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Abstract 

Gross Vehicle Weight (GVW) estimation plays a crucial role in ensuring the safety, maintainability, and 

sustainability of road transportation by identifying and filtering out overloaded vehicles. Bridge Weigh-

in-Motion (B-WIM) systems enable the determination of axle loads, vehicle speeds, axle spacings, and 

other vehicle parameters as they cross a bridge, using data from strain gauges installed beneath the 

bridge deck. This paper proposes a novel deep learning-based GVW estimation method designed for B-

WIM systems equipped with sensors at a single cross-section. Unlike conventional axle load estimation-

based GVW estimators, the proposed method does not rely on vehicle speed estimation or axle detection 

steps. The method is evaluated on an annotated dataset of 91 vehicles measured on the Monostori 

Bridge. Results demonstrate B+ accuracy with a Mean Absolute Percentage Error of 2.47% for GVW 

estimation in accordance with the COST 323 Weigh-in-Motion classification standard. Furthermore, 

the proposed solution can be integrated into standard B-WIM pipelines using ensemble models. Tests 

on the same dataset indicate that the ensemble approach may outperform existing B-WIM pipelines in 

GVW estimation accuracy by reducing the Mean Absolute Percentage Error by 0.1%. 
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1. Introduction 

Overloaded vehicles that exceed legal weight limits contribute significantly to the deterioration of 

bridges and road networks, making effective traffic monitoring essential for infrastructure maintenance. 

Accurate estimation of axle loads and gross vehicle weight (GVW) is therefore a key concern in civil 

engineering (Paul et al., 2023). Weigh-in-Motion (WIM) systems allow these vehicle parameters to be 

measured without requiring vehicles to stop. There are two main types of WIM systems: Pavement 

Weigh-in-Motion (P-WIM) and Bridge Weigh-in-Motion (B-WIM). P-WIM systems are embedded in 

the pavement, whereas B-WIM systems rely on sensors installed under the bridge deck. B-WIM 

technology is non-invasive; it can be installed without disrupting traffic flow, and sensor maintenance 

or replacement is straightforward. B-WIM systems also tend to offer a more cost-effective solution 

compared to P-WIM systems. Moreover, the accuracy of P-WIM systems is more sensitive to pavement 

conditions (Burnos et al., 2017) such as surface roughness or deterioration, leading to a rapid decline in 

performance over time. In contrast, B-WIM systems may maintain consistent accuracy over the long 

term. These advantages highlight B-WIM systems as a promising alternative to P-WIM systems. 

In most B-WIM systems, strain gauges are installed under the bridge deck (Carraro et al., 2019). 

When no additional sensors are embedded in or placed on the road surface, B-WIM systems are often 

referred to as Nothing-on-Road (NOR) systems (Yu et al., 2018). Vehicle parameters are calculated 

based solely on the data collected by these strain gauges. In some cases, additional sensors such as 

accelerometers (Lorenzen et al., 2022) are placed under the bridge deck to support the decision-making 

process of the B-WIM system. Recent research has also explored the integration of camera systems into 

B-WIM setups (Dan et al., 2019), as visual sensors are typically required in Traffic Surveillance Systems 

(TSS) (Kawakatsu et al., 2023) to identify overloaded vehicles. This paper presents a method that has 

no need for cameras or additional sensors; thus, relying only on strain gauges for GVW estimation. 

B-WIM systems typically calculate not only the axle loads but also the speed and axle spacings of 

vehicles. Most axle load estimation algorithms (Carraro et al., 2019), including those based on the Moses 

algorithm (Moses, 1979), depend on either the axle spacings or, at minimum, the speed of the vehicle 

(He et al., 2019). The speed is usually determined using sensors placed at two or more cross-sections of 

the bridge (Cantero et al., 2024). Sensors placed within the same cross-section are referred to as a sensor 

array in this context. When a vehicle crosses the bridge, especially the section where the sensors are 

installed, at a near-constant speed, the strain signals recorded at different cross-sections will appear very 

similar, with the primary difference being a time shift. By analysing this time delay and knowing the 

distance between sensor arrays, the vehicle speed can be accurately calculated. 

This paper proposes a Gross Vehicle Weight (GVW) estimation algorithm that requires only a single 

cross-section of sensors. Unlike conventional approaches, the algorithm does not rely on prior 

knowledge of the vehicle speed or axle spacings. The proposed method is suitable for use on bridges 

where strain gauges have been installed at only one cross-section, as well as in standard B-WIM systems 

as an alternative GVW estimation approach. 

The proposed GVW estimation algorithm achieved an error of 2.47% on a measurement-based 

annotated dataset of captured on an orthotropic steel bridge deck. Integrating this approach with a 

previously developed B-WIM pipeline that requires two sensor arrays could further reduce the GVW 

estimation error to 2.03%. 

The paper is organized as follows: Section 2 provides a literature review. The proposed deep 

learning-based GVW estimation algorithm and its predecessor vehicle time window detection module 

are presented in Section 3. The proposed method is evaluated on a measurement-based annotated dataset, 
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and the achieved results are discussed in Section 4. Finally, conclusions and future research directions 

are summarized in Section 5. 

2. Literature review 

This section first provides a brief review of B-WIM pipelines, followed by a discussion of deep learning-

based algorithms. Finally, the datasets used for training B-WIM methods are presented. 

2.1. B-WIM pipeline 

A standard B-WIM pipeline extracts the following features: the time window of each vehicle, vehicle 

speed, axle spacings, and axle load estimates. The vehicle time window (Kawakatsu et al., 2018) defines 

the time interval and lane in which the vehicle crosses the bridge above the sensor array. The vehicle 

speed is typically determined using the data of more sensor arrays (Cantero et al., 2024). Axles are 

typically determined by detecting the timestamps when each axle passes over the sensors (Lorenzen et 

al., 2022). Based on the speed and axle timestamps, the axle spacings and the vehicle trajectory can be 

calculated. Finally, using this trajectory, the axle loads are estimated (Carraro et al., 2019). Some 

algorithms also determine the transverse position (Yu et al., 2018) of the vehicle to improve axle load 

calculation. Other parameters, such as tire contact areas and axle widths, are generally ignored. 

Moses’ algorithm (Moses, 1979) is a foundational B-WIM method for axle load estimation. Most 

modern axle load estimation algorithms in B-WIM systems (Carraro et al., 2019) are modifications or 

extensions of this original approach. Moses’ algorithm aims to calculate the axle loads of a vehicle, 

assuming its trajectory is known. It is based on the concept of influence lines or influence surfaces. The 

influence surface at a point on a structure describes how the shear force, bending moment, or typical 

strain components at that point change as a unit load moves along the structure (Szinyéri et al., 2023). 

In practice, it is often observed that when the same vehicle crosses the bridge in different transverse 

positions, the measured summed strain signals in each cross-section do not vary significantly with 

transverse position. This observation supports the use of influence lines (Obrien et al., 2006), which 

depend only on the longitudinal position of the unit load, and are typically defined for the sum of strain 

changes at a set of points on the structure. 

Most B-WIM pipelines use at least two sensor arrays, primarily to enable vehicle speed estimation. 

When two cross-sections are placed close to each other, the strain signals induced by a vehicle crossing 

these sections are very similar. Assuming near-constant speed, the vehicle speed can be calculated by 

detecting local peaks in the strain signals at both cross-sections and determining the time delay between 

them (Kalhori et al., 2017). Dividing the known distance between the cross-sections by this time delay 

results in the vehicle speed. 

Kawakatsu et al. (2019, 2021) proposed a method for estimating vehicle speed using only a single 

cross-section of sensors. Their solution, based on deep learning, achieved a mean absolute error of 3.29 

km/h. This level of error may significantly affect the performance of axle load estimation modules that 

depend on accurate speed input. The approach of Kawakatsu et al. used a convolutional neural network 

(CNN) architecture combined with dense layers for feature extraction. 

This paper aims to create a novel deep learning-based GVW estimator that uses the data of only one 

cross-section as well, but it will not depend on the speed estimation step. It will rely only on the vehicle 

time window detection step. 



Szinyéri et al. Deep learning-based gross vehicle weight estimation in Bridge Weigh-in-Motion 

45 

2.2. Dataset 

Deep learning-based algorithms require large datasets for training; otherwise, there is a high risk of 

overfitting (Goodfellow et al., 2016). In deep learning-based B-WIM systems, the input consists of data 

collected by sensors installed on the bridge. While building a signal database is relatively 

straightforward by archiving measured data, the challenge arises when supervised training is needed, 

because proper labelling must be provided. For gross vehicle weight (GVW) estimation, one potential 

labelling method involves stopping vehicles crossing the bridge and measuring their axle loads using 

static axle weighing scales. However, this approach is highly resource-intensive. Kawakatsu et al. (2023) 

proposed a solution that leverages data from pre-installed axle weighing stations, though this is not 

generally applicable. Overall, labelling remains a key challenge that must be addressed for the 

widespread adoption of supervised deep learning-based B-WIM algorithms. 

Synthetic datasets (Szinyéri et al., 2023) offer a solution for generating large datasets for deep 

learning applications in B-WIM systems. In this field, synthetic datasets can be created using the concept 

of influence surfaces or influence lines, as previously discussed. If the influence surfaces for the sensors 

are known and the parameters of the vehicles crossing the bridge are specified, the strain values at the 

strain gauge positions can be accurately simulated. Szinyéri et al. (2023) introduced a publicly available 

synthetic dataset, BME-Simulated I (BME-S1), based on this concept. The Monostori Bridge, a 

continuous, five-span cable-stayed bridge with orthotropic steel main girder with open cross-section has 

been investigated. The Monostori Bridge has a length of 600 m, connecting Hungary and Slovakia 

between Komárom and Komárno. BME-S1 contains simulated data for over 100,000 vehicles crossing 

the Monostori Bridge, covering both one-lane and multi-lane scenarios. The vehicles in the dataset have 

between 2 and 9 axles, and the data includes complex configurations such as convoys, tandem and tridem 

axles, adding complexity to the dataset. 

In addition to this, a measurement-based annotated dataset was also created for the same bridge 

where the axle loads of the crossing vehicles were measured by certified axle weighing scales (Szinyéri 

et al., 2024). Dynamic effect of wind (Chen et al., 2010) and temperature (Xiao et al., 2023), vibration 

caused by vehicles and asphalt roughness (Ho et al., 2020) are not taken into account by direct simulation 

due to their high complexity. Quasi-static influence surfaces are used in this way. These additional 

effects are handled as some Gaussian noise added to the simulated signals (Wu et al., 2020). However, 

the deep learning-based solution can be trained on the synthetic dataset, it is also necessary to create a 

measurement-based annotated dataset to validate the method. This dataset may contain a smaller number 

of vehicles in accordance with the COST 323 WIM-standard (Jacob et al., 1998). A measurement-based 

dataset has been already captured for the Monostori Bridge that contains the gross vehicle weight 

parameters among other vehicle parameters of 91 vehicles. 

3. Contribution 

This section presents the proposed novel deep learning-based gross vehicle weight (GVW) estimator. 

The solution is built on a convolutional neural network (CNN) architecture that uses 1D kernels, as the 

task involves processing time-series signals. The proposed GVW estimator offers two main advantages: 

it does not depend on speed estimation or axle detection steps; thus, it depends only on vehicle time 

window detection; and it requires no additional sensor arrays, enabling GVW estimation using data from 

a single sensor array. 
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First, a window detection module is established. Then, the input, output and label representation, the 

architecture of the neural network and the training process for the proposed solution will be discussed 

in this section later. 

3.1. Vehicle time window detection 

A vehicle time window detection module can be established based on a previously introduced deep 

learning-based vehicle detection method (Kawakatsu et al., 2018) with some modifications. The module 

uses a Convolutional Neural Network (CNN) architecture that processes strain signals as a [B, Ch, T]-

sized input, and the output of the network is a [B, L, T]-sized tensor, where B is the batch number, Ch 

is the number of signal channels, L is the number of lanes and T is the length of the signal, the number 

of time steps. The detection problem is a binary classification task, so the detection pipeline includes 

postprocessing steps such as sigmoid-based thresholding, majority voting using a mean averaging kernel, 

and merging of proximate vehicle windows to produce final detections as a mask. The mask shows if a 

vehicle was crossing above the cross-section of the sensor array in the corresponding lane and at the 

corresponding timestamp (1 if a vehicle is detected, 0 otherwise). Focal Loss is employed to address 

class imbalance during training for this binary classification task, which is an extended form of the well-

known Binary Cross Entropy (BCE) loss function (Lorenzen et al., 2022). 

3.2. Deep learning-based GVW estimation 

The proposed GVW estimator solution depends on the window detection module. The output of the 

window detection module is the lane and the time interval of the vehicle, showing where and when the 

vehicle crossed the bridge. One input of the neural network is the mask derived from the lane and time 

interval information, the same mask as the label or output of the window detection module. The tensor 

created from this mask is [B; L; T]-sized, where B is the batch size, L is the lane count, and T is the 

number of time samples. The other input is the normalized strain signal measured by the strain gauges. 

Some preprocessing steps are applied to the raw strain signal in order to get the normalized signal. As a 

first step, the amplitude of the summed strain signals in the lane of the vehicle is calculated. The summed 

strain signal in each lane means the sum of the signals measured by the strain gauges placed under each 

lane. This amplitude is called the normalizer constant later. Some summed strain signals are derived 

from the raw strain signals to create the neural network input from them. The specific strain signals to 

be summed are configuration dependent; however, it is recommended that these derived strain signals 

should contain the sum of strain signals in each lane. A specific configuration of strain signals will be 

presented later in Section 4. These derived signals are then normalized with the previously calculated 

normalizer constant; it means a division by this constant. Additionally, a further normalization step 

should be also involved in the preprocessing steps. The strain signals should be dilated by a constant 

strain value so that the mean strain value in the time interval of the vehicle should be equal to 0. In this 

way, a tensor of size [B; Ch, T] is created, where Ch is the number of channels, which is the number of 

derived strain signals. The channel count is configuration dependent. The signal tensor and the mask 

tensor are then concatenated, so a [B; Ch+L; T]-sized tensor is the input of the convolutional neural 

network. Figure 1 illustrates an example input of the neural network. In this case, Ch equals to two, 

since the sum of strain signals in each lane is given as an input. It can be seen where the mask equals to 

zero based on the background of the image. The vehicle is crossing the bridge in Lane 1. The red double-

arrow shows that the amplitude of the summed strain signal in the lane of the vehicle equals to one. The 

proposed CNN is a Fully-Convolutional Neural Network (FCNN) architecture, which means that no 
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dense layers are present at the end of the neural network. The convolutional blocks in the neural network 

work with the default stride 1 so the output dimension only differs in the channel number to the input 

dimension; the length of the output (T) is the same as before the neural network computation. The output 

of the CNN is a [B; L; T]-sized tensor. The next step is to calculate the GVWs from these tensors, one 

scalar for each vehicle. It can be created easily. The GVW is calculated by summing the output values 

in the window of each vehicle, and then it is multiplied by the previously calculated normalizer constant. 

In this way, a one-dimensional [B]-sized tensor is created where the i-th value is the GVW of the i-th 

vehicle. This process is summarized in Equation (1) where f denotes the CNN as a function, M is the 

mask tensor, and S is the signal tensor, and cat is the concatenation function through the channel 

dimension, and ∑ operator sums all values of a tensor. Batch size is not taken into consideration in this 

description for simplicity, multiplication means element-wise tensor multiplication in this formula. 

 𝐺𝑉𝑊 = ∑ 𝑓(𝑐𝑎𝑡(𝑆, 𝑀) ∗ 𝑀 ,   where 𝑆 ∈ ℝ𝐶ℎ×𝑇,, 𝑀 ∈ ℝ𝐿×𝑇,𝑓: ℝ(𝐶ℎ+𝐿)×𝑇 → ℝ𝐿×𝑇 , ∑ : ℝ𝐿×𝑇 → ℝ  (1) 

 

Figure 1. Example of neural network input for a two-lane bridge where vehicle is crossing the bridge 

in Lane 1. Background colour defines the mask for the two lanes, white background color represents 

where the mask value equals to one. 

The used neural network architecture is a CNN as mentioned earlier. Leaky ReLU activation function 

(Goodfellow et al., 2016) is used in this CNN; thus, the gradients can backpropagate without the problem 

of shrinking or exploding gradients. The well-known residual blocks (He et al., 2016) are also used in 

the solution. During training, the L1-loss function is used. The Adam optimizer (Goodfellow et al., 2016) 

is used with a cosine-annealing learning rate scheduler (Loshchilov et al., 2016). 

Data augmentation technique has also been used during training. Gaussian noise is added to the 

normalized strain signals in each case the following way: first, a level of error is sampled from a uniform 

distribution of range 0–5% (0–0.05), then a normally distributed noise is sampled with zero mean and 

the standard deviation of the sampled error level. Finally, this noise is added to the normalized signal. 
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4. Results 

The proposed solution was implemented and trained for the Monostori Bridge that crosses the Danube 

between Komárom (Hungary) and Komárno (Slovakia). This bridge has already been investigated by 

the Authors (Szinyéri et al., 2023) as mentioned earlier in Section 2. 

Strain gauges are installed in two cross-sections of the bridge. Sensors placed in the same cross-

section are called a sensor array. Sixteen strain gauges are installed in the main sensor array of the 

Monostori Bridge, labelled from T1 to T16 as shown in Figure 2. The monitoring system also contains 

another secondary sensor array, which contains 10 strain gauges. The data of this secondary sensor array 

can be ignored by the usage of the proposed GVW estimator solution. The distance between the two 

cross-sections is 6 meters. The proper locations of these sensor arrays are illustrated in Figure 3. 

Previously, a full B-WIM pipeline has already been proposed by the Authors (Szinyéri et al., 2024). 

This solution is referred to as B-WIM pipeline using two cross-sections. It is considered as a baseline 

method later. 

 

Figure 2. Sixteen strain gauges in the main sensor array installed  

under the two-lane Monostori bridge 

 

Figure 3. Location of main and secondary sensor arrays 

It has already been mentioned that the channels of the neural network input are configuration dependent 

in the case of the proposed deep learning-based GVW estimator network. The so-called CNN-Edge 

architecture has been implemented. It means that the sum of strain signals in each lane and the sum of 

strain signals at the edge of each lane are given as the input of the GVW estimator. It means that the 

sum strain signals of T1-T8, T9-T16, T1-T5 and T12-T16 sensors are the input of the neural network. 

The CNN-Edge architecture is illustrated in Figure 4. It can be seen that the architecture awaits for an 

input signal with 6 channels; 4 channels are coming from the strain signal and 2 are coming from the 

mask concatenated to it. The architecture contains about 840k parameters in this way. Convolutional 
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blocks on the image represent their parameters in out channel number/kernel size/dilation/stride format. 

As mentioned earlier, the stride is equal to one in every convolutional block. Figure 5 shows a neural 

network input that can be used with the CNN-Edge configuration. Other properties of the training 

process are also given in Table 1. 

 

Figure 4. CNN-Edge architecture 

 

 

Figure 5. Example of neural network input when the CNN-Edge architecture is used. Sum signals 

show the summed strain signals of T1-T8 and T9-T16 sensors, while Edge sensors show the summed 

strain signals of T1-T5 and T12-T16 sensors. 
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Table 1 

Most important properties of the training process are given  

for the Monostori Bridge 

Aspect Description/value 

Trainable parameter count 840,000 

Optimizer Adam 

Learning rate (at start) 0.001 

Batch size 32 

Train/validation split [%] 80/20 

Learning rate 

scheduler 

Type Cosine annealing scheduler 

Min. learning rate 0.0001 

Annealing period 16,384 batch 

 

 

A measurement-based annotated dataset has already been captured on the Monostori Bridge as 

mentioned earlier. This dataset contains the ground-truth axle loads of 91 vehicles. These measurements 

were captured in 2023 October and 2024 February. Vehicles were stopped and axle loads were measured 

statically by a certified axle weighing scale based on the OIML R 76-1 documentation (OIML, 2006) 

guaranteeing accurate measurement between certain limits. These vehicles vary in speed, axle loads, 

lateral position and axle count. The proposed deep learning-based GVW estimator has been evaluated 

on this dataset. The solution has been trained on the BME-S1 synthetic dataset. Table 2 summarizes the 

results achieved by the proposed GVW estimator solution and the B-WIM pipeline using two cross-

sections. Mean Absolute Percentage Error (MAPE), standard deviation of percentage errors and COST 

323 WIM classification (Jacob et al., 1998) of each pipeline can be read in that table. The COST 323 is 

a classification standard used for categorizing the proposed and the previously established two cross-

section-based B-WIM pipeline. COST 323 divides B-WIM systems into classes from A to E, where A 

is the most accurate, E is the least accurate, and B+ is better than B. COST 323 also discusses how 

environmental conditions and the size of the dataset can be taken into consideration. The reproducibility, 

repeatability and environmental conditions are at the R2 (strictest) level according to the COST 323 

standard in our case due to the variety of the vehicles and the environmental conditions (measurements 

in autumn and winter as well). It can be seen the two cross-section-based solution achieves lower errors 

as expected but the gap is only 0.34% in the case of MAPE metric; however, the proposed solution is 

only capable of B+ classification in this way. 

An ensemble model can be created using the previously established B-WIM pipeline and the 

proposed GVW estimator. Ensemble model means the following in the case of deep learning models: 

the weighted average of the neural network outputs will be the output of the ensemble model. In our 

case, the weighted average is only a simple average. Table 3 shows the results achieved by the 

established ensemble model. It can be seen that the proposed ensemble model achieved lower errors 

when compared to the original B-WIM pipeline using two cross-sections. It means that the proposed 

GVW estimator is worth to be built in the previously proposed B-WIM pipeline. It supports Gross 

Vehicle Weight estimation, and can reduce the MAPE metric even by 0.1%. 
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Table 2 

Results (GVW estimation errors) achieved on the measurement-based annotated dataset 

of 91 vehicles by the proposed solution and the previously presented  

two cross-section-based B-WIM pipeline 

Metric Proposed solution 
Using two cross-section 

B-WIM-pipeline 

MAPE [%] 2.47 2.13 

Standard deviation of 

percentage errors [%] 
3.33 2.83 

COST 323 [A-E] B+ A 

 

Table 3 

Results (GVW estimator errors) of the ensemble model  

(proposed + two cross-section solution) 

Metric 

Ensemble model 

(Proposed + two cross-

section) 

Using two cross-section  

B-WIM-pipeline 

MAPE [%] 2.03 2.13 

Standard deviation of 

percentage errors [%] 
2.64 2.83 

COST 323 [A-E] A A 

 

Table 4 shows how the multi-lane scenarios and Gaussian-noise added to signals are reducing the 

accuracy of the proposed GVW estimator on a synthetic dataset. Errors are also presented for the training 

dataset on which the CNN has been trained, and also for the test dataset. Reliable conclusions can be 

made based on the errors of the test dataset since it has not been used during the training process. The 

proposed GVW estimator is examined using two aspects. First, it is examined using traffic conditions. 

Three kinds of benchmark are available for this case. Multi-lane cases are where vehicles are crossing 

the bridge at both lanes at the same time period, while in the case of one-lane scenarios, the vehicles are 

crossing the bridge in a single lane, so the other lane is empty. Heaviest-based evaluation means that 

only the vehicle with the heaviest average axle load is benchmarked for each scenario. It is interesting 

in multi-lane scenarios because it shows how the GVW of the heaviest vehicle is predicted. Heaviest-

based evaluation is relevant because in applications of WIM systems, the aim is to calculate the GVW 

of the heaviest vehicles in the most accurate way. The other aspect is the presence of noise; the same 

benchmarks are executed for the same scenarios by adding 5% Gaussian noise to the signal of each test 

case. The percentage of noise is defined the same way as in Section 3. Results show that the standard 

deviation of percentage errors become nearly 4% higher in multi-lane subset than in the one-lane subset 

so there are more outliers in those cases. The errors on the heaviest-based subsets are closer to the one-

lane errors than to the multi-lane errors. It can be also seen that 5% noise causes an additional error up 

to 2.01% in all cases regarding all metrics. 
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The whole BME-S1 synthetic dataset and some measurement-based scenarios are publicly 

available (Szinyéri et al., 2023). The main parameters of the BME-S1 dataset are summarized in Table 

5. It shows that the parameters of the vehicles show complex variety in speed, axle spacing, axle 

widths, tyre widths, etc. 

Table 4 

Errors achieved on different subsets of the BME-S1 dataset by the proposed GVW estimator. 

Achieved errors are given with (w/) and without (w/o) adding 5% Gaussian-noise to the signal. 

Metric One-lane Multi-lane Heaviest-based 

 train test train test train test 

MAPE [%] 
w/o noise 1.07 1.20 2.87 3.63 1.80 2.50 

w/ noise 2.39 2.37 4.12 4.57 2.93 3.37 

St. dev of percentage 

errors [%] 

w/o noise 1.44 1.58 5.54 5.66 2.58 3.47 

w/ noise 3.11 3.03 7.02 6.78 3.89 4.51 

 

 

Table 5 

Main parameters of the BME-S1 synthetic dataset are summarized 

in the table 

Parameters 
BME-S1 synthetic dataset 

Train Test 

Vehicle speed [m/s] 10–30 

Number of vehicles in convoys 3 

Small axle spacing [m] 0.8–2.1 

Large axle spacing [m]  2.1–6.0 

Axle width [m]  1.3–3.0 

Delay between vehicles in convoys [s] 1–4 

Average axle load [kN] 4–200 10–100 

Tyre width [m] 0.1–0.7 

Contact length of tyre [m] 0.05–0.40 

5. Conclusions and future work 

The proposed GVW estimator solution depends on a time window detection module. It is unique in the 

field of B-WIM methods since other methods rely on at least the speed estimation method. The proposed 

GVW estimator method can also work based on the data proved by only a sensor array of one cross-

section. Results show that the proposed solution achieves 2.47% average error on a measurement-based 

annotated dataset. It achieved B+ classification using COST 323 benchmark, which can be still 

acceptable for Structural Health Monitoring purposes, and it can still support filtering overloaded 

vehicles. If the proposed solution is used with the previously established two cross-section-based 

pipeline, then the ensemble performs lower errors than the B-WIM pipeline individually. It means that 

the established GVW estimator can be even useful in regular B-WIM systems. 

Future work should focus on implementing the proposed method on other bridges as well. As 

mentioned earlier, the Monostori Bridge has an orthotropic steel bridge deck. The algorithm should be 

examined in the future on bridges with concrete box-girders as well. The process of the implementation 

for other bridges may be really similar to the process used in the case of this bridge: first, influence 
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surfaces or influence lines should be identified. Then, the CNN should be trained using a synthetic 

dataset considering traffic conditions (number of lanes, direction of traffic, etc.). Finally, the trained 

GVW estimator module must be validated using a measurement-based annotated dataset. 
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