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Abstract 

Arches are important building blocks that are known for their ability to efficiently distribute loads. That 

is why they are widely studied. The two-pinned arc has hinges at each end that allow rotation but prevent 

translation. When loaded on the axis of symmetry, it creates bending moments besides internal forces 

that affect the stability. The three-pinned arch has an extra inner hinge, this time, at the crown. This 

hinge allows the moment to relax. However, the inner hinge can introduce additional modes of 

deformation. Two- and three-pinned slender, circular arches are compared within this work to find out 

the lowest buckling loads, displacements and inner forces. The external load acts on the axis of 

symmetry. The span is a fixed value and arches with different angles are placed between the end-

supports, starting from very flat (almost straight) to deep geometries. From the selected perspective, it 

is found that two-pinned arches are stiffer throughout the whole investigated domain. The novel model 

is also compared with finite element computations and a good correlation can be found. 
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1. Introduction 

Arches are important building blocks that are known for their ability to efficiently distribute loads. Two- 

and three-pinned arches have been widely studied for their positive stability properties. The two-pinned 

arc has hinges at each end that allow rotation but prevent translation. This system is statically 

indeterminate and is commonly used in structural applications. When loaded on the axis of symmetry, 

it creates bending moments besides internal forces that affect the stability. The three-pinned arch has an 

extra inner hinge at the crown. This hinge allows the moment to relax, redistributing the inner forces 

more effectively. However, the inner hinge can introduce additional modes of deformation. These arches 

react differently under symmetrical loads. 

  The number of open literature results is numerous regarding arches. The reader is referred to the likes 

of (Simitses, 1976; Bazant and Cedolin, 2010; Gönczi and Ecsedi, 2022; Ecsedi et al., 2023). 

Furthermore, it is mentioned that publication (Dawe, 1974a) focuses on both deep and shallow arches, 

testing multiple strain-displacement assumptions for their buckling. An improved buckling theory is 

given in (Dave, 1974b) by the same author. Large displacements and rotations are assumed in (Gummadi 

and Palazotto, 1997; Palazotto et al., 1997) and five models are compared for the stability of straight 

and curved beams. Furthermore, article (Bateni and Eslami, 2014) deals with functionally graded 
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materials. The loading is a concentrated force in the stability investigations of (Bradford et al., 2008; 

Yan et al., 2017; Yan et al., 2018), while it is evenly distributed in (Bradford et al., 2002). Within these 

sources, the end-support conditions are also varying. 

  The literature on arches with an internal pin is much more limited compared to continuous ones. 

Nevertheless, these structures are still favoured for two main reasons (Karnovky and Lebed, 2021). They 

allow for large spans composed of not one but two structural parts, and the internal hinge prevents the 

transfer of moments. Typically, the internal hinge is located at the crown point, although its position can 

vary based on factors like different ground level at the ends. Article (Pi and Bradford, 2015) studies 

elastic three-hinged arches analytically, while (Kiss, 2024) is about fixed-pinned-fixed arches. Similar 

research in (Pi and Bradford, 2014) explores uniform radial loads and temperature effects. Paper 

(Oliveira et al., 2021) focuses on three-pinned arches, offering results obtained through commercial 

software and comprehensive studies on the impact of various parameters, such as geometry, material 

properties, and boundary conditions. Furthermore, in (Bradford and Pi, 2015), the attention is on crown-

pinned concrete-filled steel tubular arches, with a long-term analysis that considers creep and shrinkage 

of the concrete core under a sustained concentrated load. 

  This study compares two- and three-pinned arches under a force acting on the axis of symmetry with 

the hypothesis of references (Kiss, 2024; Kiss, 2015). It focuses on critical loads, displacements and 

inner force distributions as main aspects. 

2. Selected arch geometries, computational results 

Figure 1 shows the initial configuration of the arches in question under the external load Q. The angle 

coordinate is ϕ, that is zero at the symmetry axis and is positive clockwise. The meaning of further 

notations are gathered in Table 1. The kinematical hypothesis and equilibrium equations can be found 

in details in [16, 20]. The material is linearly elastic. It is emphasised that moderately large rotations are 

considered that makes the problem nonlinear. 

 

Figure 1. (a) Two-; (b) three-pinned arch model 

The very first step before the evaluation of the results is the validation to find out whether our custom 

Maple code returns credible results. The tested geometrical and material data are gathered in Table 1. 

for rectangular section. It is assumed that the span (distance between the end supports) is given in 

advance. A very flat (almost straight), a shallow and a deep arch will be compared in this context from 

the mechanical behaviour perspective. 
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Table 1 

Geometrical and material data 

arch half angle ϑ [rad] 0.1 0.4 1.2 

arch span s [mm] 9735.5 9735.5 9735.5 

arch rise h [mm] 244 986.74 3330.2 

arch length S [mm] 9752 10000 12534 

arch radius R [mm] 48759 12500 5223 

Young’s modulus E [MPa] 210000 210000 210000 

section width a [mm] 50 50 50 

section height b [mm] 100 100 100 

section area A [mm2] 5000 5000 5000 

strong axis inertia I [mm4] 4.17e6 4.17e6 4.17e6 

slenderness S/r [–] 337.81 346.41 434.20 

rise to span h/s [–] 0.025 0.1 0.34 

 

 

For the finite element (FE) computations, carried out with Abaqus, the geometry was mapped with 50 

pcs. of B21 elements. In the contact point of the two-half arches, engineering constraint was assigned. 

When it is a two-pinned arch, the constraint type was Tie, and for three-pinned members, it was Pin 

type. The Static, Riks step was set up to trace the limit points on the equilibrium path. The initial 

concentrated load magnitude was set to unit. Comparison of the lowest critical loads can be made as per 

the results of Table 2, where the dimensionless load P = QR2 ϑ/IE. The findings coincide extremely well 

when ϑ = 0.1 or 0.4. When ϑ = 1.2, the discrepancy is a bit higher for the 3-pinned arch, suggesting the 

new model might not be that accurate for such (deep) arches. 

Table 2 

Comparison of the limit point loads with FE 

arch half angle ϑ [rad] 0.1 0.4 1.2 

3-pinned, new model P [–] 1.16 1.32 1.76 

2-pinned, new model P [–] 5.75 6.67 6.91 

3-pinned, FE P [–] 1.16 1.28 1.40 

2-pinned, FE P [–] 5.76 6.74 7.36 

 

As mentioned previously, the material, arch span and cross-section are fixed as listed in Table 1. 

Numerical evaluations are performed with these conditions – by changing the span/rise ratio through 

the arch angle. 
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Figure 2. Buckling load variation for two-pinned (red curve) and three-pinned (blue curve) arches 

 

Figure 2 compares the lowest limit-point dimensionless buckling loads against the semi-vertex angle of 

the arch. The blue curve represents the 3-pinned setup, and the red curve is valid for the 2-pinned 

member. The major findings: 
▪ The buckling load is always greater for the 2-pinned arch. 

▪ Buckling can occur from lower arch angles for the 3-pinned case. 

▪ The curves begin with a steep part for lower arch angles. 

▪ After a while, the curves become flat, meaning the buckling load is just slightly affected by the 

rise of the angle. 

▪ The buckling load is at least 3.9 times greater for 2-pinned arches. 

▪ The buckling load is at most 5.1 times greater for 2-pinned arches within the assessed domain. 

▪  

 

Figure 3.  ϑ = 0.4, (a) three-pinned,  

(b) two-pinned arch – normal displacement against the angle coordinate 

In the sequel, the mechanical state of two- and three pinned arches are compared when ϑ = 0.4 and the 

external load is the same, i.e., 99.999% of the load that causes the buckling of the three-pinned arch. 

This load level, therefore, is P = 1.3199 as per Figure 1 and Table 2. 
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As it is already known that the overall stiffness of three-pinned members is much less, this is 

confirmed numerically by Figures 3–7. The normal displacement (w[mm]) patterns are quite distinct 

because of the internal pin, while the precise values have one magnitude difference too around the load 

application point. 

However, the tangential displacements (noted by u, measured in [mm]) of Figure 4 are just about 3 

times greater for the three-pinned setup. These numbers are negligible for three-pinned arches in relation 

to the normal displacements, but are comparable to the normal displacement values in two-pinned arches.  

 

Figure 4.  ϑ = 0.4, (a) three-pinned, (b) two-pinned arch – tangential displacement against the angle coordinate 

 

The cross-sectional rotations in [rad] of Figure 5 are less by one magnitude overall in case of two-pins, 

and furthermore, the two distributions are clearly very distinct. For the two-pinned arch, the rotations 

are continuous at the crown point and the shape is point symmetric. Meanwhile, for the three-pinned 

case, there is a discontinuity at the sides of the internal pin. It is also noted that the rotation at the end 

supports are as well much greater in this later case. 

 

Figure 5.  ϑ = 0.4, (a) three-pinned, (b) two-pinned arch – cross-sectional rotations against the angle coordinate 
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The M [Nmm] bending moment distributions (see Figure 6) are as well different, with the peak being 

about 2.5 times greater for three-pins, but the peak rises at different position. It is clearly visible that 

moment is not transferred between the two parts when there is an internal pin. Further, there is sign 

change in the moment for two-pinned arches.  

 

Figure 6.  ϑ = 0.4, (a) three-pinned, (b) two-pinned arch – bending moment against the angle coordinate 

 

The N [N] axial force level is almost 2 times greater for three-pins as per Figure 7. However, it can be 

concluded that the values do not vary much along the angle coordinate.  

 

Figure 7.  ϑ = 0.4, (a) three-pinned, (b) two-pinned arch – axial force against the angle coordinate 

3. Conclusions 

Two- and three-pinned slender, circular arches were compared within this work to find out the lowest 

nonlinear buckling loads, displacements and inner forces. The support distance was a fixed value and 

arches with different angles were placed, starting from very flat (almost straight) to deep arch 

geometries. It was found that two-pinned arches are stiffer throughout the whole investigated domain, 
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having much greater buckling loads and less displacement and inner forces when the load levels are 

identical. At the same time, the pattern of the displacements, rotation and bending moment are distinct 

between the selected arch types, while the axial force is distributed in a rather similar way along the 

arc coordinate. The novel model was compared with finite element computations and a good 

correlation was found. 
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