
Multidiszciplináris tudományok, 10. kötet. (2020) 3 sz. pp. 365-376 https://doi.org/10.35925/j.multi.2020.3.44

365

MERGING PROBLEMS IN MODERN VERSION CONTROL SYSTEMS

Nasraldeen Alnor Adam Khleel

PhD student, Institute of Information Science, University of Miskolc

3515 Miskolc, Miskolc-Egyetemváros, e-mail: nasr.alnor@uni-miskolc.hu

Károly Nehéz

associate professor, Institute of Information Science, University of Miskolc

3515 Miskolc, Miskolc-Egyetemváros, e-mail: aitnehez@uni-miskolc.hu

Abstract

During software development, when developers change the same part of the code concurrently, this

may be led to merging conflicts. Resolving these conflicts might be costly and time-consuming. Three

types of conflicts may arise during merge processes: textual, syntactic, and semantic. Textual conflicts

occur when merging a concurrent operation, such as addition, removal or edition take place over the

same parts of code. Syntactic conflicts occur when concurrent operations break the syntactic structure

of the source code files when merged. Finally, a semantic conflict occurs when the merged modifica-

tion is compiled without error but malfunctions. Version management systems usually use textual

merging technique; users can synchronize their modifications with other users working in parallel

with them, in this process, a merge is performed between local modifications and remote modifica-

tions. The previous work has examined different mechanisms to detect and resolve conflicts and pro-

posed different tools for resolving merge conflicts, such as two-way merging, three-way merging,

state-based merging, and operation-based merging. This paper discusses and investigates many con-

cepts related to merging conflicts by asking and answering these questions; what are the factors that

most affect in a merge conflict, how to avoiding and reducing merge conflicts, how to detecting merge

conflicts, and how to resolve them.

Keywords: version control systems, merge conflicts, git, merge tools, unstructured merge tools, semi-

structured merge tools

1. Introduction

In software projects, where there are several developers collaboratively working on the same project in

the same time [3], each developer has a special workspace and shares contributions through a cen-

tral/local repository, isolating modifications from the others. This enables developers to work more

efficiently by promoting parallel development, but when developers decide integrating code, conflicts

may be emerging. Merge conflicts often occur when developers modify the same code artifacts and

resolving them might be costly and time-consuming, to minimize these problems, it is important to

understand how conflict occurrence is affected by many factors [1]. The most version control systems

tools deal with textual conflicts, in this case, a conflict arises when more than one developer makes

inconsistent modifications in the same source code, where the modifications cannot be merged into the

repository until the conflict is resolved [20]. Merge conflicts are frequent, continual, and arise not only

as overlapping textual conflicts but also appear as failures in build and test [29]. Distributed Version

mailto:aitnehez@uni-miskolc.hu
https://doi.org/10.35925/j.multi.2020.3.44

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

366

Control Systems (DVCSs), such as Git tool and hosting platforms, such as GitHub, facilitates the

software development process. Despite these advanced tools, still there merging and integration prob-

lems [4]. To better detect and resolve code integration conflicts, researchers have proposed methods

that use different strategies to decrease effort and improve the correctness of the integration [2].

2. Merge conflicts characteristics

Literature on merge conflicts classified several techniques to avoid, reduce and detect conflicts. These

techniques helps to avoiding merge conflicts by increasing the developer’s awareness of the modifica-

tions others made to the source code such as FastDash which sends notifications about potential con-

flicts when developers are changing the same file. Syde consider the source code modifications at Ab-

stract Syntax Tree (AST) level operations to detect conflicts by comparing tree operations, Palantír

detects the modifications made by other developers and presentation them in a graphical, non-intrusive

manner. WeCode which continuously merges uncommitted and committed changes to detect merge

conflicts. Crystal to detect both direct and indirect conflicts. A software development model to reduce

conflicts by notifying developers who are working on the same file. During the development of soft-

ware projects, when developers change the same part of the source code concurrently, this may be led

to conflicts [5]. Merge conflicts are common occurrence in huge and distributed software projects, de-

tection and resolve conflicts does not an easy task. In modern version control systems, merge must do

by the last developer implemented the commit [20]. In line-based merging approaches, conflicts can

be automatically resolved or manually resolved [16]. In Git system, creating parallel branches or clon-

ing an entire project can be done, this feature allows to create special development lines that make de-

velopers work isolated [11]. Git uses a textual merging technique; thus users can synchronize their

modifications with other users working in parallel with them. In this process, a merge is performed

between local modifications and remote modifications. If developers make a lot of modifications in

the same part of code, when they incorporate these modifications, Git cannot decide which modify to

choose, in this case, the developers need to resolve the conflict manually, which is an error-prone and

time-consuming task [4]. Conflicts might be detected in different stages, during merging or testing,

since detecting and resolving conflicts often is a difficult task [7]. The researchers presented three

types of conflicts that may arise during a merge [23]. Textual, syntactic, and semantic. Textual con-

flicts occur when merge concurrent operations, such as addition, removal, or edition take place over

the same parts of code. Syntactic conflicts occur when concurrent operations break the syntactic struc-

ture of the source code, syntactic structure of the source code means the schema or grammar, for ex-

ample if there is a variable rename by developer and some added lines using that variable by other de-

veloper. The merge will probably have an unresolved symbol. Alternatively, this might introduce a

semantic conflict by variable hiding. The semantic conflicts occur when concurrent operations break

the semantics of the source code when merged, The semantics of the source code can be expressed by

the programming language semantics or expected program behavior, for ex-ample, function rename is

a relatively obvious case of a semantic conflict. Currently, most version control systems deal with

source code files as text. Therefore, merging is done at a textual level [22]. The conflict resolution

strategies adopted by version control systems can be classified into unstructured, structured, and semi-

structured [10].

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

367

Figure 1. Common Git Workflow [15]

3. Merge strategies and tools

Tasks of the software development team are merging code contributions, and therefore, when merging

these contributions, conflicts that may occur should be dealt with [2]. Despite the many different

merge tools in use today, but they are not perfect, because these tools cannot calculate the simultane-

ous modifications made by the developers, also some conflicts maybe cannot automatically be re-

solved, leading to merging fail. So, the developers must intervention to resolve conflicts manually

[27]. Therefore, developers manually rely on existing tools to solve merging conflicts [8]. The current

merge conflicts tools still rely on structured and unstructured merge strategies. Where the recent de-

velopments demonstrate the advanced merge strategies, such as semi-structured merge [2]. The merge

techniques based on lines of code as the basis are called unstructured merge techniques. The merge

techniques based on syntax and semantics are called structured merge techniques. While the merge

techniques that include both aspects of unstructured and structured techniques are called semi-

structured techniques [27].

3.1. Structured merge tools

Although version control systems (VCSs) have evolved over the years, merge tools still have some

limitations [7]. The structured merge tools are based on syntactic structure and static semantics when

merging source code [2]. The goal of structured merge tools is reducing the problems of unstructured

merge tools by conflict detection and resolution exploiting the artifacts' structure [26], where uses in-

formation inherent to the artifacts of the programming language to solve the conflicts automatically

[13]. Structured merging strategy use ASTs level to resolve conflict, an abstract syntax tree (AST) is a

way of representing the syntax of a programming language as a hierarchical tree-like structure. This

structure is used for generating symbol tables for compilers and later code generation. The tree repre-

sents all of the constructs in the language and their subsequent rules [28]. For instance, a syntactic

construct like an if-condition-then expression may be denoted by means of a single node with three

branches. Where the idea underlying is to represent the artifacts as trees or graphs and to merge them

by the tree matching. A structured merge is not only superior in that certain conflict can be resolved

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

368

automatically, but there are also situations, in which unstructured merge misses' conflicts that are de-

tected by structured merge [26]. The structured merge tools are aware of what kind of source code that

deals it, and, therefore, can present better solutions when it comes to conflict handling. But the limita-

tions of structured merge tools are expensive when computing ASTs [28].

3.2. Unstructured merge tools

In unstructured merging tools, merging is done at the text level [12]. Most unstructured merge tools

rely on the diff3 algorithm [7]. Many software projects use an unstructured merge strategy because it

is very simple and relying on purely textual analysis to detect and resolve conflicts [2]. Where source

code written in any programming language is regarded as plain text [8] and every software artifact that

can be represented as text. So, each tool can handle the software artifacts conflicts successfully [16].

Ease of use is one of the reasons for the success of unstructured merging tools, applicable to all kinds

of text files, and cheap to compute. However, unstructured merge tools have several challenges, be-

cause it ignores the syntactic structure of the artifacts during merging [28]. Examples of some famous

Unstructured merge tools: vim merge tool, Meld, Beyond Compare, Araxis Merge, KDiff3, DeltaWalk-

er, P4Merge, Code Compare, and TortoiseMerge [9].

3.3. Semi-structured merge tools

Semi-structured merge tools are mix unstructured and structured merge tools, it is based on the syntac-

tic structure and static semantics of the artifacts [2]. Semi-structured merge tools represent the ele-

ments of source code as trees and use algorithms that to merge nodes and their subtrees [25]. That will

be merged based on information about the nodes (methods, classes, etc.). Trees are merged recursive-

ly, through superimposition which matches nodes based on structural and nominal similarities [7].

Semi-structured merge tools, for example, JDime tool, enhance performance by use ASTs level. A

structured merge is then used for the main nodes of the tree, while the unstructured merge is used for

the method bodies in the leaves [4]. Semi-structured merge tools have many features, where the merge

reports fewer conflicts [2].

4. Compression of merge strategies

To compare merge tools, we should take some aspects such as the measure how often each merge tool

can detect interference between development contributions so that it reports interfering changes as

conflicts and automatically integrates non-interfering ones, further, when a tool is automatically merg-

es conflicts incorrectly, and when a tool cannot merge trivial changes [25]. The most used software

merging tools are unstructured merge tools, it is fast but imprecise as well it more general than struc-

tured. In general, the conflicts will not frequent when using both strategies [2]. The semi-structured

merge more expressive, because it combine between structured and unstructured, and it resolves con-

flicts automatically based on the information available about the language, and it supports a larger

number of languages by providing an annotated grammar of the language to be supported [13]. The

semi-structured merge would be superior because it often reports fewer conflicts, as shown in previous

studies [7]. Previous studies compared the merge ways based on concerning the number of reported

conflicts, the studies showed semi-structured and structured merge tools have fewer conflicts reports.

However, this evidence needs to be further verified. Moreover, a semi-structured and structured merge

could even be introducing false positives that might be harder to resolve [27].

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

369

Table 1. Summary of merge conflicts strategies

Merge strategies

Examples of tools

in strategies

How strategies can

represent source

code

How strategies can work

structured

merge

FSTMerge

source code is rep-

resented as static

semantics

analysing the corresponding Abstract Syntax

Tree (AST)

unstructured

merge

Meld, Beyond

Compare,

Araxis Merge,

KDiff3,

DeltaWalker

source code is rep-

resented as text

each software artifact represented as text

semi-structured

merge

JDime

source code is rep-

resented as static

semantics and text

tools represent part of the program elements

as trees and use algorithms that know how to

merge nodes and their subtrees, this will be

done by exploits part of the language syntax

and semantics, and based on information

about how nodes of certain types

(e.g.methods, classes) should be merged.

Trees are merged recursively, through super-

imposition, which matches nodes based on

structural and nominal similarities [7]

5. Literature review

In this section, we discuss the previous studies to merge conflicts that most related to our work. In Di-

as et al. (2020), the authors investigated seven factors related to modularity, size, and timing of devel-

opers' contributions, by reproducing and analyse 73504 merge scenarios in GitHub repositories of Ru-

by and Python MVC projects. The study found that the likelihood of merge conflict occurrence signif-

icantly increases when contributions to be merged are not modular. The study also found the bigger

contributions involving more developers, commits, and changed files are more likely associated with

merge conflicts [1]. In Paikari et al. (2019), the authors suggested Sayme as chatbot to detection and

resolution of potential source code conflicts that may arise in parallel software development. Sayme is

designed to informing developers when they do conflicting modifications, and reactively, responding

to user inquiries regarding the state of different developers’ work and how it may overlap. The study

implemented a prototype version of Sayme that offers a base layer of functionality, namely the detec-

tion of potential direct conflicts as well as a limited form of indirect conflicts [5]. In Fengmin, Zhu et

al. (2018) authors proposed an interactive approach for resolving merge conflicts, to represent a very

large set of programs proposed an expressive and efficient representation by version space algebra, the

study was conducted and evaluated based on 244 real-world conflicts arising from 10 open-source pro-

jects. The study found that the AutoMerge detects 244 conflicts spread over 138 files, and successfully

resolves as high as 95.1% of the conflicts [8]. McKee et al. (2017) authors proposed a study on the

factors that impact how practitioners approach merge conflicts and the difficulties they face when re-

solving conflicts. The study was conducted based on semi-structured interviews on 10 software practi-

tioners across 7 organizations. The study found that the most factors that make difficult merge con-

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

370

flicts are the complexity of conflicting lines of code, the knowledge/expertise in the area of conflicting

code, the complexity of the files with conflicts, and the number of conflicting lines of code [21]. In

Ahmed et al. (2017), the authors supposed that entities in code smells are lead merge conflict. To get

metrics about code modifications and conflicts, analysed 143 repositories from GitHub. The study

found that entities that are smelly increase the number of conflicts about three times [23]. In this pa-

per, from literature review about merge conflicts. We investigated how to avoid, reducing, and resolve

merge conflicts with git, by answering the following research questions:

RQ1: What are the factors that most influence in merge conflict?

RQ2: How to avoid, reducing merge conflicts?

RQ3: How to detect merge conflicts?

RQ3: How to resolve merge conflicts?

6. Factors that influence merge conflicts

The process to creating a new branch is easy and fast in modern version control systems, but merging

is hard and time-consuming, especially when dealing with many branches, so must know the factors

that most affect in merge conflict to help developers to avoid and resolve conflicts [18]. When resolv-

ing conflicts, the main challenge for developers is understanding the changes that led to the conflict

[6]. The largest contribution that includes more developers’ pledges and changing files are more likely

to relate to consolidation conflicts [1]. Given the cost of merge conflicts and integration problems,

many research efforts have advocated earlier resolution of conflicts. Previous work has shown that

lack of awareness of modifications being done by other developers can cause conflicts and since infre-

quent merging can decrease awareness, it increases the chance of conflicts. These conflicts might be

detected during merging, building, and testing [14]. These conflicts occur due to many causes. For

example, when different developers make modifications to the same artifact without being aware of

the other modifications or when there are concurrent modifications in different artifacts, leading to

failures in build or test [13].

Table 2. Factors that most influence in merge conflict [1]

Number of merge conflicts Sum of all conflicting chunks in the files in the scenario that reported by the

git line-based merge tool when merging the associated contributions, by ana-

lyze the files modified by each contribution in a merge scenario. So, modifica-

tion many files will lead to more conflicts.

Number of files with merge

conflicts

The number of files with at least one merges conflict reported by the git line-

based merge tool. So, the modifications in many files will more effect on

merging conflicts than modifications in a few files.

Number of developers Number of commit authors in each contribution.

Number of commits Number of commits in each contribution.

Number of changed files Number of changed files in each contribution.

Number of changed lines Number of added and removed lines in each contribution.

Duration Computing the number of days between the last commit in the contribution

and the common ancestor with the other contribution for each contribution to

be merged.

Conclusion delay Compute the difference, in days, between the dates of the last commit of each

contribution, because delaying the merge increases conflicts.

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

371

7. Avoiding, reducing merge conflicts

Today's software projects will be developed and maintain by many developers and source code can be

updated from multiple sources, which may lead to a conflict. The manual solution to this conflict is

time-consuming and error prone. There are various approaches to resolve this problem, some of them

define guidelines to avoid conflict, and others use tools to automatically resolve the conflicts [19].

Although conflicts are not something to be feared (for example in Git), resolving conflicts can require

careful analysis and discussion with other team members, which in the end can be quite time-

consuming, So, the most strategies dealing with conflicts is to try to avoid conflicts, this means the

developers must concentrate on much more frequent and smaller commits to avoid merging conflicts

[15]. Conflicts are costly as they delay the development process, in the period between conflicts that

occur and they are discovered and understood, they might grow and become difficult to resolve [16].

Most previous works aim at reducing or avoiding merge conflicts and their negative impacts [6].

Software development often requires social interaction. So, previous studies have provided mecha-

nisms to avoid and minimize merge conflicts, for instance, the communication among developers is

efficient for avoiding merge conflicts [17].

Figure 2. Example of a merge conflict between two developers

8. Git commands to avoiding and reducing merge conflicts

Fetch: fetch command used to download and copies all branch files to your device; it is possible to

fetch multiple branches simultaneously. $ Git fetch: git fetch allows you to do a git diff between your

local branch and the remote branch spotting potential conflicts in the process, fetching from the reposi-

tory brings all new branches and tags for remote tracking without incorporating these changes into

your branches. Git config rerere. enable true: git rerere is reuse recorded resolution when the merge

conflict occurs, it records this solve of merged conflict that is used to resolve a new conflict, this

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

372

means that we don't spend time-solving recurring merge conflicts, once it's enabled if there are con-

flicts previously registered in the same source code, rerere automatically resolves these conflicts. $ Git

pull --rebase origin master: to see the files have a conflict, after that, you can easily solve merge con-

flict by use merge conflict tools. Stash: Stashing has a working directory for track modified files and

saves it as unfinished modifications to apply them at any time. $ Git stash: Temporarily stores all mod-

ified tracked files, to save the changes before adding to repository. $ Git stash pop: Restores the most

recently stashed files [9].

Figure 3. git fetch scenario

Figure 4. git pull –rebase scenario

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

373

Figure 5. git stash scenario

9. Tools to detect merge conflicts

There are different tools to detect conflicts such as two-way merging, three-way merging, state-based

merging, operation-based merging, etc. [21, 25], these tools can help to decrease integration effort and

improve integration correctness. [14]. To detect conflicts early, there are many tools helps to increase

the developer’s awareness. Awareness about the modifications team members may be making is a key

factor in team productivity and reduces the number of conflicts [4]. These tools monitor all the modi-

fications developers make in their local repositories and after detecting conflicts among those modifi-

cations, it will send notifications to the involved developers [5], examples of some tools, Elvin and

Syde are tools supporting direct conflict by increasing awareness through sharing the code change pre-

sent in other developers' workspaces. Palantir and CollabVS are tools supporting indirect conflicts by

visually illustrates code changes and helps developers avoid conflicts by making them aware of modi-

fications in special workspaces. Crystal is a visual tool that uses speculative analysis to help develop-

ers detect, manage, and prevent various types of conflicts and taking a different tact in distinguishing

textual, build, and test conflicts. Cassandra is another tool to minimize conflicts by optimizing task

scheduling, to minimize simultaneous edits to the same files. MergeHelper is a tool helps developers

detect the causes of merge conflicts by providing them with information about historic edit operations.

FastDash is providing a holistic view of the entire shared workspace [4, 5].

10. How to resolve a merge conflict

Despite there are increasing in merge conflict resolution tools, developers need to resolve conflicts

manually and they require expertise to conflict resolution, they also need to understand the changes

that led to the conflict and that were done to both the conflicting versions [6]. The main challenge in

software integration is conflict resolution, most current integration tools rely on the developer to man-

ually resolve conflicts [8]. Conflict resolution requires a deeper understanding of the source code

structure. Prior works have found that in complex merges, developers may not have the expertise or

knowledge to make the right decisions, which might degrade the source code quality [11, 23]. If con-

flicting modifications refer to different lines of the source code, the conflict is automatically resolved

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

374

by the system, on the contrary, if conflicting modifications refer to the same lines of the source code,

the conflict cannot be automatically resolved and the user has to manually resolve it [16]. Version con-

trol systems classified the conflict resolution strategies into three which are unstructured, structured,

and semi-structured. The structured merge tools are based on programming languages to revolve the

merge conflicts. By contrast, unstructured merge tools are based on textual similarity to revolve the

merge conflicts. The semi-structured approaches are based on programming languages and textual

similarity to revolve the merge conflicts automatically and could extensively reduce the number of

conflicts [24].

11. Conclusion

Distributed Version Control Systems, such as Git tool and hosting platforms, such as GitHub, made

software development easy, but still there can be merging and integration problems. Version control

systems classified the conflict resolution strategies into three approaches, which are: unstructured,

structured, and semi-structured. To better detect and resolve code integration conflicts, researchers

have proposed tools that use different strategies to decrease effort and improve the correctness of the

integration. Despite the many different merge tools in use today, but they are not perfect, because they

cannot account for every concurrent modify by developers, also some conflicts maybe cannot automat-

ically be resolved, leading to merging fail. In this paper, many concepts related to merging conflicts

has been discussed and we tried to answer some important issues about avoid, reducing, and resolve

merge conflicts.

References
[1] Klissiomara, D., Borba, P., Barreto, M.: Understanding predictive factors for merge conflicts.

Information and Software Technology: 106256, 2020.

 https://doi.org/10.1016/j.infsof.2020.106256

[2] Guilherme, C., et al.: The impact of structure on software merging: Semi structured versus

structured merge. 2019 34th IEEE/ACM International Conference on Automated Software En-

gineering (ASE). IEEE, 2019. https://doi.org/10.1109/ASE.2019.00097

[3] Stanislav, L., Yehudai, A.: Alleviating merge conflicts with fine-grained visual awareness.

arXiv preprint arXiv:1508.01872, 2015.

[4] Moein, O-K., Nadi, S., Rubin, J.: Predicting merge conflicts in collaborative software devel-

opment. 2019 ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM). IEEE, 2019. https://doi.org/10.1109/ESEM.2019.8870173

[5] Elahe, P., et al.: A chatbot for conflict detection and resolution. 2019 IEEE/ACM 1st Interna-

tional Workshop on Bots in Software Engineering (BotSE). IEEE, 2019.

 https://doi.org/10.1109/BotSE.2019.00016

[6] Wardah, M. et al.: Causes of merge conflicts: a case study of Elastic Search. Proceedings of the

14th International Working Conference on Variability Modelling of Software-Intensive Sys-

tems. 2020. https://doi.org/10.1145/3377024.3377047

[7] Guilherme, C., Borba, P., Accioly, P.: Evaluating and improving semistructured merge. Pro-

ceedings of the ACM on Programming Languages 1.OOPSLA pp.1-27., 2017.

 https://doi.org/10.1145/3133883

[8] Fengmin, Z., He, F.: Conflict resolution for structured merge via version space algebra. Pro-

ceedings of the ACM on Programming Languages 2. OOPSLA (2018): 1-25.

 https://doi.org/10.1145/3276536

https://doi.org/10.1145/3276536
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1109/BotSE.2019.00016
https://doi.org/10.1109/ESEM.2019.8870173
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1016/j.infsof.2020.106256

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

375

[9] https://hackr.io/blog/git-cheat-sheet., accessed in 2020. April.

[10] Guilherme, C., Accioly, P., Borba, P.: Semistructured merge on Git: An Assessment.

[11] Xiaoqian, X., Maruyama, K.: Automatic software merging using automated program repair.

2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF). IEEE, 2019.

 https://doi.org/10.1109/IBF.2019.8665493

[12] Caius, B.: How do developers resolve merge conflicts? An investigation into the processes,

tools, and improvements. Proceedings of the 2018 26th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software Engineering.

2018. https://doi.org/10.1145/3236024.3275430

[13] Guilherme, C., Accioly, P., Borba, P.: Assessing semistructured merge in version control sys-

tems: A replicated experiment. 2015 ACM/IEEE International Symposium on Empirical Soft-

ware Engineering and Measurement (ESEM). IEEE, 2015.

 https://doi.org/10.1109/ESEM.2015.7321191

[14] Guilherme, C., Borba, P., Accioly, P.: Should we replace our merge tools? 2017 IEEE/ACM

39th International Conference on Software Engineering Companion (ICSE-C). IEEE, 2017.

 https://doi.org/10.1109/ICSE-C.2017.103

[15] Tepavac, I., et al.: Sustavi za verzioniranje, alati i dobra praksa: slučaj Git.

[16] Hoai L. N., Ignat, C-L.: An Analysis of Merge Conflicts and Resolutions in Git-Based Open

Source Projects. Computer Supported Cooperative Work (CSCW) 27.3-6 (2018): 741-765.

 https://doi.org/10.1007/s10606-018-9323-3

[17] Gustavo, V., et al.: On the relation between Github communication activity and merge con-

flicts. Empirical Software Engineering 25.1 (2020): 402-433.

 https://doi.org/10.1007/s10664-019-09774-x

[18] Leßenich, O., et al.: Indicators for merge conflicts in the wild: survey and empirical study. Au-

tomated Software Engineering 25.2 (2018): 279-313.

 https://doi.org/10.1007/s10515-017-0227-0

[19] Diptikalyan, S., et al.: Delta refactoring for merge conflict avoidance. Proceedings of the 9th

India Software Engineering Conference. 2016.

 https://doi.org/10.1145/2856636.2856640

[20] Costa, C., Figueirêdo, J. JC., Murta, L.: Collaborative merge in distributed software develop-

ment: Who should participate? SEKE. 2014.

[21] McKee, S., et al.: Software practitioner perspectives on merge conflicts and resolutions. 2017

IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 2017.

 https://doi.org/10.1109/ICSME.2017.53

[22] Nelson, N., et al.: The life-cycle of merge conflicts: processes, barriers, and strategies. Empiri-

cal Software Engineering 24.5 (2019): 2863-2906. https://doi.org/10.1007/s10664-018-9674-x

[23] Iftekhar, A., et al.: An empirical examination of the relationship between code smells and

merge conflicts. 2017 ACM/IEEE International Symposium on Empirical Software Engineer-

ing and Measurement (ESEM). IEEE, 2017. https://doi.org/10.1109/ESEM.2017.12

[24] Nazatul N. Z., Ngah, A., Deraman, A.: Version control system: A review. Procedia Computer

Science 135 (2018): 408-415. https://doi.org/10.1016/j.procs.2018.08.191

[25] Tavares, A. T., et al.: Semistructured merge in JavaScript systems. 2019 34th IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE). IEEE, 2019.

[26] Sven, A., Leßenich, O., Lengauer, C.: Structured merge with auto-tuning: balancing precision

and performance. Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering. 2012. https://doi.org/10.1145/2351676.2351694

https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1016/j.procs.2018.08.191
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1145/2856636.2856640
https://doi.org/10.1007/s10515-017-0227-0
https://doi.org/10.1007/s10664-019-09774-x
https://doi.org/10.1007/s10606-018-9323-3
https://doi.org/10.1109/ICSE-C.2017.103
https://doi.org/10.1109/ESEM.2015.7321191
https://doi.org/10.1145/3236024.3275430
https://doi.org/10.1109/IBF.2019.8665493

Khleel, N. A. A., Nehéz, K. Merging problems in modern version control systems

376

[27] Guilherme, C.: What merge tool should I use? Proceedings Companion of the 2017 ACM SIG-

PLAN International Conference on Systems, Programming, Languages, and Applications:

Software for Humanity. 2017. https://doi.org/10.1145/3135932.3135943

[28] Leßenich, O., et al.: Renaming and shifted code in structured merging: Looking ahead for pre-

cision and performance. 2017 32nd IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE). IEEE, 2017. https://doi.org/10.1109/ASE.2017.8115665

[29] Brun, Y., Holmes, R., et al.: Proactive detection of collaboration conflicts, in ESEC/FSE '11:

Joint Meet. of the Euro. Softw. Eng. Conf. and the Inter. Symp. on the Foundations of Softw.

Eng. ACM, pp. 168-178. 2011. https://doi.org/10.1145/2025113.2025139

https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1109/ASE.2017.8115665
https://doi.org/10.1145/3135932.3135943

