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Abstract  

In this article, we applied the Unconditionally Positive Finite Difference (UPFD) method of Chen-

Charpentier and Kojouharov to a diffusion-type partial differential equation (PDE), the so-called heat 

equation. Stability and convergence properties have been verified numerically for specific initial and 

boundary conditions. We also elaborated and tested the UPFD method with adaptive step size control. 

We have demonstrated that this version can be more efficient by reducing the time needed for solving 

the heat equation in one dimension. 

Keywords: explicit numerical methods, heat conduction equation, parabolic PDEs, adaptive time step 

size, UPFD method  

1. Introduction  

Heat conduction plays a significant role in many applications of mechanical and electrical engineering 

systems and other aspects of life, and one does not need to go very far to see some application areas of 

heat transfer. For instance, heat transfer equipment such as heat exchangers, boilers, condensers, radia-

tors, heaters, furnaces, refrigerators, and solar collectors are designed primarily on the basis of heat 

transfer analysis [1]. The governing equations of conductive heat transfer has been formulated by Fou-

rier. We investigate this parabolic partial differential equation in the following, one-dimensional form: 

𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑥2
 , (1) 

where 𝑡 [s] is the time, x [m] is the space coordinate, 𝑇 = 𝑇(𝑥, 𝑡) [K] is the temperature and 𝐷 [m2/s] is 

the constant of thermal diffusivity. Although in the special case of homogeneous media, where D is a 

constant, the general analytic solution of this equation is well-known, in general, it is necessary to use 

numerical methods to obtain the solution. Following the well-known method of lines, one approximates 

the space derivatives by finite differences and after this, the spatial coordinates are no longer present 

explicitly as independent variables. The remaining independent variable is the time, which means that 

one has a system of first order ordinary differential equations. This ODE system approximates the orig-

inal PDE better if the space step size is smaller. However, this yields larger number of equations in the 

mailto:kendre01@
https://doi.org/10.35925/j.multi.2020.4.24


Saleh, M., Kovács, E., Pszota, G. Testing and improving a non-conventional method 

207 

ODE system and therefore slower simulation. Moreover, the system of equations often shows high de-

gree of stiffness which means that very small time step sizes are required to avoid instability thus the 

user cannot change the time step size freely considering the accuracy requirements only [2]. Since the 

rate of change of the T functions and even the degree of stiffness during the course of the simulation can 

vary, using a fixed but small time step implies a heavy computational burden. A dynamically adaptive 

time step algorithm can automatically adjust the time step according to the accuracy requirements and 

the degree of stiffness, resulting in a more optimal use of computational resources [3]. Successful adap-

tive methods may lead to substantial savings in computational work for a given accuracy [4]. 

The aim of this paper is to test numerically the convergence and consistency properties of a new class 

of finite difference method, the so-called Unconditionally Positive Finite Difference (UPFD) method 

proposed by Chen-Charpentier and Kojouharov [5]. Also, we elaborated an adaptive algorithm based 

on UPFD method. All the schemes used in this paper were coded using MATLAB. 

2. Unconditionally Finite Difference Method 

In 2013, Chen-Charpentier and Kojouharov introduced a new class of Finite Difference methods for 

advection–diffusion reaction equations that guarantees the positivity of the solutions, independent of the 

time step and mesh size [5]. For simplicity, they considered the one-dimensional advection-diffusion 

equation with linear decay: 

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
− 𝐷

𝜕2𝑐

𝜕𝑥2
= −𝐾𝑐, (𝑥, 𝑡) ∈ [0, 𝑥𝑚𝑎𝑥] × [0, 𝑡𝑚𝑎𝑥] (2) 

for the unknown concentration function c = c (x, t), with appropriate boundary and initial conditions. 

The parameters u, D and K are positive constants. 

We divide the space interval [0, 𝑥𝑚𝑎𝑥] into subdivisions 𝑥0 < 𝑥1 <, … , < 𝑥𝑁. While 𝑥𝑖 =

(𝑖 − 1)∆𝑥, 𝑖 = 1, … 𝑁, ∆𝑥 = (
𝑥𝑚𝑎𝑥

𝑁 − 1⁄ ) and of course 𝑥𝑁 = 𝑥𝑚𝑎𝑥. We also divide the time interval 

[0, 𝑡𝑚𝑎𝑥] using equal time steps of size ∆𝑡. Let 𝑐𝑖
𝑛 be the approximation of the unknown concentration 

function at time step n and node i. The UPFD scheme can be written: 

ci
n+1 − ci

n

∆t
+ u

ci
n+1 − ci−1

n

∆x
− D

ci+1
n − 2ci

n+1 + ci−1
n

∆x2
= −Kci

n+1. (3) 

Applying this scheme to Eq. (1) the terms 𝑢 and 𝐾 will be cancelled out, thus one can write 

𝑇𝑖
𝑛+1−𝑇𝑖

𝑛

∆𝑡
− 𝐷

𝑇𝑖+1
𝑛 −2𝑇𝑖

𝑛+1+𝑇𝑖−1
𝑛

∆𝑥2 = 0, (4) 

where 𝑇𝑖
𝑛 is the numerically calculated value of the temperature at time step n and node i. Although this 

scheme seems to be implicit at the first glance, it can be reordered into the following explicit form: 

Ti
n+1 =

D̂(Ti+1
n +Ti−1

n )+
Ti

n

∆t
1

∆t
+2D̂

, (5) 

where �̂� = 𝐷/∆𝑥2. 

Eq. (5) represents the scheme that we will use to find the approximated solution of our problem 

described above in Eq. (1). 
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2.1. Convergence 

The global error or the so-called pointwise error at node i can be defined in the following way: 

 𝑒𝑖
𝑛 =  𝑇𝑖

𝑛 − �̂�𝑖
𝑛. (6) 

where  �̂�𝑖
𝑛 is the analytical solution corresponds to 𝑇𝑖

𝑛. The maximum global error is the largest absolute 

value of 𝑒𝑖
𝑛.  

The local error refers to the error incurred over a single step. To be more specific, if one solves the 

same differential equation only for one-time step, using the 𝑇𝑖
𝑛−1 values as initial conditions, then one 

obtains the local error as the difference between the local analytical solution T̂i
n∗ and the local numerical 

solution: 

 𝜀𝑖
𝑛 =  𝑇𝑖

𝑛 − �̂�𝑖
𝑛∗. (7) 

By definition, the scheme is said to be consistent (convergent) at time step 𝑡𝑛 and node 𝑖 if the local 

(global) error tends to zero as ∆𝑡 and ∆𝑥 tend to zero [6]. In other words: 

 𝜀𝑖
𝑛 → 0  (𝑒𝑖

𝑛 → 0) 𝑎𝑠  ∆𝑡 → 0  𝑎𝑛𝑑  ∆𝑥 → 0  (8) 

In this paper our task is not the analytical examination of the convergence and stability properties, 

but to examine numerically the behaviour of the global error as a function of the time step size, since it 

hasn’t been done in the original paper of Chen-Charpentier and Kojouharov. To verify the convergence 

of the method, we chose to solve the heat conduction equation with the common Dirichlet boundary 

conditions. We consider the heat conduction Eq. (1) with D=1: 

 
𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2  ,   (𝑥, 𝑡) ∈ [0, 𝜋] × [0, 0.3]  (9) 

Subjected to the following initial and boundary conditions: 

 𝑇(𝑥, 0) = 10 𝑠𝑖𝑛(𝑥) + 77 𝑠𝑖𝑛(10𝑥) , 𝑥 ∈ [0, 𝜋]. (10) 

 𝑇(0, 𝑡) = 𝑇(𝜋, 𝑡) = 0, 𝑡 ∈ [0, 0.3]. (11) 

The analytical solution of this problem is of the form: 

 𝑇(𝑥, 𝑡) = 10 𝑠𝑖𝑛(𝑥) 𝑒−𝑡 + 77 𝑠𝑖𝑛(10𝑥) 𝑒−100𝑡. (1) 

First, we examined the behaviour of the maximum global error for four different, fixed space steps. 

It means that the space domain [0, π] was discretized into N nodes, were N was 25, 50, 100 and 200. 

Also, for each case we repeated the numerical experiment with many fixed time step sizes. For each of 

those time steps, we computed the maximum global error at the end of time interval [0, 0.3]. If we 

choose smaller final times instead of 0.3, the solution would be too close to the original initial function. 

On the other hand, for larger final times the terms in the initial function would decay very much and 

their contribution in the final solution and the errors would become negligible. Between these two ex-

tremes, 0.3 seemed to be a good compromise. Figure 1. shows that the error decreases with the first 

power of the time step size ∆𝑡 until the step size reaches a certain value, and then the error stops to 

decrease and tends to a constant, no matter how small the time step is. This remaining error is due to the 

space discretization, which is underpinned by the fact that, as one can see in the figure 1, the smaller the 

space step size, the smaller this remaining error is. In Figure 2. we present the temperature as a function 

of time for the centre node 2n N /  for different time and space step sizes. One can see that inaccuracy 

here means that the temperature variable changes too slowly compared to the exact solution and no 
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unphysical oscillations are present like in the case of many explicit methods for larger time step sizes. 

This “laziness” is the price one have to pay for unconditional stability and positivity preservation. 

We would like to point out that in the definition of consistency and convergence, the condition ∆𝑡 →
0  𝑎𝑛𝑑  ∆𝑥 → 0 contains some ambiguity, as the rate by which ∆𝑡  and  ∆𝑥 → 0 is not fixed. If the errors 

tend to zero in any case, we talk about unconditional consistency/convergence, but if there is a constrain 

on the relative rate of convergence, the method is called conditionally consistent/convergent. The orig-

inal article [5] refers to the conditional consistency of the UPFD method, thus we performed a second 

series of numerical experiments to investigate this property. For this purpose, we tend to zero with ∆𝑥 

and ∆𝑡 together in such a way that the formula: 

∆𝑡 = ∆𝑥𝑏, (2) 

 

Figure 1. The maximum global error as a function of the time step size calculated at the end of the 

time interval for different number of nodes (logarithmic scale) 

 

Figure 2. The temperature as a function of time for centre node for different time step sizes 
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where 𝑏 is constant. The constant 𝑏 was given different values. For each value of 𝑏, we investigated 

the maximum error at different time steps at the end of time the interval. The results are presented in 

Figure 3. We found that when b is larger than 2, e.g.  𝑏 = 2.1, the error tends to zero when both 

∆𝑡 𝑎𝑛𝑑 ∆𝑥 tend to zero. On the other hand, when 𝑏 ≤ 2 the error tends to a nonzero constant. Thus, the 

scheme converges only if the time step size goes to zero faster than the second power of the space step.  

 

Figure 3. The max Error vs time step size calculated at the end of the time interval for different values 

of b (logarithmic scale). We have to emphasize that for any time step there is a corresponding space 

step determined by formula (11). For b=2.1, the error tends to zero, albeit very slowly. 

We note that for large values of the space and time step sizes the error can slightly increase with 

decreasing ∆𝑡 and ∆𝑥. This phenomenon does not contradict with the convergence of the method, as the 

convergence and consistency statements apply when ∆𝑡 and ∆𝑥 tend to zero and they do not state any-

thing for large values of ∆𝑡 and ∆𝑥. 

3. Adaptive time step size for UPFD method 

In order to improve the time needed to execute the code, an adaptive time step controller is a good 

solution. The core idea of this controller is to increase the time step or decrease it when it is necessary. 

In order to be able to do this, we need an estimation of the local error at the end of each time step. For 

this purpose, we used the UPFD method with one full time step and, at the same time, with two halved 

time steps to compute the numerical values at each node [7]. It means that, at the end of the nth time 

step, we have two different solution: 𝑇(ℎ) and 𝑇 (
ℎ

2
+

ℎ

2
). Of course, the second one is more accurate, 

so the first one is used only to make the following average local error-estimation: 

1

𝑁
𝑠𝑢𝑚 |𝑇 (

ℎ

2
+

ℎ

2
) − 𝑇(ℎ)|. (14) 

After calculating this, the code compares this mean local error to some tolerance value (set by the 

user). Based on that comparison the code decides if it has to increase the time step, keep it or decrease 

it. The algorithm used to decide the size of the time step is presented in Figure 4. 

When we applied this adaptive time step method for the problem (8-11) we obtained that the adaptive 

controller does not fulfil the expectations, but in fact it makes the code slightly slower. 
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If (error_rate<0.8*tolerance) 

Accept the solution and increase the time step for the next iteration. 

∆𝑡𝑛𝑒𝑤 = 1.1 × ∆𝑡𝑜𝑙𝑑 

elseif (error_rate >= 0.8*tolerance && error_rate < 1*tolerance) 

Accept the solution and keep the time step for the next iteration. 

∆𝑡𝑛𝑒𝑤 = ∆𝑡𝑜𝑙𝑑 

elseif (error_rate >= 1*tolerance && error_rate < 2*tolerance) 

Accept the solution and decrease the time step for the next iteration. 

∆𝑡𝑛𝑒𝑤 = 0.5 × ∆𝑡𝑜𝑙𝑑 

else 

Reject the solution, decrease the time step and repeat the iteration. 

∆𝑡𝑛𝑒𝑤 = 0.1 × ∆𝑡𝑜𝑙𝑑 

end 

 

Figure 4. The algorithm used to decide the size of time-step 

The reason for this is that any produced error is absorbed by the edges of the system because of the 

zero Dirichlet boundary conditions, thus the time step controller mostly wastes the CPU time. That is 

why we decided to apply Neumann boundary conditions and use following problem:  

 
𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2  , (𝑥, 𝑡) ∈ [0, 𝜋] × [0, 4].  (3) 

 𝑇(𝑥, 0) = 10 𝑠𝑖𝑛(𝑥) + 77 𝑠𝑖𝑛(10𝑥) , 𝑥 ∈ [0, 𝜋]. (4) 

 
𝜕𝑇(0,𝑡)

𝜕𝑥
=

𝜕𝑇(𝜋,𝑡)

𝜕𝑥
= 0. (5) 

Physically Eq. (17) is equivalent with the thermal isolation of the system at the ends. The reference 

solution of the discretized ODE system is produced by the well-established MATLAB ODE solver 

ode45 with extremely small tolerance. The code was also written in MATLAB. 

We compared the UPFD method with Adaptive-UPFD method, and found that for any concrete level 

of accuracy the adaptive-UPFD method is faster than the original UPFD method, i.e. shorter time (CPU 

time) is necessary to execute the code. Figure Figure 5. shows the result clearly, as one can see that the 

continuous line is closer to the bottom left corner of the diagram where an ideal code would take place. 

We obtained similar results for different values of the parameters of the algorithm (i.e. when numbers 

like 0.8 and 0.5 in Figure 4. are replaced by other values), albeit the distance of the curves was slightly 

smaller. 
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Figure 5. The mean error vs CPU time calculated at the end of the time interval for each order of ac-

curacy (Logarithmic Scale). 

4. Summary 

1. For any fixed mesh, the UPFD method was found to be a convergent time-integrator with order 1. 

2. The UPFD method is conditionally consistent and convergent if the space step size ∆𝑥 goes to zero, 

more precisely, the time step size ∆𝑡 has to go to zero faster than the second power of ∆𝑥 to achieve 

that the error goes to zero as well.  

3. In case of Neumann boundary conditions, supposing the same level of accuracy, the adaptive-UPFD 

method needs less time to solve the problem than the original UPFD method. However, this is not 

true in the case of Dirichlet boundary conditions. 

4. Although the adaptive time step size controller implemented in this paper can, in some cases, signif-

icantly reduce the running time for a given accuracy, it demands extra calculations to obtain the 

necessary error-estimation. Adaptive step sizes controlling is more effective when the original 

method itself produces two different solution at the end of each time step, which is only possible if 

the algorithm consists of at least two stages like the (explicit) trapezoidal rule. These methods are 

called embedded methods, and the most popular examples are the Bogacki-Shampine-Runge-Kutta, 

the Runge-Kutta-Fehlberg and the Runge-Kutta-Cash-Karp methods [7]. However, these explicit 

methods are only conditionally stable and definitely not unconditionally positive. In our future work 

we try to construct explicit, unconditionally stable embedded methods for diffusion and heat con-

duction problems.  
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