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Abstract  

This paper is the second part of a paper-series in which we create and examine new numerical methods 

for solving the heat conduction equation. Now we present numerical test results of the new algorithms 

which have been constructed using the known, but non-conventional UPFD and odd-even hopscotch 

methods in Part 1. Here all studied systems have one space dimension and the physical properties of 

the heat conducting media are uniform. We also examine different possibilities of treating heat sources.  

Keywords: explicit numerical methods, heat equation, parabolic PDEs, hopscotch method, UPFD 

1. Introduction and the description of the used numerical methods 

This paper is the second part of a longer paper-series on our new methods to simulate heat conduction 

phenomena. In the first part we used the unconditionally positive finite-difference (UPFD) method of 

Chen-Charpentier et al. [1], and the odd-even hopscotch algorithm of Gordon [2], and Gourlay [3], [4] 

to construct new schemes and then we analytically examined them. Now, in Part 2 we numerically in-

vestigate the performance of these methods compared to the original UPFD and odd-even hopscotch 

methods in the simplest, materially homogeneous system, where heat conduction is modelled by the  

heat equation: 

u
u q

t


=  +


 ,     (1) 

where ( )u u x,t=  is the unknown temperature, a function of the space variable x and the time t, α is the 

thermal diffusivity (considered to be a constant in this part), and ( )q q x=  is the intensity of external or 

internal heat sources, respectively. As we explained in Part 1, the space derivatives are always discre-

tized by the usual most standard difference formula. Following the logic of Chen-Charpentier et al. for 

the time discretization and inserting the heat source term qi we obtain 
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 and h t=  it can be rearranged into the following explicit form: 

Algorithm 1a (UPFD method, source term inside). 
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It is also possible to place the 
iq h  term outside of the numerator, by which we obtain 

Algorithm 1b (UPFD method, source term outside). 

( )n n n
1 1

n 1 2

1
i

i i i
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r
u u u

u q h
r

− +
+

+ +

= +
+

 

It is easy to see that if the time step size h tends to zero, 1 1r+ →  thus the two versions tend to each 

other. So when the UPFD (or implicit Euler) formulas are used, which contain fractions, there are two 

possibilities to treat the source term and it cannot be decided a priori which one is more effective. So 

we can write two versions of the successive displacement UPFD (where the already obtained 
n+1

1iu −  val-

ues are used to calculate 
n 1
iu +

) and the odd-even hopscotch method as well. 

Algorithm 2a (successive displacement UPFD method, source term inside). 
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Algorithm 2b (successive displacement UPFD method, source term outside). 
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Algorithm 3a (original odd-even Hopscotch, source term inside). 

Stage 1. Take a time step with the explicit Euler method for every other nodes, e.g. where n+i is odd: 

n n
n 1 n n1 1

2
i

i i
i i i

u u
u u r u q h+ − +

 +
= + − +  

 
. 

Stage 2. Take a time step with the implicit Euler method for the remaining nodes, e.g. where n+i is 

even: 



Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods 

341 

( )n n+1 n+1
1 1

n 1 2

1

ii i i

i

r
u u u q h

u
r

− +
+

+ + +

=
+

. 

Algorithm 3b (original odd-even Hopscotch, source term outside). Stage 1 is the same as in Algorithm 

3a, but the second stage is different: 

Stage 2. Take a time step with the implicit Euler method for the remaining nodes, e.g. where n+i is 

even: 

( )n n+1 n+1
1 1

n 1 2

1
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i i i
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. 

In case of the odd-even hopscotch, where the explicit Euler formulas are used in both stages, there 

are no different possibilities: 

Algorithm 4 (explicit+explicit odd-even hopscotch). Stage 1 is the same as in Algorithm 3a, but the 

second stage is different: 

Stage 2. Take a time step with the explicit Euler method again for the remaining nodes,: 

n+1 n+1
n 1 n n1 1

2
i

i i
i i i

u u
u u r u q h+ − +

 +
= + − +  

 
. 

In the case of the next algorithm, the UPDF method is used at the first stage, so we also have two 

possibilities. 

Algorithm 5a (UPFD+Explicit Euler odd-even hopscotch). 

Stage 1. Take a time step with the UPDF method for every other nodes, e.g. where n+i is odd: 
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Stage 2. Take a time step with the explicit Euler method for the remaining nodes, e.g. where n+i is 

even: 
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Algorithm 5b (UPFD+Explicit Euler odd-even hopscotch). 

Stage 1. Take a time step with the UPDF method for every other nodes, e.g. where n+i is odd: 

( )n n n
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Stage 2. Same as in Algorithm 5a. 

In the last algorithm UPFD formulas are used in both stages, thus we have four possibilities. 
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Algorithm 6a-a (UPFD+UPFD odd-even hopscotch, inside-inside ). 

Stage 1. Same as in Algorithm 5a. 

Stage 2. Same as in Algorithm 3a. 

Algorithm 6b-b (UPFD+UPFD odd-even hopscotch, outside-outside ). 

Stage 1. Same as in Algorithm 5b.  

Stage 2. Same as in Algorithm 3b. 

Algorithm 6a-b (UPFD+UPFD odd-even hopscotch, outside-outside ). Stage 1 is the same as in Algo-

rithm 6a-a while Stage 2 is the same as in Algorithm 6b-b.  

Algorithm 6b-a (UPFD+UPFD odd-even hopscotch, outside-outside ). Stage 1 is the same as in Algo-

rithm 6b-b while Stage 2 is the same as in Algorithm 6a-a.  

2. Numerical examples   

In this section, we numerically investigate the behaviour of these methods. We solve PDE (1) for 

1 =  on the interval  0x ,   with different initial and boundary conditions. We perform equidistant 

discretization of the space variable by setting 

( )0 1 1jx j x , j ,...,N , x / N=  = −  =  −  , 

where the number of nodes is N=100. The solutions are examined and compared at final time 

fin 0.3t = . We define the (global) error as the average of the absolute value of the difference between 

the reference temperature 
ref

iu  and the temperature 
num

iu  obtained by our numerical methods at fint , 

the end of the examined time interval:  

ref num

i fin i fin

1

1
( ) ( )

N

i

Error u t u t
N =

= − . 

The reference solution is either the analytical solution of the PDE or a numerical solution obtained 

by applying a very accurate time integrator to the spatially discretized PDE. 

2.1. Case study 1 

In this case the initial condition function is identically zero: 

( , 0) 0u x t =  . 

The simplest zero Dirichlet boundary conditions are used 

( 0, ) ( , ) 0u x t u x t= = = = , 

while the intensity of the heat source term is the following function: 

1 2( , ) sin( ) sin(2 )q x t q x q x= + , 

where we set 1 21, 2q q= = . It is easy to check that the analytical solution of this problem is  

( ) ( )42
1( , ) sin( ) 1 e sin(2 ) 1 e

4

t tq
u x t q x x− −= − + − . 
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Figure 1. The error as a function of the time step size for the algorithms with different treatments of 

the source term. A1a means Algorithm 1a (UPFD method, source term inside), etc. 

 

 

Figure 2. The error as a function of the time step size for the four different treatments of the source 

term. A6a-a means Algorithm 6a (UPFD+UPFD odd-even hopscotch, inside-inside), etc.   

 

We note that all analytical solutions in this paper-series are constructed by the authors, but similar 

solutions can be found in standard textbooks [5, p. 223] and many webpages. In Fig. 1 we present the 
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errors as a function of the time step size for Algorithms 1, 2, 3 and 5, where there are two possibilities 

for the treatment of the heat source term, explained in the previous section. In Fig. 2 the results are 

presented in the four versions of Algorithm 6. Based on these figures, we choose the version of the 

source-treatment that produces the smallest error in each case. These curves are shown in Fig. 3 together 

with the error function of Algorithm 4. One can see that the error tends to the same nonzero residual 

value in all cases. This small non-vanishing error is due to the discretization of the space variable. More 

precisely, it is the truncation error  

( )
2

12
i i

x
f ''''


 = −   

of the central difference formula [5, p. 7], which has been accumulated during the subsequent time steps. 

 

 

 

Figure 3. The error as a function of the time step size for the six different algorithms  

2.2. Case study 2 

The initial condition is the following function: 

( , 0) 10sin( ) 77sin(10 )u x t x x= = + , 

and the boundary conditions are zero Dirichlet again: 

( 0, ) ( , ) 0u x t u x t= = = = , 

while the external heat source term is zero: 0q  . It is easy to check that the analytical solution of this 

problem is  
4( , ) 10sin( )e 77sin(2 )et tu x t x x− −= + . 
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The behaviour of the error functions are presented in Fig. 4. 

 

Figure 4. The error as a function of the time step size for the six different algorithms. 

2.3. Case study 3 

The simulation starts from the following initial condition: 

( , 0) 10cos(2 )u x t x= = , 

and now we consider periodic boundary conditions 

( 0, ) ( , )u x t u x t= = =  

while the external heat source term is zero everywhere. The analytical solution of this problem is the 

following function: 
4( , ) 10cos(2 )e tu x t x −= . 

The errors are presented in Fig 5. 

2.4. Case study 4 

The initial function is a quadratic function: 

2( , 0)u x t x= = , 

while the external heat source term is zero. Now there is a straightforward analytical solution 

2( , ) 2u x t x t= + , 

if we suppose the following time-dependent Dirichlet boundary conditions  

( 0, ) 2 , ( , ) 1 2u x t t u x t t= = = = + . 
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We note that if the function is a polynomial with degree less than four, the central difference formula 

gives the exact value of the second derivative, e.g. 

 

Figure 5. The error as a function of the time step size for the six different algorithms. 

( ) ( )
2 2 22

2

2 2

2
2

x x x x x
x

x x

−  + +  −
 =

 
. 

In this case, the explicit Euler, the implicit Euler and the original odd-even Hopscotch method pro-

vides the exact values in theory, thus only the round-off errors remain. Therefore the errors are presented 

only for five algorithms in Fig. 6. 

2.5. Case study 5 

The initial condition is set to: 

( , 0) 100cos( )u x t x= = , 

but now we consider zero Neumann boundary conditions, which means there is thermal isolation at the 

border of the system. Here the external heat source term is the following function of space:  

2( ) 2q x x x= − . 

For the reference solution, we use the MATLAB routine ode45 to solve the ODE system obtained 

by the spatial discretization of the problem. Because of this, there is no residual error due to space 

discretization and the errors are decreasing for decreasing time step size h until the round-off errors 

appear. From Fig. 7, where the behaviour of the errors are presented, it is clear that Algorithms 3 and 5 

converge much faster than the others. 



Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods 

347 

 

Figure 6. The error as a function of the time step size for five different algorithms. 

 

 

Figure 7. The error as a function of the time step size for six different algorithms. 



Saleh, M., Nagy, Á., Kovács, E. Construction of new numerical methods 

348 

3. Summary and conclusions  

In this paper-series, we use two known, but non-conventional algorithms, namely the UPFD and the 

odd-even hopscotch methods to create new numerical algorithms for the solution of the heat equation. 

In Part 1 we defined and analysed the old and new methods such as convergence, stability and positivity 

in one space dimensional homogeneous media without the heat source term. In this (second) part, five 

numerical case studies are presented and all the six algorithms have been examined in each of them. The 

same equidistant grid has been used to discretize the one dimensional physical space in each cases. 

Different posibilities for handling the q source term have been tested in case of five algorithms. 

According to the numerical results, Algorithms 1, 2, 4 and 6 are first order in time, while the remain-

ing Algorithm 3 and 5 seem to be second order time integrators. All methods except A4 (explicit+ex-

plicit odd-even hopscotch) seem to be stable. However, although Algorithms 3 and 5 are the most accu-

rate for medium and small time step sizes, they are often very inaccurate in case of large time step size. 

We note that in Part 3 we will present more case studies for larger space dimensions as well, and in the 

Summary of that paper a detailed comparison of the properties and performance of the six methods will 

be presented. 
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