
Multidiszciplináris tudományok, 10. kötet. (2020) 2 sz. pp. 210-218  https://doi.org/10.35925/j.multi.2020.2.26 

210 

 

THERMOELASTIC PROBLEMS OF FUNCTIONALLY GRADED 

MULTILAYERED INCOMPRESSIBLE SPHERICAL BODIES 

 
András Havellant 

Student, University of Miskolc, Institute of Applied Mechanics 

3515 Miskolc, Miskolc-Egyetemváros, e-mail: havandris@gmail.com 

László Kiss 
Student, University of Miskolc, Institute of Applied Mechanics 

3515 Miskolc, Miskolc-Egyetemváros, e-mail: laszlokiss706@gmail.com 

 

Abstract 

The main objective of this paper is to determine the stresses and displacements in radially graded 

multilayered spherical bodies made from incompressible functionally graded materials. The material 

properties are arbitrary functions of the radial coordinate. The body is subjected to constant pressure 

and a temperature field, which is an arbitrary function of the radial coordinate. An analytical method 

is presented to tackle these problems then compared to solutions coming from finite element 

simulations. 
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1. Introduction 

In recent decades layered composite and functionally graded materials (FGMs) have been widely used 

in numerous engineering applications due to their excellent material behavior. These materials have 

improved thermal resistance and mechanical properties. The smooth transition between the 

components decreases the chance of cracking and debonding under thermal and mechanical loads. A 

lot of papers and books deal with the mechanics of these advanced materials. Books by Boley and 

Weiner [1], Lekhnitskii [2] and Lomakin [3] give solutions to many linearly elastic problem for non-

homogeneous bodies, furthermore there are lots of papers, such as [4-11] that tackle the 

thermomechanical problems of different simple functionally graded and multilayered components (e.g. 

beams or disks) from different aspects. Several papers can be found in the topic of functionally graded 

spherical bodies. Lutz and Zimmerman in [12] and [13] give analytical solutions for the stress and 

displacement fields within functionally graded spherical bodies and circular cylinders. Papers [14] and 

[15] present analytical solutions to obtain the radial, tangential and effective stresses within thick 

spherical pressure vessels made of FGMs subjected to axisymmetric simple thermomechanical loads. 

The material properties are assumed to be graded in the radial direction based on the power-law 

function of the radial coordinate but the Poisson ratio has constant value. Paper [16] gives solutions 

for thick radially graded cylinders and spherical pressure vessels where the material properties of 

FGMs is assumed to be exponential function form. In paper [17] a general thermoelastic analysis of 

one-dimensional steady-state thermal stresses in a hollow thick cylinder made of functionally graded 

material is presented. Kar and Kanoria [18] dealt with the determination of thermo-elastic interaction 

due to a step input of temperature on the boundaries of a radially graded orthotropic hollow sphere in 
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the context of linear theories of generalized thermo-elasticity using a vector-matrix formalism and 

eigenvalue solution approach. Bich and Tung [19] presented an analytical approach to investigate the 

non-linear axisymmetric response of functionally graded shallow spherical shells subjected to constant 

external pressure incorporating the effects of temperature field and imperfections. Gönczi [20] derived 

an analytical method to calculate the stresses in multilayered spheres, then used this method to tackle a 

general problem of temperature dependent radially graded spherical pressure vessels. Ye et. al [21] 

investigated the free vibration of laminated functionally graded spherical shells with general boundary 

conditions and arbitrary geometric parameters with power law distribution based on three-dimension 

linearized shell theory and Rayleigh-Ritz method. Paper [22] studied the elastic – perfectly plastic 

thermal stress analysis of radially graded spheres and the material properties are power functions of 

the radial coordinate. Nematolli et. al. [23] presented an analytical solution of thermal and mechanical 

displacements and stresses for a thick-walled rotating spherical pressure vessel made of functionally 

graded materials in a uniform magnetic field assuming power law distribution along the thickness.  In 

paper [24] a numerical algorithm is developed to describe the thermoelastic wave in multilayered 

spherical shells with functionally graded layers under thermal boundary conditions based on Lord-

Shulman generalized coupled thermoelasticity theory. Viola et. al. [25] studied the static behavior of 

functionally graded spherical shells and panels subjected to uniform loadings, the material properties 

are graded in the thickness direction according to a four- parameter power law, and a GDQ numerical 

technique is used to solve the system of differential equations. Arefi and Zenkour [26] investigated the 

problems of functionally graded spherical pressure vessels using non-linear shell theory and Adomians 

decomposition method. In paper [27] a closed form solution was developed for spheres, in which the 

functions of the material properties – except the Poisson’s ratio - are power law functions. Then a 

multilayered approach was used with Boussinesq displacement potentials to deal with the optimization 

problem of hollow spheres. In [28] a closed form analytical solution is presented for special 

thermoelastoplastic problems of thick-walled spheres. Akinlabi et. al. [29] developed a 

thermoelastopalstic method to calculate the stresses and displacements in functionally graded spheres 

after thermal treatment. In [30] an analytical method is presented to calculate the thermal stresses in 

incompressible radially graded spheres. Paper [31] uses perturbation technique and solves the shell 

problem in case of temperature dependent material properties. 
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Figure 1. The sketch of the problem. 
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A multilayered incompressible radially graded hollow sphere is considered. The sketch of the 

problem can be seen in Fig. 1. The number of layers is denoted by N, the material properties are 

arbitrary functions of the radial coordinate. Spherical coordinate system will be used. Our aim is to 

determine the analytical solution for the stress and displacement fields within the radially graded 

multilayered sphere. 

2. Governing equations 

The Poisson’s ratio of incompressible materials is ν = 0.5 thus the Young modulus and the shear 

modulus have the relation E = 3G. This problem is an axisymmetric problem where the displacement 

field is ( )u eru r  and the kinematic equations are [1-3, 32] 

d ( ) ( )
( ) , ( ) ( ) .

d
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u r u r
r r r

r r
 (1) 

The normal strains can be calculated as the sum of its mechanical and thermal components, 

furthermore the constitutive law can be expressed as 
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where T(r) denotes the temperature field, σr, σφ, σϑ are the radial and hoop (or tangential normal) 

stresses, εr, εφ, εϑ denote the normal strain coordinates of the strain tensor. The trace of the strain tensor 

yields to 

2 3r r T              . (4) 

The combination of Eqs. (1-4) leads to the following differential equations 

 2
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The solution for the radial displacement coordinate can be given as 

1

2

1

2 2

3 ( ) ( )

( ) .

    

 


r

R

T d
A

u r
r r

 
(6) 

The previous expression can be simplified by the following notation 

1

2
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In spherical bodies the equilibrium equation has the following form 
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where br denotes the radial body force. The stresses in incompressible materials can be expressed as 

[1, 32] 
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The combination of eqs. (8-11) leads to  
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The unknown constants of integrations can be calculated from the boundary conditions. When the 

pressures at the inner and outer boundary surfaces are given we have 

1 1 2 2( ), ( )    r rp R p R . (14) 

When mixed boundary conditions with the radial displacement of the outer boundary is given 

(which means that there is a rigid casing around the spherical body): 

2 1 1( ), ( )  presc ru u R p R . (15) 

The tangential normal stresses can be expressed as the combination of the previous equations: 
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3. Numerical examples 

In the numerical example the spherical body is divided into 3 radially graded layers (where the 

thickness of every layer is 0.03 m). Each layer has different material properties, furthermore the 

temperature field is given. These properties and fields are described with the following functions: 
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The following data will be used for the computations: 
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Figures 2, 3 and 4 depict comparisons of the results from the analytical (calculated in MAPLE) and 

finite element simulations (in Abaqus, [33]). In the finite element simulations, the functionally graded 

sphere is modelled as a multilayer body with N=9 and N=18 homogeneous spherical layers. Table 1 

shows the exact results of each calculation at specified distances and the relative errors. 

 
  Figure 2. Comparison of the displacements.  Figure 3. Comparison of the radial stresses. 
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Figure 4. Comparison of the tangential stresses. 

Table 1. Exact values and relative errors. 
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4. Summary 

An analytical method was presented to tackle the thermoelastic problem of functionally graded 

incompressible hollow spheres subjected to combined mechanical and thermal loads. The material 

properties and the temperature field were arbitrary functions of the radial coordinate. The stress and 

displacement fields were calculated then compared to results coming from finite element simulations. 

The results are in good agreement. 
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