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Abstract 

The conventional reinforcement learning (RL) methods (e.g. Q-learning, SARSA, Fuzzy Q-learning) are 

searching for the solution starting from an empty initially empty knowledgebase, which is then expanded 

and filled by the problem related knowledge through iterations incrementally. These traditional RL sys-

tems do not have any additional external knowledge about the solution, therefore the learning phase 

may be a long process. Many methods exist which is able to inject external information into the RL 

system. This RL area is called heuristically accelerated reinforcement learning. The heuristically accel-

erated version of the fuzzy rule interpolation based Q-learning (FRIQ-learning) is able to incorporate 

the external expert knowledge in form of fuzzy rule-base into its knowledgebase. In this FRIQ-learning 

system the expert knowledge is static, it does not change during the learning phase. In the case if the 

external knowledge is not entirely correct, it can have a negative influence on the system efficiency (e.g. 

low convergence rate). Thus a methodology is needed, which is able to optimize (tune) the external 

knowledge rule-base (Q-function) during the learning phase too. The main goal of this paper is to sug-

gest a method for the FRIQ-learning system which may be suitable for optimizing the injected expert 

knowledgebase (Q-function) too.  

Keywords: reinforcement learning, heuristically accelerated reinforcement learning, expert knowledge-

base, Q-learning, fuzzy Q-learning 

1. Introduction

The reinforcement learning (RL) [13] is one of the popular areas of the computational intelligence. These 

methods and algorithms are working based on the reinforcements (which can be reward or punishment) 

given by the environment. The agent due to a properly specified reward function get feedback (as rein-

forcement) from the environment for the executed action in a given state, which modifies its expecta-

tions related to the reactions of the environment, then search for the solution through repetitive experi-

ments. The main benefit of these methods that they can start without any preliminary knowledge about 

the model describing the problem, and they are able to search for the solution and produce the related 

knowledgebase based on the goal given in the form reinforcements. The RL agent continuously evolve 

its behaviour based on the reinforcements, and improves its abilities. Many RL algorithms can be found 

in the literature. The most common ones are the Q-learning [23], the SARSA [12] and their modificated 

versions, e.g. the fuzzy model based versions [1] [2] [5]. These traditional RL methods start the learning 

task with an empty knowledgebase, then expanding it through iterations until a final knowledgebase, 

which is describing the solution, is achieved. In case if external information of can be injected into the 
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RL system, the number of the required iteration steps can be decreased, and hence the convergence 

speed, the efficiency of the learning system can be increased. 

The heuristically accelerated reinforcement learning (HARL) methods (e.g. HAQL, HA-Q(λ), HA-

SARSA(λ), HA-TD(λ)) [3] [4] are giving a possibility to inject external knowledge (as heuristic) into 

the learning system. Depending on the applied model, the knowledge representation can be different.  

It is a Q-table in the conventional Q-learning, and a rule-base in the fuzzy based RL systems. In the 

HARL system [4] the heuristic information is described by a 𝐻𝑡(𝑠𝑡 , 𝑎𝑡) heuristic function, which is 

specifying which 𝑎𝑡 action preferred in the 𝑠𝑡 state at the 𝑡 time. Another solution to describe the external 

information is the ‘GOAL’ (Goal-Oriented Agent Language) [6], which determine the action selection 

policy by “if then” rules. 

In the fuzzy model based reinforcement learning systems the knowledgebase is represented by a fuzzy 

rule-base, therefore the external knowledge (like heuristic information) should also be formalized through 

fuzzy rule-base [18]. The Fuzzy Rule Interpolation based Q-learning (FRIQ-learning) [18] [21] is an 

extension of traditional Q-learning with a fuzzy rule interpolation (FRI) model (e.g. ‘FIVE’ FRI [10]).  

In this system the Q-function is represented by a sparse fuzzy rule-base. Therefore the heuristic infor-

mation, as “expert knowledge”, can be also given in the form of sparse fuzzy rule-base [15]. In case if 

the expert rule-base correctly defined, the convergence speed of the FRIQ-learning system can be signif-

icantly improve [14] [15]. Otherwise, having incorrect information in the expert defined knowledgebase, 

it can also have negative influence for the system performance.  

The main goal of this paper is to introduce a method for the expert knowledge incorporated FRIQ-

learning, which is also suitable for tuning (optimize) the knowledgebase, even in case if the a priori expert 

heuristic contains incorrect information about the solution. 

2. Expert knowledge injected FRIQ-learning 

The FRIQ-learning (Fuzzy Rule Interpolation based Q-learning) [18] [21] is a fuzzy rule interpolation 

(FRI) technique applied Q-learning version, which due to FRI model is suitable for handling continuous 

state and action spaces. The FRIQ-learning is based on the FIVE (Fuzzy Rule Interpolation based on 

Vague Environment) interpolation technique [7] [8] [9], which is an application-oriented multidimen-

sional FRI method. The knowledgebase of the system is described by a sparse fuzzy rule-base (𝑅), ac-

cording to following format [18]: 

𝑟𝑖: 𝑰𝒇 𝑠1 𝑖𝑠 𝑆1
𝑖  𝑨𝒏𝒅 𝑠2 𝑖𝑠 𝑆2

𝑖  𝑨𝒏𝒅 …  𝑨𝒏𝒅 𝑠𝑛 𝑖𝑠 𝑆𝑛
𝑖   𝑨𝒏𝒅 𝑎 𝑖𝑠 𝐴𝑖  𝑻𝒉𝒆𝒏 �̃�(𝒔, 𝑎) = 𝑞𝑖 

 

(1) 

where 𝑟𝑖 (𝑖 ∈ [1, 𝑚]) is the 𝑖𝑡ℎ rule in the 𝑚 sized 𝑅 rule-base, �̃�(𝒔, 𝑎) is the approximated Q-function 

by FIVE FRI, 𝑞𝑖 is the 𝑖𝑡ℎ rule consequent, 𝑆𝑗
𝑖 (𝑗 ∈ [1, 𝑛]) is fuzzy set of the 𝑖𝑡ℎ rule in the 𝑗𝑡ℎ antecedent 

dimension, 𝑺 is the 𝑛-dimensional observation (𝑠1, 𝑠2 …  𝑠𝑛 ∈ 𝑺), 𝑠𝑗  is the 𝑗𝑡ℎ dimension of the 𝑺 state 

observation, 𝐴𝑖 is the fuzzy set of the 𝑖𝑡ℎ rule in the one-dimensional 𝑈 action space and 𝑎 (𝑎 ∈ 𝑈) is 

the executed action.  

The a priori knowledge of the system can be defined by human expert, it can also be formalized by 

fuzzy rule-base (𝑅𝑒𝑥𝑝𝑒𝑟𝑡) similar to (1) form. The expert determines by this rules which action should be 

preferred in the corresponding state (as heuristic policy modifier [4]). The form of the �̂�𝑖 (�̂�𝑖 ∈ 𝑅𝑒𝑥𝑝𝑒𝑟𝑡) 

expert rules is the following [15]:   

 �̂�𝑖: 𝐈𝐟 𝑠1𝒊𝒔 �̂�1
𝑖  𝑨𝒏𝒅 𝑠2𝒊𝒔 �̂�2

𝑖  𝑨𝒏𝒅 … 𝑨𝒏𝒅 𝑠𝑛𝒊𝒔 �̂�𝑛
𝑖  𝑻𝒉𝒆𝒏 a = �̂�𝑖 (2) 
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where �̂�𝑖 is the action as rule consequent of the 𝑖𝑡ℎ (𝑖 ∈ [1, �̂�]) expert rule, �̂�𝑛
𝑖 = [�̂�1

𝑖 , �̂�2
𝑖 , … �̂�𝑛

𝑖 ] is the 𝑛-

dimensional state observation, �̂� is the number of the expert rule in the 𝑅𝑒𝑥𝑝𝑒𝑟𝑡 rule-base and �̂�𝑖 is the 𝑖𝑡ℎ 

expert defined rule. The difference compared to (1) is the rule consequent of (2) the is expert determined 

action (in the specified corresponding state), not is the 𝑞𝑖 value as in case of (1) rule form. The expert 

rule-base can be injected into the system have to determine initial Q-values. The initial Q-values of the 

expert rule-base will be specified by a Q-value initialization methodology by the following form [15]:  

 �̃�𝑖𝑛𝑖𝑡 = 𝜂 ∗
𝑔𝑚𝑎𝑥

1 − 𝛾
  if 𝛾 < 1 (3) 

where �̃�𝑖𝑛𝑖𝑡 is the calculated initial Q-value, 𝑔𝑚𝑎𝑥 is the possible maximal reinforcement which can 

be given by the environment, 𝛾 is the discount factor and 𝜂 is the discount factor of the �̃�𝑖𝑛𝑖𝑡 estimation 

(see [15] for more details). After the Q-value initialization method the form of the expert rules will be 

change the following:  

�̂�𝑖: 𝐈𝐟 𝑠1𝒊𝒔 �̂�1
𝑖  𝑨𝒏𝒅 𝑠2𝒊𝒔 �̂�2

𝑖  𝑨𝒏𝒅 … 𝑨𝒏𝒅 𝑠𝑛𝒊𝒔 �̂�𝑛
𝑖  𝑨𝒏𝒅 a = �̂�𝑖  𝑻𝒉𝒆𝒏 �̃�(𝒔, 𝑎) = �̃�𝑖𝑛𝑖𝑡  (4) 

The expert defined state antecedent and action consequent will be convert to state-action rule ante-

cedent and the estimated �̃�𝑖𝑛𝑖𝑡-value as rule consequent. After the Q-value initialization method the (4) 

form expert rule-base will be injected into the system. Due to the FIVE FRI the learning phase starts 

with 2𝑛 + 1 (n is the number of the state space dimension) initial rules at the corner of the n + 1-dimen-

sional hypercube. The consequent values of these 𝑟𝑖
□ corner rules are 0 (𝑞𝑖 = 0). There may be a case 

when any expert rules overlap the FRIQ corner rules, this case lead to contradiction, because of same 

antecedent but different consequent. In this case the system replaces the corresponding corner rules to the 

expert rules, therefore the 𝑞𝑖 = 0 will be change to 𝑞𝑖 = �̃�𝑖𝑛𝑖𝑡, due to influencing of expert rules.  

In the learning iterations the previously merged rule-base will be grow incrementally according to 

the following updating rule: 
 

𝑞𝑖
𝑘 + 1 = {

𝑞𝑖
𝑘 + ∆�̃�𝑘 + 1(𝒔, 𝑎)

𝑞𝑖
𝑘 + ∆�̃�𝑘 + 1(𝒔, 𝑎) ∗ (1 𝛿𝑣,𝑖

𝜆⁄ ) (∑ 1 𝛿𝑣,𝑖
𝜆⁄

𝑚

𝑖 = 1

)⁄
 

if (𝒔, 𝑎) = (𝒔𝑖 , 𝑎𝑖) for some 𝑖, 
 

otherwise 
(5) 

 

where 𝑞𝑖
𝑘 is the consequent value of the 𝑖𝑡ℎ rule in the 𝑘𝑡ℎ iteration, (𝒔, 𝑎) is the given state-action 

point, 𝛿𝑣,𝑖
𝜆  is the scaling distance between the actual observation and the 𝑖𝑡ℎ rule antecedent and 

∆�̃�𝑘 + 1(𝒔, 𝑎) can be formalized according to following: 
 

∆�̃�𝑘 + 1(𝒔, 𝑎) = 𝛼 ∗ (𝑔(𝒔, 𝑎, 𝒔′) + 𝛾 ∗ max
𝑎′𝜖𝑈

�̃�𝑘(𝒔′, 𝑎′) − �̃�𝑘(𝒔, 𝑎)) (6) 

 

 where 𝛼 is the learning rate, 𝛾 is the discount factor, 𝑔(𝒔, 𝑎, 𝒔′) is the value of reinforcement for 𝒔 →
𝒔′ state transition, �̃�𝑘 is of the 𝑘𝑡ℎ and �̃�𝑘 + 1 is of the (𝑘 + 1)𝑡ℎ iteration consequent value approximated 

by FIVE FRI. 

A new rule will be inserted into the initial corner rule-base for the possible rule position if the nearest 

rule is also far and the Q-update value (∆�̃�) is bigger than the Q-update limit (𝜀𝑄), therefore ∆�̃� > 𝜀𝑄. 

The nearest rule means their distance is less then determined distance threshold limit [17]. Otherwise, if 

the existing a rule near to given rule point and the Q-update value relatively small ∆�̃� < 𝜀𝑄 , then only 

the complete rule-base will be updated. This method called incrementally rule-base construction [19]. 

The learning task will be finished if no more added rule to the incremental rule-base and the ∆�̃� values 



Tompa, T., Kovács, Sz. Expert heuristic tuning design for the FRIQ-learning 

122 

not change significantly. The incrementally built rule-base my contain redundant rules, they can be re-

move by the rule-base reduction strategies to decrease the of the knowledgebase of the system (see [16] 

[20] and [22] for more details). 

3. The suggested structure of the methodology 

In the FRIQ-learning [18] [21] and the expert knowledge injected version [15] only the consequent part 

(Q-value) of the rule-base can be tuning by the update form (5). If a new rule will be inserted to the rule-

base, then the consequents of given rules will be calculated by (5) and in turn the antecedent (state-

action) part of all rules will be permanent during the whole learning phase. Otherwise, the Q-update 

value still relatively small then only the consequent part of the rule-base will be updated. In case of 

inserted new rule by the system, the state-action point (and the related Q-value) probably located in 

correct position. The possible rule places determined by given observations, the state-action space grid 

[18] of the FRIQ-learning omitted, therefore the rules can be located anywhere in the state-action space. 

In the expert determined a priori rule-base, by the expert defined state antecedent and the action 

consequent of rules will be change to state-action antecedent and initial Q-value (�̃�𝑖𝑛𝑖𝑡) consequent 

according to form (4). Regarding the expert rule-base, can be 4 different cases: properly defined rule-

base, properly given fragment rule-base, partially incorrect rule-base and completely incorrect rule-base. 

Properly determined rules mean the given state belong to correct action. Any rules can be specified by 

the expert, the number of the rules and the type of the rules (correct/incorrect) significantly influence 

the efficiency of the system (see [15] for more details).  

The suggested rule-base optimisation (in other words tuning) methodology is based on the classical 

gradient descent method. The basic idea is the following: during the rule-base construction the existing 

rule positions will be change in the in appropriate case with regard to gradient of the Q-function. If there 

is not exist rule in the examined rule position, the nearest rule is also far compared to given observation 

then a new rule will be inserted to the actual position of the observation. If the two rules get close to 

each other during the tuning phase (due to rule position moving), then those will be merged to one 

cardinal rule.  

To apply the gradient descent method, have to determine partial derivatives of the Q-function (5). 

The Q-function is described by the sparse fuzzy rule-base (due to the applied FIVE FRI model), thus 

primarily the gradient has to calculate in the rule positions. If already exist rule near to the given obser-

vation, then a new rule not will be inserted to the rule position but all of rule positions will be updated 

according to gradient of the Q-function. Regarding to gradient descent the new rule positions (in the 𝑅 

rule-base) will be change according to the following update form:   
 

𝑅𝑛𝑒𝑤 ←  𝑅𝑜𝑙𝑑 − 𝛼 ∗ ∇�̃� 

 

(7) 

Where 𝑅𝑛𝑒𝑤 is the new rule positions (for each rule in the complete 𝑅 rule-base), 𝑅𝑜𝑙𝑑 is the old rule 

positions before the update, 𝛼 is the step size parameter of the gradient descent and ∇�̃� is the gradient 

(partial derivatives) of the Q-function. Due to the (𝑛 + 2)-variables Q-function, the partial derivatives 

have to determine for each variable of the function, therefore respect to 𝑺, 𝑎 and 𝑞, where 𝑺 is n-dimen-

sional (𝑠1, 𝑠2 …  𝑠𝑛 ∈ 𝑺). Thus the gradient of the Q-function can be formalized as the following:  
 

∇�̃� = {
𝜕�̃�(𝒔, 𝑎)

𝜕𝒔
,
𝜕�̃�(𝒔, 𝑎)

𝜕𝑎
,
𝜕�̃�(𝒔, 𝑎)

𝜕𝑞
} (8) 
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The computed gradient of the Q-function in the rule points will be determined the direction of the 

rules moving in all dimensions (𝒔, 𝑎, 𝑞). Therefore, in case of no more new incremental rule added to the 

rule-base then all of rules position will be updated by the gradient descent method. Furthermore, if any 

rules get close to each other because of the rule position moving, then the closing rules will be merged as 

the following manner: 
 

𝑟𝑒𝑥𝑝𝑒𝑟𝑡 ∧ 𝑟𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 → 𝑟𝑒𝑥𝑝𝑒𝑟𝑡 

(9) 𝑟𝑒𝑥𝑝𝑒𝑟𝑡 ∧ 𝑟𝑒𝑥𝑝𝑒𝑟𝑡 → 𝑟𝑒𝑥𝑝𝑒𝑟𝑡 

𝑟𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 ∧ 𝑟𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 → 𝑟𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑  
 

The suggestion is the new (merged) rule positions (𝒔, 𝑎) determined based on the state-action value 

average of the closing rules. The closing rules determination is based on rule distance. A rule can be 

determined as a closing rule of their distance is less than the computed distance thresholds. The distance 

threshold will be determined for each dimension, if the distance of the given rule is less in each dimen-

sion than the computed distance thresholds, the rule can be marked as a closing rule [17]. 

The diagram of the proposed system is the following: 

 

Figure 1. The proposed structure of the system 

4. Conclusions 

In the paper a rule-base tuning method is suggested for the expert knowledge extended FRIQ-learning 

system, which is able for tuning (optimize) the whole expert heuristic included fuzzy rule-base even in 

the case if it is not correctly defined before the learning phase. In the suggested methodology, the expert 

can state the a priori knowledge in the form of fuzzy state-action rule-base. Having not entirely correct 

expert rules in the a priori knowledge, the performance of the learning phase can be degraded. By the 

proposed tuning method, during the learning phase both the antecedent and consequent parts of the 

incorrectly given fuzzy rules can be repaired. 
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