is uniformly discretized, i.e. 𝑡 ∈ [𝑡0, 𝑡fin], and 𝑡𝑛 = 𝑡0 + 𝑛ℎ,  𝑛 = 1, . . . , 𝑇,  ℎ𝑇 = 𝑡fin −

𝑡0. Equidistant spatial mesh  𝑥𝑗 = 𝑥0 + 𝑗𝛥𝑥,  𝑗 = 0, . . . , 𝑁,  𝑁𝛥𝑥 = 𝐿 covers the examined interval 

[𝑥0, 𝑥𝑁 = 𝑥0 + 𝐿] ⊂ ℝ. The mesh ratio can be defined as r = 
𝑎ℎ

𝛥𝑥2 , where 𝑎 is defined by Equation (1). We 

use the following analytical solution to compare of the results of the numerical time integration methods: 
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      (2) 

The normalized form of this equation will be utilized to establish Dirichlet boundary conditions. 

2.2. The description of the 12 used numerical methods 

1. Among these methodologies, the constant neighbor (CNe) scheme represents the fundamental and 

longstanding approach. The application of a specific formula to each node is essential when 

employing of Equation (1). 

  2 21 1 1 1
2

n n
n n i i
i i

r ru u
u u e e   

     (3) 

2. The CpC methodology comprises two distinct phases. Initially, the predictor stage employs a 

fractional time-step of ½h duration, utilising the CNe approach. Subsequently, the corrector stage 

implements a full-time step CNe, where in the neighbours are re-evaluate based on the predictor 

values obtained in the first phase. 

3. The linear neighbour (LNe) approach consists of distinct stages. Initially, the predictor phase 

employs a complete time step CNe. Following this, the method calculates the aggregated “slopes” 

of neighbours are calculate as 

 
pred pred n n

1 11 1i i ii is u u u u       (4) 

For the uniform scenario, the two-stage LNe method’s corresponding corrector values were later 

furnished. 

  
2
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
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  

     
 

  (5) 

4. Corrector stage (5) of the LNe scheme undergoes a subsequent iteration by utilizing the previously 

obtained corrector values. The incorporation of an additional stage, bringing the total to three, 

results in the formulation of the LNe3 scheme. 

5. The CLL method (Kovács et al., 2022) exhibits significant similarity to LNe3, with the distinction 

of employing fractional time steps of ⅔h at the first and second stages, there by achieving third-

order temporal convergence. 

6. The leapfrog-hopscotch (LH) methodology begins with a half-time step, which serves as a critical 

preparatory stage in numerical integration. This initial phase establishes a gradual framework, 

setting the alignment of variable to ensure temporal precision and computational robustness. 

Starting with this offset, the approach effectively aligns its predictive and corrective components, 

facilitating fluid transition and preserving the intrinsic structure of the modelled physical system. It 

uses a so-called 𝜃 formula, which in our case has the form: 
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   

 
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



 
  


 

 (6) 

Following (Nagy, Omle, et al. 2021) we implemented the zeroth stage ½h, 𝜃 = 0. In the middle 

stages: 𝜃 =
1

2
, and in the final stage: ½h, 𝜃 =

1

2
. 

7. The leapfrog-hopscotch-CNe (LH-CNe) approach maintains the fundamental structure of LH while 

consistently applying the CNe formula with an appropriately selected time-step magnitude. 

8. DF is called Dufort–Frankel method as an example of explicit and unconditional stable methods 

(Hirsch, 1988). It is a one-stage algorithm using Equation (7). 

 

 
   1

1 11
1 2 2

1 2

n n n
i i in

i

r u r u u
u

r


 

  



 (7) 

In our comparative analysis, we utilized a selection of widely recognized numerical methods: the explicit 

Euler scheme (alternatively known as forward time cantered space [FTCS]), the implicit Euler approach 

(also termed backward time cantered space [BTCS]), the Runge–Kutta of fourth-order algorithm (RK4), 

and the Crank–Nicolson technique. These methods represent some of the most frequently employed 

finite difference method (FDM) solvers in computational mathematics. 

3. Verification of the Number Methods 

The MATLAB environment was used for all simulation. We computed the error of each approach for a 

certain time step size, which entails comparing the analytical and numerical solution node by node and 

choosing of difference to the highest positive of value. We use the L2 Norm of the Error; the formula is 

as shown in Equation (8). 

    
21

2 1

N analytical fin num fin

j jj
Err u t u t




   (8) 

3.1. This case study 1 with N = 1000+1 

In case study 1 we use Equation (2) we started the initial condition as u0,  the parameters are used 𝐷 =
1, 𝑡 𝜖[0.01, 0.004], 𝑥 𝜖[−1, 1] and N=1000+1, thus 𝛥𝑥 = 0.005. During the simulation the elapsed time 

started from 0.0021 to 0.1662. 

We plot the analytical u function in Figure 1. The concentration of u in term of x in the case of the 

initial function u0, for tfin exact analytical solution, CLL and LH methods. Figure 2 illustrates the 

error rates of the 12 investigated methods as the time-step sizes decreased. The Crank–Nicolson (CN) 

method demonstrated superior accuracy with the lowest error for large and medium time-step sizes. 

However, it requires very long execution times, similar to the Implicit Euler method.  

Figure 3 presents the L2 error function, highlighting the Runge–Kutta 4th method’s rapid error 

reduction to minimal values with is 10−4 relatively efficient execution time. The Crank–Nicolson method 

exhibits high accuracy and stable performance over time, despite slightly longer execution periods. 
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Figure 1. The concentration of u in term of x in the case of the initial function 𝑢0, for 𝑡𝑓𝑖𝑛 exact 

analytical solution, CLL and LH methods 

 

 

Figure 2. Case 1 for errors in term of temporal step-size 
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Figure 3. The L2 error in term of the execution time (s) 

3.2. This case study 1 with N = 500+1 

In case study 2 we use also Equation (2) the parameters are used 𝐷 = 1, 𝑡 𝜖[0.01, 0.004], 𝑥 𝜖[−0.2, 0.2] 
and N=500+1, thus 𝛥𝑥 = 0.005. During the simulation the elapsed time started from 0.0039 to 0.1660, 

hMax 3.20. 10−6 and StiffRatio 3.12106. 

Figure 4 illustrates the error rates of the 12 investigated methods as time step-sizes decrease.  

 
Figure 4. Case 2 for errors in term of temporal step-size 

The Runge–Kutta 4th order method shows the smallest error for small time-step sizes, performing 

good. The Crank–Nicolson (CN) have very stable error levels across various at h, indicating  
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robustness regardless of the time step size. The CNe is a lower-order method with a little error 

decrease with decreasing time step sizes. In Figure 5, we plot the L2 error function using Equation 

(8), the LNe3, DF and LH are the best-performing methods in terms of execution time and error. The 

CN and IE perform worst. 

 

Figure 5. The L2 error in term of the execution time (s) 

3.3. This case study 3 with larger final time 

This case study we also use the same of Equation (2) the parameters are used 𝐷 =

1, 𝑡 𝜖[0.01, 0.2], 𝑥 𝜖[−0.1, 1] and N=1000+1, thus 𝛥𝑥 = 0.005. During the simulation the elapsed time 

started from 0.0021 to 0.6649, hMax 2.00. 10−6 and StiffRatio 5.00. 105. 

Figure 6 illustrates the error rates of the 12 investigated methods as time step sizes decrease.  
 

 
Figure 6. Case 3 for errors in term of temporal step-size 
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The Runge–Kutta 4th, DF and EE achieved the best accuracy for small time step sizes. For the increases 

of error denoted from the methods such as CNe, IE and CN. 

In Figure 7 we plot the L2 error function using Equation (8), The LH achieves low errors with 

minimal execution time, and DF also demonstrates outstanding performance with slightly larger 

execution times. 

 

Figure 7. The L2 error in term of the execution time (s) 

4. Summary 

Twelve numerical methods were applied to solve one-dimensional heat conduction or diffusion 

equations. Eight of these 12 methods are explicit schemes that are unconditionally stable for the 

examined equation. The remaining four methods are widespread and standard. 

It is observed that the explicit and stable` methods, particularly the leapfrog-hopscotch scheme, are 

much more efficient than the standard methods if the execution times are considered. The explicit Euler 

and Runge–Kutta schemes are only conditionally stable; thus, they can provide good results only for 

very small-time step sizes in all three 3 case studies. In our first and second case studies, the simulated 

time (the time between the initial and final times) was short, whereas it was larger in the three-case 

study. However, the parameter N is larger in case studies 1 and 3, but smaller in case study 2. We 

observed that the relative performances of the methods were the same, with the following exceptions. 

In case study 1, the Crank–Nicolson (CN) method became accurate, but in case studies 2 and 3, it became 

less accurate. However, the LNe3 method was accurate in both cases. However, the performance of the 

Implicit Euler scheme was improved. This is probably due to the L-stability of this method, since in the 

second and third case studies, the norm of the solution in the final time was much less because of the 

longer decay time. 
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