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Abstract 

Version control systems (VCS) are widely applied at software companies as a collaborative tool and 

to maintain multiple versions of source code and documentation. VCS is a software tool that manages 

development of software projects and provide methods to manage several developers working together 

and track them. Collaboration considers the master purpose of version control systems.  Modern VCS 

supports the parallel development of artifacts using branches and merges. Currently, the version con-

trol system adopts on two approaches to software development, the Centralized Version Control Sys-

tem (CVCS) and the Distributed Version Control System (DVCS). This article introduces the concepts 

and comparison of Version Control Systems and some criteria to consider when selecting.  

Keywords: Version control systems (VCS), CVCS, DVCS, CVS, Git. 

1. Introduction  

Version control systems (VCS) are a system used to stores source code, documentation, and manages 

the development of software projects [1], by managing modifications and configuration files [5]. VCS 

is a system that saves modifications done by individual software developers. VCS makes the devel-

opment process easier and faster, where provides the ability to track and control modifications to data 

over time. A VCS provides many advantages for software developers, it helps to share data between 

nodes, and each node can be kept up to date with the latest version of the data [9]. The version control 

systems are not only related to the modifications of data, but also the reasoning behind the modifica-

tions. VCS stores information about which files were modified, when they were modified, who made 

the modification and what the files contained before the modification [19], as well as help developers 

to know who works on these files [9]. So, VCS allows the developers to cooperate and work on the 

same software project at the same time [12]. 

2. Literature review  

This section gives insight into the version control system: Structure of Version Control System, Pur-

poses for Version Control systems, Types of Version Control System, and Version Control System 

tools. 
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2.1. Structure of the version control system 

A version control system provides a basic principle and way of storing files and modifications done, 

this is achieved by using a repository. The repository includes the most recent version of each file and 

the modification history that led to this stage, each modifies usually contains additional information 

such as the author and a short description and a modification time. VCS can be divided into central-

ized and distributed version control systems by studying the method they deal with repositories and 

the sharing of modifications between contributors. The files and all the information associated with 

each version are stored in a repository. There are many repository models popular employed in a Ver-

sion Control system. The earlier model of Version Control systems has a local repository, modifica-

tions will be done on the repository that stored on the same machine. Client-server models use a cen-

tral repository that allows all clients to read and submit modifications. In recent years, the distributed 

repository has gained increased attention because it allows cooperation without the need for a central 

repository. In the past twenty years have seen the emergence of distributed version control system 

(DVCS), these systems have many repositories, each works independently and still have a master re-

pository [9]. 

2.2. Purposes for version control system 

Collaboration considers the master purpose of version control systems. Version control systems have 

appeared in the first release since the 1970s - with the principle of easier management of source code 

files that have been continuously modified by many software developers. These systems provide the 

ability to see the evolution of data over time, a snapshot of it at a specific time, or a method to recover-

restore if necessary. These factors made version control systems a vital component of collaborative 

systems [9]. Older VCS like CVS do not support renaming trace files at all and new files start with 

new archives unless the inventory is manually modified, while most new systems support file renam-

ing [6]. Modern VCS support the parallel development of artifacts using branches and merging, main-

tain a major branch to represent current development works, create new branches to the master branch 

to represent the released versions, and track bug fixes in the released product [23]. There are many 

advantages of the version control system: VCS has been proven to accelerate and simplify the soft-

ware development process. VCS allows and helps people to work freely with the team, where they can 

work on any file at any time without overlapping each other's work by writing over other people's code 

since VCS enables collaboration so people can share the source code more easily. Every time people 

commit modifications, they create a new version of the corresponding file. VCS professionally keeps 

the version. Also, VCS allows the older version of the source code to be safely stored in the VCS re-

pository. A VCS can be extremely useful because it will allow people to recover from accidental dele-

tions or edits [1]. In other words, the core functionality of VCS: made backing up for source code, al-

low developers to collaborate and work together [12]. 

2.3. Type of version control system 

Version control systems provide a method to manage several developers working together and track 

that. Over the ages, there was an evolution of Version Control Systems [8]. There were two approach-

es to version control system: Centralized and Distributed - Version Control System. Both approaches 

are in use to a large extent today, although centralized version control is the most common. The cen-

tralized model work based on the client-server model as well as lets users work at a single central re-

pository. While DVCS is a distributed model that provides a central repository for every user [1]. The 
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main difference between approaches of version control systems is that the DVCS do not need a central 

server to store the repository as it's like in CVCS, every user or developer has a complete repository on 

their local computer. Developers can collaborate directly without needing central authority or incur-

ring central administration overhead, and the acts of snapshotting modifications and publishing modi-

fications can be decoupled [4]. 

2.3.1. Centralized version control systems(CVCS) 

A centralized Version Control System developed to overcome the issues faced by developers when 

they need to work with the other developers on the same systems [8]. This system enables the devel-

opers to work cooperatively, where stores the main copy of files history and keep track of files and 

save all of the information in the local repository. It is one of the easy and simple forms of version 

control, save all the modifications to the files under revision control in a database [21]. CVCS are 

called centralized because there is only one central server or repository holding the version database 

where the developers check out their projects on their local computers [19]. The server can be ac-

cessed via the network [4]. The server maintains a complete record of issues, while clients only main-

tain a local copy of the shared documents, all the developers make their modifications on repository 

through checkout but only the last version of the files is retrieved from the server, it means that any 

modifications made will automatically share with other developers [1]. Users can modify in parallel 

with their local copy of shared documents and sync with the central server to release their contribu-

tions and make them visible to other collaborators [7]. Because centralized version control systems 

rely on one repository that includes the correct version of the project, it must restrict write accesses so 

that only trusted contributors are allowed to commit modifications. CVCS has some challenges, if cen-

tral server inaccessible, then users will not be able to merge their work at all or save the released modi-

fications, it is also if the central repository corrupted, everything will be lost [8]. Contributors must be 

the ones who have writing permissions to perform basic tasks, such as, reverting modifications to a 

previous state, creating or merging branches, release modifications with full revision history, etc. This 

limitation affects participation and authorship for new contributors. So, the main drawbacks to use 

CVCS: require a network connection to work on the source code, developers must order to contribute 

to a project, a single point of failure is an issue when using one server [2].  

 

Figure 1. Centralized Version Control Systems 
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2.3.2. Distributed version control system(DVCS) 

Distributed Version Control Systems (DVCS) developed to overcome CVCS restrictions, to enabling 

branching and merging, avoid the local VCS operations, and allow developers collaboration [12]. Be-

cause of the limitations of using the centralized version control system, Open Source Software (OSS) 

projects these days largely adopt the DVCS. DVCS is designed to work in two ways as it keeps the 

entire file history on each device locally and can also sync local modifications the user made with the 

server again when necessary so that the modifications can be shared with the whole team [1]. In 

DVCS the developers can work with different groups of people in different ways working in the same 

project [8]. As well as any repository can be cloned, and, from a conceptual point of view, no reposito-

ry is more significant than any other. In practice, the development team will organize the repositories 

in the hierarchy and at least one of the repositories will be marked as the central repository [20]. To 

provide a new method for versioning software artifacts, several Distributed Version Control Systems 

emerged in the software field such as Mercurial, Git, and Bazaar, these tools have been adopted by 

many Open Source Software (OSS) [2]. The operations in DVCS are much faster than operations in 

CVCS because they are local [4, 12]. DVCS considered being the future of version control systems, 

because it suited for huge projects with more independent developers, and provides important ad-

vantages by allowing users to work and use a complete version control feature set even when there is 

no network connection. DVCS allows version control of modifications done locally allowing early 

drafts of work to be revision without requiring it to be released to others [9, 11]. Three are many ad-

vantages of using a distributed version control system:  flexibility, hosting services like Github [20], 

availability, it is very fast due to its local nature to the majority of operations, it doesn’t require access 

to remote servers, and, branching and merging can be done very easily in DVCS [8]. Collaboration 

between team members and allow individual developers to be servers or clients are the most important 

features offer by version control systems, so developers can work on source code without being con-

nected to a central or remote repository [2, 18]. There are some Challenges Introduced by DVCS: it 

lacks an understandable version numbering system, where there is no centralized versioning server, 

and use hash modifications or a unique GUID. So, the lack of a central server makes system backup so 

difficult. The two most popular complaints about the disadvantages of DVCS are that: pessimistic 

locks are not available, and they have weak tools for binary [9]. The reasons for the transition from 

centralized to decentralized version Control Systems: the ability to work offline and the ability to work 

incrementally. The ability of developers to made several roles, such as developing a new task or fixing 

errors, and the ability to do exploratory coding efficiently [12]. 

 

Figure 2. Distributed Version Control Systems 
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3. Version control system tools 

Version control system (VCS), besides other tools such as the issue tracking system, is central to how 

development work is organized for several open software projects. The version control system tools 

decide how easily people can contribute to the project, how to coordinate the development of new fea-

tures, and how to integrate development lines, how code is reviewed, and already released. The new 

generation to the version control system solved some limitations of the previous generation of the ver-

sion control system [23]. Version control systems are popular tools that support parallel work over 

shared projects and offer support for synchronization of parallel modifications on those projects [7]. 

CVS and Subversion are the most used CVCS tools, but several open source and closed projects have 

been moved to DVC since the emergence of DVC tools such as Git, Mercurial, Bazaar, Perforce, and 

BitKeeper [1]. The most common tools are Bazaar, Git, and Mercurial, these tools enhance the merg-

ing and branching features. There are different criteria to choose version control system tools, such as 

reliability, adaptability, usability, extensibility, and integration [14]. 

3.1. Concurrent version system(CVS) 

Concurrent Versions System (CVS) was the first popular central version control system for collabora-

tive work. CVS is open-source software for version control, where uses a client-server architecture, the 

server is responsible to store the current project and its history. Written by Dick Grune in 1986, it is 

the most well-known exponent on CVC. It was designed and coded based on the Revision Control 

System (RCS) that which only was allowed to manage individual files rather than projects. CVS has a 

central repository, where the users make a local copy project from the current project [17]. VCS al-

lows clients connected to the server to "Check out" a full copy of the project, work on this copy, and 

later "Check-in" their modifications [16]. CVS was one of the first VCS introduced the concepts of 

branches and feasibility features that exist today in almost every VCS [4]. It can be integrated easily 

with other authentication servers like Active Directory. It is user-friendly and is based on a client-

server architecture. CVS servers run on all major platforms – Windows, UNIX, Linux, etc. [13]. 

3.2. Apache subversion(SVN) 

Because of the limitations of CVS, in the year 2000, CollabNet decided to write a system that is like 

CVS but without problems [4]. SVN is an open-source version control system and abbreviation of 

Apache Subversion [16] SVN developed as CVS replacement with some enhancements, considers the 

final step in the evolution of centralized version control, and it is sharing several advantages with Per-

force [6, 13]. CVCS such as Subversion rely on a client-server architecture, the server saves a full his-

tory of versions while clients save only a local copy of the shared documents [11]. Recent versions of 

Subversion have better branching and merging abilities than the earlier versions [14]. FSFS and 

Berkeley DB are two technologies available in SVN for a file system: both of these technologies allow 

important features such as data integrity, atomic writing, recoverability, and backups if something 

goes wrong during a commit operation, all the process is canceled and the repository remains in a sta-

ble state, so when committing, everything is transferred correctly or none [17]. Subversion is an effort 

to overcome the main CVS limitations, it can rename and make copies of files inside the repository 

because it does not use an RCS-like file system, which also allows for more efficient binary file pro-

cessing. Instead, SVN tracks all modifications, not only in every file but also in the complete directory 

tree. Besides, SVN keeps an invisible hash table for each file or directory allowing the user to write 

their information about them such as permissions, MIME types, owner, etc. [17]. 
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3.3. Perforce 

Perforce was founded in 1995 by Christopher Sewald with a commitment to producing SCM programs 

that are committed to performance and reliability. Perforce today is one of the biggest and most com-

mon source code management systems for customers using Perforce for source code and digital asset 

management client-server, Perforce provides a variety of features to organize code, define where com-

ponents are and control deployment of components for reuse, so Perforce is a highly versatile, flexible, 

powerful SCM system, and allows all kinds of warehouse structures [15]. Perforce provides com-

mand-line clients and visual clients to run, Visual clients include tools for embedding and tools for 

tracking debugging, as well as supports the common functionality for version control such as check-

ins and checkouts, branching, merging, and tagging [6]. 

3.4. Bazaar 

Bazaar tool focuses on the simple and easy user interface, the user interface supports some popular 

workflows like checkouts, and it is a better substitutional to all developers using pushing to a central 

repository [6]. The bazaar is a distributed version control system such as Mercurial and Git, each de-

veloper works on his local branch independent of others, this means that the developer has to push his 

modifications to the server after committing them locally if many developers are working on the same 

project the recurring task is to merge the modifications. There are two different approaches to use Ba-

zaar repositories: checkout and branches [10]. 

3.5. Git 

Distributed Version Control Systems such as Git is the best choice for project development, but the 

researches done in the past haven't given light to the enhancement of the architecture and methodology 

of Git [22]. Git developed in April 2005 as an open-source code and distributed version control sys-

tem, to handle source code with speed and efficiency [16]. Git is considered today one of the most 

popular source code management tools for the huge number of OSS projects [3]. The main purpose of 

Git is distributed revision control. Git allows cloning the entire repository it is possible to work with-

out internet connection [16]. Git became very widespread in the open-source community because it 

supports parallel collaborative work, and offers some very interesting advantages, such as resolving 

conflicts that arise during synchronization of parallel but that is modifications take time-consuming 

[7]. An important attribute of Git is the method it handles the time of modifications in the source code, 

it tracks only the time of commit, and also support branches, and this allows developers to create sev-

eral lines of development and merging them [19]. One of the most important differences between Git 

and other VCS is the way how Git treats data. In Git, instead of keeping a reference to the modifica-

tions made to files, every time a user commits a new version, Git takes a snapshot of the state of all 

files, besides the advantages of working with a local repository [17, 18]. The properties of Git: Git 

does not use delta encoding to store files, it stores snapshots of all files in a tree structure, Git tracks 

content, not files [4]. 

3.6. Mercurial 

Mercurial is a program that developed at the same time when Git was released. Mercurial was de-

signed and developed with the same drive as Git, which is the keeping of the Linux kernel project 

[16]. Mercurial provides distributed version control system features, with ease of use and good docu-
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mentation. Installation may be a bit cumbersome due to dependencies on other packages required, 

Mercurial uses Python [14]. 

4. Summary 

Software development teams use the version control system to manage their projects. VCS record his-

tory information about who made commits, how many les the commits modify, when branches are 

forked or merged, and in some cases when conflicts occur. VCS is designed to store, compare, and 

manage many versions of source code files [14]. VCS accelerates and simplifies the software devel-

opment process and enables new workflows, keeps track of files and history, and have a model for 

concurrent access [4] as well VCS provides many advantages for tracking and controlling the modifi-

cations, such as commit, rebase, revert, branch, merge, and log [5]. This work compared the version 

control system tools depending on many criteria such as file repositories, working directories, and 

commits, branch and merge, push and pull. 

4.1. File repositories 

The centralized version control system having a central server, so it needs to have someone manage 

the server, In the event of a breakdown of the server or network, developers will be unable to do their 

works. The distributed version control system does not have a central server [14]. In DVC, each team 

member owns the full repository on the local development machine called the local repository, the de-

velopers can copy the remote repository into their local repositories and commit to the local repository 

[19]. In DVC, backups are taken to the server repository, guarantee that all committed modifications 

are considered during the backup process. In DVCS, every client has their repository and there is no 

guarantee the nodes have all the modifications [9]. Another important issue of DVCS is that locking 

behavior is not possible. In a centralized system, could implement a locking policy for the main re-

pository, locking a file when a user is working on it until he makes a check-in of the file [17]. 

4.2. Working directories and commits 

In a centralized version control system environment to generate any modification to the repository’s 

history, we must enter to the central server. A centralized version control system environment grants 

anyone to modify any a portion of their native repositories past events [14]. In DVCS, file modifica-

tions are organized in commits, where the information about the commit time and the branching is 

preserved, branching is used to separate commit modifications from each other [19], CVCS have simi-

lar workflows. In contrast, DVCS is very flexible and one can adjust the setup of DVCS to fit one's 

needs [4]. In DVCS the files are not modified directly in the repository, working copy is created with 

the checkout command, the modifications a user makes are transferred to the repository with the 

commit command [14]. In Git every team member has own local repository and working directory to 

make commits, the local repository allows the member to privately work, since team members do 

work on the same project, they need to share and synchronize their work, so each team member must 

pull other member's modifications from the central repository and, push his modifications to a central 

repository [18]. Besides, when a commit implementation, the data is not lost, which means that every 

action can be undone, making impossible to make a catastrophic error [17]. 
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4.3. Branch and merge 

Merge consider one of the most important operations in the version control system, but merge process 

may lead to conflicts, if conflicts happen, the merge process is abandoned until the conflicts are solved 

[17]. There is a difference between merging in DVCS and CVCS, some CVCS tools do not explicitly 

track merge information, such as conflicts and their resolution, so for several merges between the same 

branches, the correct revisions numbers need to be specified manually, when a merge conflict arises, 

git writes the resolution to its commit. Additionally, the merge that occurs when the SVN developer 

updates its work copy is not recorded. DVCS stores sufficient information to support branching and 

merging, rather than being directly developed against the mainline, there are no enforced master 

branches in DVCS because each DVCS repository is a complete repository [23]. Git performs merging 

in two different ways, first, if the commitment object that the main branch refers to is a direct ancestor 

to the compliance object that the branch referred to, Git quickly fuses forward, in the other case, if the 

branch deviates from an older point, Git performs a merge [17]. 

4.4. Push and pull 

The early version control system was "push" systems, this means that developers push their code mod-

ifications into the repository when they're ready, this works well when we can trust all programmers to 

always do reasonable things and put a good code in the repository. as well there are "pull" systems, 

each developer has copies of a repository, which are branches, the modifications only go between 

these branches when someone pulls the modifications from someone else’s repository to their posses-

sion. Git was originally only a "pull" system, but recent versions also support the "push" function, 

many projects in Git disable the "push" function and manage the project as a "pull" system. Mercurial 

has "push" and "check out" functionality by default, although it's somewhat easy to disable [14]. 

5. Conclusion  

Nowadays all software development teams must use a version control system to manage their projects. 

Version control systems record history information about who made commits, when branches are 

forked or merged and, in some cases, when conflicts occur. Version control system tools determine 

how easily people can contribute to the project, how to coordinate the development of new features, 

and how to integrate development code lines, how code is reviewed, and already released. CVS and 

Subversion are the two most used tools in CVCS, but since the appearance of DVCS tools such as Git, 

Mercurial, and Bazaar, several open-source projects moved their source code repositories from CVCS 

to DVCS. Git is the most common and widely used tool among DVCS. This paper discusses the con-

cepts and Comparison of Version Control System tools. 
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