
Multidiszciplináris tudományok, 10. kötet. (2020) 4 sz. pp. 323-338 https://doi.org/10.35925/j.multi.2020.4.36

323

CONSTRUCTION AND INVESTIGATION OF NEW NUMERICAL

ALGORITHMS FOR THE HEAT EQUATION
Part 1

Mahmoud Saleh
PhD student, Institute of Physics and Electric Engineering, University of Miskolc

3515 Miskolc, Miskolc-Egyetemváros, e-mail: mhmodsalh84@gmail.com

Ádám Nagy
Teaching Assistant, Institute of Physics and Electric Engineering, University of Miskolc

3515 Miskolc, Miskolc-Egyetemváros, e-mail: fizadam@uni-miskolc.hu

Endre Kovács
Associate Professor, Institute of Physics and Electric Engineering, University of Miskolc

3515 Miskolc, Miskolc-Egyetemváros, e-mail: fizendre@uni-miskolc.hu

Abstract

In this paper-series, we use two known, but non-conventional algorithms, the UPFD and the odd-even

hopscotch method, to construct new schemes for the numerical solution of the heat equation. In this part

of the series, we examine the algorithms analytically. We exactly prove that all the methods are first

order time integrators, three of them preserve positivity of the solutions and we deduce important infor-

mation about the convergence and accuracy of the methods. Numerical case studies will be presented

in the next two part of the series.

Keywords: explicit numerical methods, heat equation, parabolic PDEs, hopscotch method, UPDF

1. Introduction and the studied problem

Heat transfer analysis has a fundamental importance in the design of heat transfer equipment such as

boilers, condensers, radiators, heaters, furnaces, refrigerators, heat exchangers and solar collectors. Heat

transfer in these devices can be studied and predicted either by direct experimental measurements or by

modelling, which usually means solving the mathematical equations which describe the system. The

experimental way has the advantage that we examine the actual physical system, and the required phys-

ical quantities are determined by measurement, within the limits of experimental error. On the one hand,

experiments are usually expensive, time-consuming, and sometimes even impractical. On the other

hand, the analytical solution of mathematical equations – especially partial differential equations (PDEs)

– which describes realistic systems, is possible only in very limited cases. However, more and more

complicated engineering problems can be solved with numerical simulation at a very little cost very

quickly, therefore the interest towards this approach is continuously rising [1], [2].

It is well known that heat conduction and many other diffusion-like phenomena are modelled by the

following partial differential equation (PDE), the so-called heat equation:

u
u q

t


=  +


 , (1)

mailto:fizendre@uni-miskolc.hu
https://doi.org/10.35925/j.multi.2020.4.36

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

324

where ()u u x,t= is the temperature, α is the thermal diffusivity, and q is the intensity of heat sources

(due to e.g. infrared radiation coming from outside of the system) respectively. Eq. (1) is the prototype

of second-order linear parabolic PDEs, of which the general analytic solution is well-known. However,

the problem of heat conduction and diffusion arises in this very simple form very rarely. The general

form of the heat equation is the following

()
u

c k u c q
t


=  +


  , (2)

where ()u u r ,t= is the unknown function, ()k k r ,t= , ()c c r ,t= , ()r ,t = are the heat conductiv-

ity, the specific heat, and the mass-density, respectively. We will use the fact that / ()k c=  is a non-

negative function. Apart from non-negativity, the , , , ,k c  and q functions are arbitrary in principle

and there is no hope to give analytical solutions in general. We note that many intensively studied non-

linear equations like the Fisher, the Kardar-Parisi-Zhang and the FitzHugh-Nagumo [3] equations con-

tain a diffusion-type term as well. We also would like to dispel the possible misconception that simple

equations are always solved only analytically and the more difficult ones are only numerically. In fact

even the numerical solution of Eq. (1) is still investigated [4], [5], and, on the other hand, even the

nonlinear PDEs have some analytical solutions [6]–[10]. However, these latter ones are always valid in

special circumstances only, e.g. for specific initial conditions and homogeneous material properties of

the media, thus numerical solutions remain necessary and widespread.

Although there are plenty of numerical methods to solve Eq. (1) or (2), for large systems the numer-

ical solution still poses a nontrivial problem. The finite difference methods are usually classified as

explicit or implicit methods, and certainly both categories have advantages and disadvantages. Explicit

methods are easier to code and parallelize and much faster for the same time step size than implicit

methods, but usually only conditionally stable and therefore they are considered as less reliable. In case

of implicit methods, the solution of a system of algebraic equations is required at each time step, which

can be extremely time consuming for huge matrices. Because of these reasons, we are interested in those

explicit methods which are unconditionally stable or at least have improved stability properties. We are

convinced that these methods deserve more attention than they currently receive. One of the most well-

known example for these methods are the odd-even hopscotch algorithm, which was published first by

Gordon [11], then reformulated and analysed by Gourlay [12], [13]. The other example we deal with is

the unconditionally positive finite-difference (UPDF) method of Chen-Charpentier et al. [14], developed

for the advection-diffusion-reaction equation. In Part 1 we explain for 0q  how it is possible to create

new combinations using these two methods and analyse the properties of the old and new methods such

as convergence, stability and positivity. In Part 2 several numerical case studies will be presented for

one dimensional systems and different posibilities for handling the q source term will be examined.

Finally in Part 3 we extend the methods for 2 and 3 space dimensions and for systems where the material

properties and the mesh spacings are not uniform.

2. Description of the used numerical methods

Throughout this paper, we take the spatial grid 1ix , i ,...,N= fixed, where N denotes the number of grid

points. We use the central difference formula

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

325

2

2

i+1 j i j i-1 j i j

i j

(,) (,) (,) (,)

(,)

f x t f x t f x t f x t

x xf x t
x x

− −
+

  
 

for the discretization of the spatial derivative and the simplest discretization of the time derivative, by

which we obtain:

2

n 1 n
i-1 i i+12i i u u uu u

t x

+ − +−
=

 
 , (3)

where the superscript n refers to the time level. Now if one consider the u values in the right hand side

of (3) at the n-th time level, one obtains the explicit Euler (or forward time central space, FTCS) scheme,

which can be written as

()n 1 n n n n
1 12

2
i i ii i

r
u u u u u+

− += + − + , (4)

where
2

2
0

h
r

x
= 



 and h t=  . If, on the other hand these u values are taken at the ()1n + -th time level,

the implicit Euler scheme is obtained:

() ()n 1 n n+1 n+1
1 11

2
i i i i

r
r u u u u+

− ++ = + + . (5)

The intermediate option, proposed in [14], is when only the value of the actual node is taken at the

()1n+ -th time level

()n 1 n n n+1 n
1 12

2
i i ii i

r
u u u u u+

− += + − +

which can be rearranged into the following explicit form:

Algorithm 1 (UPFD method).

()n n n
1 1

n 1 2

1

i i i

i

r
u u u

u
r

− +
+

+ +

=
+

.
(6)

When the program goes through the mesh points one by one, it is also possible to use the already

obtained n 1
1iu +
− when the new value n 1

iu + at the next node is calculated. With this modification we obtain

a one-stage “pseudo-implicit” method:

Algorithm 2 (successive displacement UPFD method).

()n n+1 n
1 1

n 1 2

1

i i i

i

r
u u u

u
r

− +
+

+ +

=
+

.
(7)

This successive displacement UPFD method relates to the original one as the Jacobi method for

systems of linear algebraic equations to the Gauss–Seidel method [5, p. 306] and also similar to the

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

326

successive over-relaxation (SOR) method. The Gauss-Seidel type methods, based on the successive dis-

placement of the data, has the advantage that in a computer implementation, it is no longer necessary to

allocate two arrays for nu and 1nu + . Instead, it is enough to use just a single array for nu , and perform

all the updates on this [16]. However, it has the disadvantage that, unlike in the original method, the

computations cannot be straightforwardly parallelized. Furthermore, the calculated values depend on

the numbering of the nodes. This type of logic was applied in the numerical solution of the heat equation

by Ghaffar et al [17], but with different concrete formulas, which were derived by direct copying of the

original (linear algebra) Gauss-Seidel and SOR algorithms.

For understanding the structure of the odd-even hopscotch algorithm, let us define a bipartite grid,

where the nodes can be divided into two similar groups A and B such that nodes in group A are only

nearest neighbours of nodes from group B and vice versa, like in a checkerboard. At the first stage the

new values of u are calculated only at the point of subgrid A, where the space index of the nodes are

odd. During this stage only the values at the beginning of the time step are used. At the second stage,

the remaining node-values (where the space indices are even) are calculated, using the values at subgrid

A at the end of the time step which are already calculated at stage one. At the next time step the roles of

subgrid A and B are interchanged. This logic is visualized in Fig 1.

Figure 1. The stencil of the hopscotch algorithm.

Thin black arrows (thick red arrows) indicate operations at Stage 1 (Stage 2).

Now for each stage, we can use three formulas, namely the explicit, the implicit and the UPFD, thus

altogether we have 32=9 possibilities. As we want to construct explicit methods, we exclude the implicit

formula at the first stage, thus 6 possibilities remain. However, at the second stage, the new values
n 1

1iu +
−

and
n 1

1iu +
+ of the neighbours are already calculated at the first stage, therefore the UPFD scheme (6)

coincides with the implicit scheme (5). We remind that if the old values
n

1iu − and
n

1iu + were used, the

original UPFD method would be obtained. So finally, we have four different possibilities and we are

going to examine all of them. Let us start with the original, well known one.

Algorithm 3 (original odd-even hopscotch).

Stage 1. Take a time step with the explicit Euler method for every other nodes, e.g. where n+i is odd:

n n
n 1 n n1 1

2

i i
i i i

u u
u u r u+ − +

 +
= + − 

 
.

Stage 2. Take a time step with the implicit Euler method for the remaining nodes, e.g. where n+i is

even:

()n n+1 n+1
1 1

n 1 2

1

i i i

i

r
u u u

u
r

− +
+

+ +

=
+

.

n-th time level

n+1-th time level

n+2-th time level

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

327

As it was already referred to, this second stage is not implicit in reality, because – similarly to Algo-

rithm 2 – the necessary values n+1
1iu − and n+1

1iu + are already calculated at stage one and now only one

unknown, namely n+1
iu remained.

The second version of the odd-even hopscotch methods can be the combination of two explicit steps.

Algorithm 4 (explicit+explicit odd-even hopscotch).

Stage 1. Take a time step with the explicit Euler method for every other nodes, e.g. where n+i is odd:

n n
n 1 n n1 1

2

i i
i i i

u u
u u r u+ − +

 +
= + −  

 
.

Stage 2. Take a time step with the explicit Euler method again for the remaining nodes, e.g. where

n+i is even:

n+1 n+1
n 1 n n1 1

2

i i
i i i

u u
u u r u+ − +

 +
= + −  

 
.

Now we combine the UPFD method with the explicit Euler formula in the odd-even hopscotch struc-

ture.

Algorithm 5 (UPFD+Explicit Euler odd-even hopscotch).

Stage 1. Take a time step with the UPDF method for every other nodes, e.g. where n+i is odd:

()n n n
1 1

n 1 2

1

i i i

i

r
u u u

u
r

− +
+

+ +

=
+

.

Stage 2. Take a time step with the explicit Euler method for the remaining nodes, e.g. where n+i is

even:

n+1 n+1
n 1 n n1 1

2

i i
i i i

u u
u u r u+ − +

 +
= + −  

 
.

Finally we apply the UPFD formula at both stage:

Algorithm 6 (UPFD+UPFD odd-even hopscotch).

Stage 1. Take a time step with the UPDF method for every other nodes, e.g. where n+i is odd:

()n n n
1 1

n 1 2

1

i i i

i

r
u u u

u
r

− +
+

+ +

=
+

.

Stage 2. Take a time step with the implicit Euler (which, in this case, is the same as the UPDF)

method for the remaining nodes, e.g. where n+i is even:

()n n+1 n+1
1 1

n 1 2

1

i i i

i

r
u u u

u
r

− +
+

+ +

=
+

.

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

328

In the remaining sections of this paper, we analytically investigate the most important properties of

these methods.

3. Convergence of the methods

In this section, we examine the convergence properties of the methods as time-integrators for the

spatially discretized systems.

Theorem 1. The Algorithms 1-6 are at least first order numerical methods for the

du
Mu

dt
= , 0(0)u t u= = (8)

linear ODE initial value problem, where the matrix M is obtained by discretizing the Laplace operator

Δ in (1) by the central difference formula as in (3), while
0u is an arbitrary vector and  is an

arbitrary nonzero scalar.

Proof. As we consider a one-dimensional system, M is a tridiagonal matrix with the following ele-

ments:

ii i,i+1 i,i 12 2 2

2
(1), (1), (1)

2 2

r r r
m i N m i N m i N

x h x h x h
−= − = −   = =   = =  

  

  
.

The exact solution of the initial value problem (8) can be written as follows:

2 3
0 2 3 0() e 1 ...

2 3!

Mt t t
u t u Mt M M u

 
= = + + + + 

 
. (9)

The zeroth and first order terms in the exact solution at t=h are the following:

() ()n 1 n n n
1 11

2
i i i i

r
u u r u u+

− += − + + . (10)

We will deduce that the expressions for the variable u obtained by any of the presented algorithms

coincides with (10) up to first order in r.

Remark 1. As M is tridiagonal, M2 is pentadiagonal in the bracket in the right hand side of (9). Hence

if we examine the exact solution only up to first or second order, the value
i

nu depends on the first

neighbours n n
1 1i iu , u− + or the second neighbours n n

2 2i iu , u− + , respectively. So if a formula does not contain

the values of the first or second neighbour, then it cannot represent a first or second order method.

Remark 2. The original explicit and the implicit Euler method are well-known first order methods,

thus we don’t need to examine their convergence-properties.

Proof for Algorithm 1 (UPFD method). The power series of the denominator is

()
1 21 1x x x ...
−

+ = − + − , thus one can write

()
() ()() ()2

n n n
1 1

n 1 n n n
1 1

2 1 1
1 2

i i i

i i i i

r
u u u

r
u u r u u r O r

r

− +
+

− +

+ +

= = − + + − +
+

. (11)

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

329

Proof for Algorithm 2 (successive displacement UPFD method). Applying (7) twice we obtain

()

()n n n
1 2

n n
1

n n+1 n
1 1

n 1

2

2 1

2

1 1

ii i

i i

i i i

i

r
u u u

r
u u

r r
u u u

u
r r

− −

+

− +
+

 
+ + 

+ + 
+ + +

 
= =

+ +
, (12)

thus

() () () () () () ()2n 1 n n n n n n n n
1 2 1 1 11 1 1 1 ,

2 2 2
i i i ii i i i i

r r r
u u r u u u r u r u r u u O r+

− − + − +

  
 − + + + − + − = − + + +  

  

which is indeed the same as (10) up to first order of r.

Remark 3. All the remaining algorithms follow the odd-even Hopscotch structure. At Stage 1 the
n 1
iu + values are calculated by the explicit Euler method or by the UPFD method. Because of Remark 2

and the calculation in (11) we don’t need to examine the first stage, only the second one.

Proof for Algorithm 3 (original odd-even hopscotch). The value of the neighbours of node i at the

first stage has the values:

n n n n
n 1 n n n 1 n n2 2

1 1 1 1 1 1and
2 2

i ii i
i i i i i i

u u u u
u u r u u u r u+ +− +
− − − + + +

   + +
= + − = + −      

   
, (13)

thus, at the second stage, one can write

()n 1 n n+1 n+1
1 1

n n n n
n n n n n2 2

1 1 1 1

1

1 2

1
.

1 2 2 2

i i i i

i ii i
i i i i i

r
u u u u

r

u u u ur
u u r u u r u

r

+
− +

− +
− − + +

 
= + + = +  

     + +
 = + + − + + −        +       

 (14)

It is easy to see that

() ()() ()2n 1 n n n
1 11 1

2
i i i i

r
u u r u u r O r+

− += − + + − + .

Proof for Algorithm 4 (explicit+explicit hopscotch). Using (13) we obtain at the second stage:

()

n+1 n+1
n 1 n n1 1

n n n n
n n n n n2 2

1 1 1 1

2

1 .
2 2 2

i i
i i i

i ii i
i i i i i

u u
u u r u

u u u ur
r u u r u u r u

+ − +

− +
− − + +

 +
= + − =  

 

    + +
= − + + − + + −        

    

 (15)

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

330

It is also easy to see that

() () ()2n 1 n n n
1 11

2
i i i i

r
u u r u u O r+

− + − + + + .

Proof for Algorithm 5 (UPFD+Explicit Euler odd-even Hopscotch). At Stage 1 we obtain

() ()n n n n n n
1 2 1 2

n 1 n 1
1 1

2 2and
1 1

i ii i i i

i i

r r
u u u u u u

u u
r r

− − + +
+ +
− +

+ + + +

= =
+ +

, (16)

which gives at Stage 2 that

() ()n n n n n n
n+1 n+1 1 2 1 2

n 1 n n n n1 1 2 2

2 2 1 1

i ii i i i
i i

i i i i i

r r
u u u u u u

u u r
u u r u u ru

r r

− − + +
+ − +

 
+ + + +  +

= + − = − + +     + +  
 

, (17)

therefore

() ()() ()2n 1 n n n
1 11 1

2
i i i i

r
u u r u u r O r+

− + − + + − + .

Proof for Algorithm 6 (UPFD-UPFD odd-even Hopscotch). Using (16) for the values of Stage 1 we

obtain for Stage 2

()
()

() ()
n n+1 n+1

1 1
n 1 n n n n n n n

1 2 1 2

12

1 1 2 1 2 2

i i i

i i i ii i i i

r
u u u

r r r
u u u u u u u u

r r r

− +
+

− − + +

+ +   
= = + + + + + +  

+ + +    
 (18)

thus

() ()() ()2 2n 1 n n n
1 11 1

2
i i i i

r
u u r u u r O r+

− + − + + − + ,

which is again the same as (10) up to first order of r.

4. Stability of the methods

In this section we examine the stability of the methods by von Neumann stability analysis. For a linear

PDE, the exact solution must satisfy the discretized equation exactly, thus the error must also satisfy the

same discretized equation. So to perform the analysis, one needs to replace the n
iu values with the errors

n
i into the finite difference formulas of the algorithms such as (6). If the boundary conditions are

periodic, the error
n
i can be decomposed into a Fourier series as

()n mIk x

m

m

i E t e =

or, in an other form,

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

331

() ()n mIk x j x

m

m

i j E t e
+ 

+ = ,

where j is the distance from node i in grid spacings, ()mE t is the amplitude of the mth harmonic

mIk x
e in the Fourier series of the error and 1I = − [2, p 284-286]. (We note that for other kind of

boundary conditions, the finite Fourier integral can be used.) Omitting the m index and using the notation

s k x=  we can deduce

() ()()

n n+1 n
1

n n
1 1

() , () , () ,

()
() () cos ,

2 2 2

Ikx Ikx Ikx x

Ik x x Ik x x
Is Is

Ikx Ikx

i i i

i i

E t e E t t e E t e

E t e e e e
E t e E t e s



+ −
−



− +

= = +  =

++ +
= = =

  

 
 (19)

()2 2

2

n n n
2 2

22
() () (cos2 1) 2 () cos

2 2

Is Is

Ikx Ikx Ikxii i
e e

E t e E t e s E t e s

−

− +
+ ++ +

= = + =
  

.

Finally, substituting these into the formulas defining the algorithms such as (6) and (7), the amplifi-

cation factor () ()G E t h / E t= + must be calculated. If the absolute value of this factor exceeds 1, the

errors due to e. g. the finite precision of the computer arithmetic will start to grow without limits.

Calculation for Algorithm 1. The discretized equation (6) immediately gives

()n n n
1 1

n 1 2

1

i i i

i

r

r

− +
+

+ +

=
+

  
 .

Substituting formulas listed in (19) and simplifying with
Ikxe we can obtain:

() ()cos
()

1

E t rE t s
E t t

r

+
+  =

+

Now the amplification factor is the following simple expression:

() 1 cos
1

() 1

E t t r k x
G

E t r

+  + 
= = 

+
,

therefore it is obvious that this algorithm is unconditionally stable.

Calculation for Algorithm 2 (UPFD successive displacement modification). Using (12) we can

write

()n n n
1 2

n n
1

n 1

2

2 1

1

ii i

i i

i

r

r

r

r

− −

+

+

 
+ + 

+ + 
+ 

 
=

+

  
 



Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

332

Using formulas listed in (19) and we can obtain after simplification:

()

()

2

2

1
() 2() 1 ()

1 2 2 1

is Is

Is

r
e e

E t r r
E t t e E t

r r

− −+ +
 

+  = + + 
+   +

The amplification factor can be calculated as follows

()

()

21 / 2
1 1

1 2 1 2

1 / 2
1 cos sin cos sin cos2 sin 2 1

1 2 2 1 2

Is Is Isr r r
G e e e

r r

r r r r
s I s s I s s I s

r r

− −  
= + + + + =  + +   

  
+ + + − + − +  + +   

Because of the asymmetry, this is a complex-valued function. We need only the magnitude of this G

function, thus we calculate its absolute value square first:

() ()
()

() ()

2 22 2 2
2

2 2

2 2
2 2 2 2

2

4 4

1 / 2 cos 1 / 2
1 cos sin sin sin cos

1 1 2 2 11 1

1 1
1 (1)

2 2 21 1

r r r s r r
G s s s r s s

r r rr r

r S S r
r rS S r S

r r

 +  
= + + + − − =   + + + + + 

   −
= + + + + + +   

+ +   

The square root of this expression (the G function) is presented in Fig. 2. One can see that it is always

between zero and one, therefore we can state that Algorithm 2 is also unconditionally stable.

Calculation for Algorithm 3 (Original Hopscotch). Here we emphasize that we examine only one

time step. Later we will explain the nontrivial significance of this distinction. Formula (14) yields

() 2

n n n n
n 1 n n n n n2 2

1 1 1 1

n n n n n
n 1 1 2 2

1

1 2 2 2

1
1

1 2 4

i ii i
i i i i i i

ii i i i
i

r
r r

r

r r r
r

+ − +
− − + +

− + − +

     + +
 = + + − + + − =        +       

 + + +
+ − + 

+  

   
     

    


Using formulas (19) we obtain:

() ()
12 2() () 1 () cos () cos 1Ikx Ikx Ikx IkxE t t e E t e r r E t e s r E t e s r
−

 +  = + − + + 
.

The amplification factor takes the following form:

() 2 21 1

1

r r S r S
G

r

+ − +
=

+
.

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

333

Figure 2. The graph of the absolute value of the stability function G for Algorithm 2,
22 /r h x=  ,

cosS k x=  .

This function is plotted on the left side of Fig. 3. From the figure it can be seen that for 1S = − , G

exceeds 1 for increasing r thus one could conclude that this algorithm is only conditionally stable. To

be more specific, () () ()21 1 2 / 1G S r r r= − = − + + , which takes the value 1 at r=1. It means that, ac-

cording to this analysis, the stability is guaranteed only if
2

2

2 1
1 i.e.

2

h
r h x

x
=   



 for α=1. This

condition is the same as the well-known limit for the Explicit Euler method. We will see that the numer-

ical experiences show that this algorithm is unconditionally stable. This apparent contradiction deserves

some explanation. When Gordon proved the unconditional stability of this algorithm (following a dif-

ferent way of calculations), he considered it as a two-step method with doubled time step size [12]. This

makes a difference because the roles of the odd and even nodes are interchanged and indeed, the second

step stabilizes the whole algorithm. We stress that this does not mean that our calculation has no sense

as it serves with a false result, because, contrary to the outcome of it, the algorithm is stable. But, as we

will see in Part 2 and 3, the algorithm is highly inaccurate for large time step sizes and the analysis

presented here helps to reveal the reason of this inaccuracy.

Figure 3. The graph of the stability functions G, where
22 /r h x=  , cosS k x=  .

Left side: Algorithm 3. Right side: Algorithm 4.

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

334

Calculation for Algorithm 4 (explicit+explicit hopscotch). Using (15) we can immediately write

()
n n n n

n 1 n n n n n2 2
1 1 1 11

2 2 2

i ii i
i i i i i i

r
r r r+ − +

− − + +

    + +
= − + + − + + −     

    

   
      ,

which, after substituting formulas (19) gives:

() () 2() 1 () 2 () 1 cos 2 () cos
2

r
E t t r E t E t r s E t r s +  = − + − +  .

The amplification factor:

() ()
2

2 2 21 1 cos cos 1 1
2

r
G r r r s s r r r S r S= − + − + = − + − + .

It is easy to solve the G=1 equation by hand calculation, and it has two solutions r=0 and
1

r
S

= − .

We present the graph of the ()G G r,S= function on the right side of Fig. 3. It can be seen that G is

constantly 1 for cos cos 1s kS x= =  = , when k=0. This reflects the behaviour of the constant error-func-

tion 0n ()i E t e= : the scheme preserves this error as the central difference formula gives zero for this

constant function. On the other hand, as r reaches 1, G reaches and then exceeds 1 for 1S = − , which

yields that the critical value of r is 1, i.e. the stability is guaranteed if
2

2

2 1
1 i.e.

2

h
r h x

x
=   



 for

α=1, the same as in the case of the previous algorithm. However, the figure shows that now G increases

much faster for increasing r when 1S = − than in the case of Algorithm 3. From this we can conclude

that either this algorithm is more inaccurate or even unstable for larger time step sizes. The numerical

experiences in part 2 and 3 will clearly confirm the second option, i.e. that this algorithm is indeed only

conditionally stable, but the threshold for the time step size h is larger. We point out again that for a

more exact analysis of stability, two time steps should be investigated, as the second time step is not

identical to the first one because of the roles of the odd and even nodes are interchanging step by step.

Calculation for Algorithm 5 (UPFD+Explicit Hopscotch). From (17) we obtain

()
() ()

()
2

n n n n n n
1 2 1 2

n 1 n

n n n n n
n 1 1 2 2

2 21
2 1 1

2
1 ,

1 2 1 4

i ii i i i

i i

ii i i i
i

r r
r

r
r r

r r
r

r r

− − + +
+

− + − +

 
+ + + + 

= − + + = 
+ + 

 

+ + +
= − + +

+ +

     
 

    


which yields:

()
2

2() 1 () () cos () cos
1 1

ikx ikx ikx ikxr r
E t t e r E t e E t e s E t e s

r r
+  = − + +

+ +
.

The amplification factor:

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

335

2 2

1
1

rS r S
G r

r

+
= − +

+
.

As one can see in the left side of Fig. 4, this factor can be smaller than -1 for large time step sizes,

thus one could conclude that this algorithm is only conditionally stable. However, according to the nu-

merical experiences this algorithm is very similar to Algorithm 3 and seems to be unconditionally stable,

therefore we can reason that this one-step stability analysis is not sufficient here.

Figure 4. The graph of the stability functions G, where
22 /r h x=  , cosS k x=  .

Right side: Algorithm 5. Left side: Algorithm 6.

Calculation for Algorithm 6 (UPFD-UPFD Hopscotch). From (18) we obtain

() ()n n n n n n
1 2 1 2

n 1 n1 2 2

1 2 1 1

i ii i i i

i i

r r

r

r r r

− − + +
+

  
+ + + +  

= + +  
+ + +  

   

     
  ,

from which it readily follows that

()

()

2 2

2

2 ()cos () 2
() 2()

1 2 1

is isr
E t s E t e e

E t r
E t t

r r

−+ + +

+  = +
+ +

,

thus the amplification factor:

()

() ()

2

2 2

2cos 1 cos21 1

1 2 11 1

s r sr S rS
G r

r rr r

+ + +
= + = +

+ ++ +
.

The value of the G function in S=1 is 1. We can calculate

()
()

()
()2

2 2
1 2

1 1

dG r d r
S rS rS

dS dSr r
= + = +

+ +
.

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

336

Now if S starts to decrease from 1, G will also decrease. At 1
2rS = − the value of G attains its

minimum and will start to increase again, but it is easy to see that it does not reach 1 again. It is also

easy to see that at 1
2rS = − the value of G is

()
()

1
2 41

2 2

1

1 1

r

rG S
r r

− +
= − = +

+ +
,

which cannot be smaller than 0, and this means that the method is stable for any r. We present the G

function on the right side of Fig. 4.

5. Positivity of the methods

Theorem 2. In case of Algorithms 1, 2 and 6, the new values
1

i
nu +

 are the convex combinations of the

old values n , 1,...,ju j N= .

Proof: For algorithm 1 it is easy to see that the coefficients of n n n
1 1, , andi i iu u u− + in the expression

(6) of
1

i
nu +

are the following:

1 / 2 / 2
, , and

1 1 1

r r

r r r+ + +
,

which are all nonnegative, not larger than 1 and their sum is 1. Algorithm 2 and 6 are more difficult

from this point of view, because at Stage 2 the already calculated n+1
1iu − or n+1 n+1

1 1andi iu u− + values are

used, respectively. Thus we have to recall the following simple lemma, the associativity of convex com-

binations [36, p. 28], on which we build during the proof of the remaining part of the theorem.

Lemma: A convex combination i ii
x a x= of convex combinations i ij ijj

x b y= is still a convex

combination:

()i ij iji j
x a b y= 

for any
n

ijy  .

In case of Algorithm 2 and 6 the values n+1
1iu − or n+1 n+1

1 1andi iu u− + , which have been calculated at Stage

1 by the UPFD method, are convex combinations of the old values. Now the lemma immediately implies

that the values obtained at Stage 2 are also convex combinations of the same old values.

Corollary 1: Algorithms 1, 2 and 6, when applied to Eq. (1) are not only preserve positivity, but

satisfy the Maximum and Minimum principle [20, p. 87], i.e. the extreme values of the function u occur

among the initial or the prescribed boundary values, which is a physical property of heat conduction

(without external heat sources) due to the second law of thermodynamics.

Corollary 2: The previous corollary, namely the fulfilment of the Maximum and Minimum principle

implies the stability for Algorithms 1, 2 and 6, therefore the considerations explained in this section give

a second, independent proof of the stability of these algorithms.

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

337

Remark: As Algorithms 3, 4 and 5 contains an Explicit Euler step, they obviously cannot be posi-

tivity-preserving. We note that it does not mean that they are always less accurate, as we will see in the

next two parts.

6. Summary

Using two known, but non-conventional algorithms, namely the UPFD and the odd-even hopscotch

methods, we constructed four new algorithms for the numerical solution of the homogeneous heat equa-

tion. In this part of the series, we examined all the 6 algorithms analytically, while the numerical exper-

iments will be presented in Part 2 and 3. We proved that all of the schemes are (at least) first order time

integrators for the spatially discretized heat equation. Then we applied von Neumann stability analysis,

which showed that Algorithms 1, 2 and 6 are unconditionally stable. This statement was also reinforced

by proving that these algorithms guarantee the fulfilment of the Maximum and Minimum principles.

The stability analysis was performed only for one time step of Algorithms 3, 4 and 5, and it indicated

that these methods can be unstable by large time step sizes. However, only Algorithm 4 can be unstable

in reality, which implies that rigorous stability analysis should be carried out for two time steps for odd-

even hopscotch type methods, as the roles of the odd and even nodes interchange at each time step.

Unfortunately, performing this by the von Neumann method would be an order of magnitude more dif-

ficult and lengthy, therefore it is out of the scope of this paper. Nevertheless the obtained results still

can be used to explain the inaccuracy of these methods for large time step size, which is observed in the

numerical experiments. A similar problem emerged with the order of convergence: we will see that two

of the algorithms are in fact second order, but this could be proven only by calculations incorporating

two time steps. We note that in the Summary of Part 3 a detailed comparison of the properties and

performance of the six methods will be presented.

References
[1] Cengel, Y. A., Ghajar, A. J.: Heat and Mass Transfer, Fundamentals & Application, Fifth Edition

in SI Units. New York: McGraw-Hill Science/Engineering/Math, 2015.

[2] Özişik, M. N.: Finite Difference Methods in Heat Transfer, CRC Press, 2017.

https://doi.org/10.1201/9781315168784

[3] Agbavon, K. M., Appadu, A. R.: Construction and analysis of some nonstandard finite difference

methods for the FitzHugh–Nagumo equation, Numer. Methods Partial Differ. Equ., vol. 36, no.

5, (2020) pp. 1145–1169. https://doi.org/10.1002/num.22468

[4] Mebrate, B.: Numerical solution of a one dimensional heat equation with dirichlet boundary

conditions, Am. J. Appl. Math., vol. 3, no. 6, (2015) pp. 305–311.

https://doi.org/10.11648/j.ajam.20150306.20

[5] Heydari, M. H.: Numerical solution of the one-dimensional heat equation by using Chebyshev

Wavelets Method, J. Appl. Comput. Math., vol. 1, no. 6, 2012,

 https://doi.org/10.4172/2168-9679.1000122

[6] Kudryashov, N. A.: One method for finding exact solutions of nonlinear differential equations,

Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 6, (2012) pp. 2248–2253.

https://doi.org/10.1016/j.cnsns.2011.10.016

[7] Hosseini, K., Ansari, R., Gholamin, P.: Exact solutions of some nonlinear systems of partial

differential equations by using the first integral method, J. Math. Anal. Appl., vol. 387, no. 2,

(2012) pp. 807–814. https://doi.org/10.1016/j.jmaa.2011.09.044

https://doi.org/10.1201/9781315168784
https://doi.org/10.1002/num.22468
https://doi.org/10.11648/j.ajam.20150306.20
https://doi.org/10.4172/2168-9679.1000122
https://doi.org/10.1016/j.cnsns.2011.10.016
https://doi.org/10.1016/j.jmaa.2011.09.044

Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods

338

[8] Barna, I. F., Bognár, G., Guedda, M., Mátyás, L., Hriczó, K.: Analytic self-similar solutions of

the Kardar-Parisi-Zhang interface growing equation with various noise terms, Math. Model.

Anal., vol. 25, no. 2, (2020) pp. 241–256. https://doi.org/10.3846/mma.2020.10459

[9] Barna, I. F., Guedda, M., Bognár, G., Hriczó, K., Mátyás, L.: Analytic traveling-wave solutions

of the Kardar-Parisi-Zhang interface growing equation with different kind of noise terms, in

Differential and Difference Equations with Applications. ICDDEA 2019., 2019,

https://doi.org/10.1007/978-3-030-56323-3_19

[10] Barna, I. F., Bognár, G., Hriczó, K.: Self-similar analytic solution of the two-dimensional Navier-

Stokes equation with a non-newtonian type of viscosity, Math. Model. Anal., vol. 21, no. 1, (2016)

pp. 83–94. https://doi.org/10.3846/13926292.2016.1136901

[11] Gordon, P.: Nonsymmetric difference equations, J. Soc. Ind. Appl. Math., vol. 13, no. 3, (1965)

pp. 667–673. https://doi.org/10.1137/0113044

[12] Gourlay, A. R.: Hopscotch: a fast second-order partial differential equation solver, IMA J. Appl.

Math., vol. 6, no. 4, (1970) pp. 375–390. https://doi.org/10.1093/imamat/6.4.375

[13] Gourlay, A. R.: General Hopscotch algorithm for the numerical solution of partial differential

equations, IMA J. Appl. Math., vol. 7, no. 2, (1971) pp. 216–227.

https://doi.org/10.1093/imamat/7.2.216

[14] Chen-Charpentier, B. M., Kojouharov, H. V.: An unconditionally positivity preserving scheme

for advection-diffusion reaction equations, Math. Comput. Model., vol. 57, (2013) pp. 2177–

2185. https://doi.org/10.1016/j.mcm.2011.05.005

[15] Chapra, S. C., Canale, R. P.: Numerical methods for engineers, Seventh Edition, 7th ed. New

York: McGraw-Hill Science/Engineering/Math, 2015.

[16] Rycroft, C. H.: Iterative methods for linear systems An example : a two dimensional Poisson

problem, Lect. Notes, pp. 1–20, 2009.

[17] Abdul Ghaffar, Z. S., Alias, N., Sham Ismail, F., Mohamed Murid, A. H., Hassan, H.: Sequential

algorithm of parabolic equation in solving thermal control process on printed circuit board,

Malaysian J. Fundam. Appl. Sci., vol. 4, (2008) pp. 379–385.

https://doi.org/10.11113/mjfas.v4n2.46

[18] Hirsch, C.: Numerical computation of internal and external flows, volume 1: Fundamentals of

numerical discretization. Wiley, 1988.

[19] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of convex analysis. Berlin: Springer Verlag,

2001. https://doi.org/10.1007/978-3-642-56468-0

[20] Holmes, M. H.: Introduction to numerical methods in differential equations. Springer, 2007.

https://doi.org/10.1007/978-0-387-68121-4

https://doi.org/10.3846/mma.2020.10459
https://doi.org/10.1007/978-3-030-56323-3_19
https://doi.org/10.3846/13926292.2016.1136901
https://doi.org/10.1137/0113044
https://doi.org/10.1093/imamat/6.4.375
https://doi.org/10.1093/imamat/7.2.216
https://doi.org/10.1016/j.mcm.2011.05.005
https://doi.org/10.11113/mjfas.v4n2.46
https://doi.org/10.1007/978-3-642-56468-0
https://doi.org/10.1007/978-0-387-68121-4

