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Abstract  

Soil moisture (SM) or soil water content is a critical variable in the climate system and a key 

parameter in earth surface processes. This study aimed to assess citizen observatory (CO) data's 

suitability to develop a method to estimate surface SM distribution using Sentinel-1B and Landsat 8 

data; acquired between January 2019 and June 2019. Three approaches were developed and 

compared using multiple linear regression (MLR), regression-kriging (RK) and cokriging (CK). MLR 

provided more realistic spatial patterns over the landscape, even in a data-poor environment. RK was 

found to be a potential tool to refine the results, while CO was found to be less effective. The obtained 

results showed that CO data harmonised with Sentinel-1B SAR, Landsat 8, and terrain data could 

estimate and map soil moisture content. 

Keywords: soil moisture; digital soil mapping; Sentinel-1; synthetic aperture radar (SAR).  

1. Introduction  

Soil moisture (SM) or soil water content is a critical variable in the climate system and a key 

parameter in earth's surface processes, especially in water and energy cycles. It influences the overall 

amount of water that follows on the earth's surface and below the surface [1]. SM is described as the 

amount of water content (vol/vol) within a given region of the soil profile at a given time [2]. While a 

significant number of local and regional soil moisture networks exist worldwide, there are no general 

requirements, e.g. observed variables, sensor types, sensor configuration, and the data produced are 

not readily available in the appropriate scale [3]. The International Soil Moisture Network (ISMN) is 

an international initiative that attempts to solve data gaps of soil moisture [4, 5]. In situ, soil moisture 

measurements are collected from various globally harmonised networks in terms of sample periods, 

units and data types, and made available to the public free of charge via the web [6]. It is also clear 

that the COs (e.g. the GROW Observatory) have a great capacity to add to the unprecedented flow of 

data from thousands of sensors. In the 21st century, citizen science research is increasingly evolving, 

whereby data collection is carried out by or through non-experts [7]. Despite the long history of the 

'citizen observatory' (CO), there is still a lack of quality assurance for the scientific use of data 

produced by citizen science [8]. Biodiversity topics [9], and nature and climate topics [10] have 

overshadowed citizen science programs. The GROW Observatory tracks soil resources to engage a 

target audience of smallholder farmers and community groups practising sustainable cultivation [3].  
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The project's goal was to demonstrate a complete 'citizens' observatory' framework for measuring 

soil moisture, land use, and land cover. It also contributes in situ satellite validation data; producing 

valuable data products and applications, and finally supplies local farmers with a local soil context [3, 

11]. In particular, precision farming, scientific studies to test CO data analysis and SM mapping on a 

wide scale are required to help agriculture development. This study aimed to support this process by 

developing and testing several digital soil mapping (DSM) procedures. 

DSM [12, 13] has helped researchers quantitatively map soil properties using numerous data 

sources and several different spatial scales [14, 15]. Compared to more conventional mapping 

approaches, DSM needs a smaller soil sampling effort [14, 16]. Once the lower quantity of soil data 

sampled has been harmonised with environmental covariates from various sources, DSM can be a 

useful method for estimating soil moisture and different soil properties [17]. The SM measurements 

and tracking sites that are available are limited and not particularly useful for local users. The citizen 

observatory is a possible way to address this data void. A relatively large geo-referenced upper 10 cm 

SM dataset was obtained by GROW Observatory, to generate observed data for Sentinel 1 applications 

[3]. 

A significant proportion of SM forecasts based on satellite imagery are focused on global and 

national scales to date [18,19]. Freely available satellite radar data, such as Sentinel-1, have 

tremendous potential for SM estimation [20], but authentic products need field calibration data; one of 

the most restricting variables. Systems capable of calculating diverse soil properties, such as SM, are 

rare and are limited to a few measurement sites and spatial interpolation techniques are mostly absent 

[21, 22]. The number of scientific articles addressing SM estimation using radar satellite data for 

irrigation and farming applications is growing, considering the difficulties [23, 24]. 

Zribi et al. [20], reviewed emerging research of SM estimation. To extract and test SM maps for an 

arid region, Gharechelou et al. [25] ran multiple interpolation methods (inverse distance weighting, 

kriging, and co-kriging). The maps created were compared and validated using ground-truth data. For 

spatial interpolation of many soil properties, Keskin and Grunwald [26] used Regression Kriging 

(RK). Han et al. [27] used data from MODIS to estimate SM. Zeng et al. [28] used cokriging to 

measure soil moisture on bare soil using temporal backscatter ratios using three variables dependent 

on cross-semivariogram and cross-variance over 91 sampling points. The results revealed a root mean 

square error (RMSE) value of between 2,669 and 2,701 (December to April) for five months. Two 

analytical models were tested by Chatterjee et al. [29]: a multiple linear regression model against the 

cubist model using SM measurements in situ soil sensor, Sentinel-1 data, and separate ancillary data 

(USGS DEM, Sentinel 1, US National Ground Cover Database, and Soil Survey Spatial Probabilistic 

Remapping (POLARIS) data set). Coefficient of determination (R2) was the mathematical metric used 

for evaluating the model.  

In soils with a particular crop class, the Cubist model (0.56) worked better than the multiple linear 

regression (0.24). The MLR findings are close to the results obtained in our analysis and indicate that 

the dynamic interaction between soil moisture and satellite imagery can often not be accounted for by 

MLR. Three kriging techniques (extended, ordinary, and cokriging) were used by Zhang et al. [30]; 

interpolation algorithm to interpolate near-surface soil moisture data measured by wireless sensor 

networks using remote sensing-derived spectral variables, NDVI and albedo. The visual findings 

showed that more spatial information was revealed by the product of extended kriging than ordinary 

kriging or cokriging. However, the Expanded Kriging (2.41) root mean square error (RMSE) was 

observed to be the lowest of the four interpolation effects (RMSE ranged from 2.62 to 3.01).  
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For field-scale SM estimation in a semi-arid area, Bousbih et al. [23] used combined Sentinel 1 and 

2 datasets using an integrated decision tree estimation technique. Two models, a classification of the 

neural network and a direct water cloud model, were compared. They concluded the method is 

promising and that the values of the RMSE ranged from 4.8 to 6.4, and R2 values ranged from 0.4 to 

0.58. Xing et al. [24] derived SM using Radarsat-2 data applied an updated water cloud model to 

eliminate vegetation's influence, applied the Dubois model for dielectric constant retrieval and finally 

measured the volumetric soil's moisture. Xing et al. [24] final results yielded an RMSE value of 4.43, 

and an R2 of 0.71. 

Therefore, this research aimed to develop a spatially and temporally estimation system, analysing 

and assessing soil moisture by combining terrain and remote sensing data, such as NDVI products 

derived from Sentinel-1 and Landsat 8. The analysis was carefully conducted through the following 

steps: (1) defining an in situ soil moisture sampling design for low-cost soil sensors from the GROW 

example; (2) selecting environmental covariates with the highest statistical correlation with soil 

moisture; (3) developing and simulating a simple quantitative approach to soil moisture estimation; 

and (4) creating and simulating a quantitative approach to soil moisture estimation. Finally, the study 

explored whether low-cost sensors are sufficient instruments for estimating soil moisture data across 

various geomorphological units to support agricultural and scientific research activities. 

2. Study Area 

The study area consisted of 1700 hectares (ha) of agricultural land. It is situated on the southern tip of 

the mountain range of the North-Western Carpathians and the southern slopes of the Bükk Mountains 

(Figure 1). The site is located near the village of Tard (47°52′33.67′′ N, 20°35′56.53′′ E). 

Geomorphologically, the region consists of two south-facing plateaus, which are separated by the 

Tardi stream. The average elevation is between 150 and 200 m above the mean sea level, and the 

relatively dry climate characterises the area. 

 

Figure 1. Study area Tard village located in the western county of Borsod-Abaúj-Zemplén in Hungary 

The soils of the region are predominantly mollic Vertisols [32] (Udic Haplustert [33]), which cover 80 

per cent of the region, including high plateaus. The bottom of the valley has a loam texture and the 
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Gleyic Chernozems [32] (Cumulic Endoaquols [33]) while the steep side of the valley has a loamy 

sand texture. The northern edge becomes a steep, sandy loam of Luvisol [32] (Alfisol [33]) with a lot 

of rhyolite tuff near the surface; this is where land use is transitioning from arable land to forest to 

mountain range. 

3. Materials and Methods 

3.1. Materials 

3.1.1. Field Data 

Measurements of soil moisture were conducted using Flower Power sensor (by Parrot S.A., Paris, 

France) developed low-cost soil moisture sensor) at a depth of 0–10 cm below the soil's surface. Low-

cost sensors include SM data in the upper 10 cm range, soil temperature, light intensity and 

conductivity. The explanation for the GROW project collection of the upper 10 cm was to 

theoretically provide validation data for Sentinel-1 images with a comparable depth of penetration. 

The observations were logged every 15 minutes. The SM lines of drying—no precipitation with 

stable circumstances—showed consistent patterns with individual daily variations, which we found 

artefacts due to the abrupt temperature rise. These temperature values have been used as input 

variables for the SM calculation, resulting in an inaccurate estimation. Soil moisture measurements 

were selected at 2 am to minimise the temperature effect, of the day chosen because, at this time, there 

was so little impact on environmental variables, such as light, temperature, and evapotranspiration. 

The dates were selected based on the availability of Sentinel-1 data. NDVI was determined from the 

nearest cloud-free dates of the available satellite items, which happened to be Landsat 8 results 

because Sentinel 2 images have a lot of cloud cover. Thus, Sentinel 1B and field data were from the 

same day, and the NDVI was 1 to 8 days after the chosen dates, depending on the month. A systemic 

network was designed to collect geomorphological and soil variations to establish an optimum 

configuration, which defined the sensor's efficiency. Sensors were installed in all representative 

geomorphological units of the study area to ensure the thematic coverage. 

The pilot site's total area, where in situ soil moisture sensors were installed, was roughly 1,200 

hectares, out of 1,700 hectares. This pointed out that more than 70% of the area was included, 

suggesting a good variance in soil type and land usage. To achieve an effective spatial distribution, the 

sensors were installed at representative positions in all geomorphological units. 

Catenas/toposequences have also been identified for the analysis of transition zones. 

Geomorphological units have been identified by the e–SOTER methodology [34] for soil and digital 

soil databases. 

The total number of sensors installed in the study area ranged from 44 to 76 sensors per month. A 

total of 36 parcels were then selected per month for in situ soil moisture measurements. However, the 

main emphasis was on 12 of them having winter wheat since it was the only crop to have been in the 

field consecutively for the study duration. The vegetation effect was more prominent at the end of the 

study period than the beginning due to the growth of wheat, which resulted in more noise from the 

backscatter coefficient. Fieldwork was performed from January 2019 to June 2019 to consider 

variations in soil moisture during various seasons. 



Kibirige, D., Dobos, E. Estimation of soil moisture 

26 

3.1.2. Sentinel 1B Satellite Imagery 

The Sentinel-1 constellation part of the European Space Agency (ESA) provides Sentinel 1A and 1B 

satellites. In this study, satellite imagery of Sentinel-1B (Figure 2) was used to measure soil moisture 

because it carries the C-SAR sensor, which provides high-resolution imagery regardless of the weather 

conditions. Sentinel 1B provides images in both singular and dual polarisations within a 12-day cycle, 

and the specifications of the images used in this study are in Table 1. Hosseini et al. [35] 

recommended using co-polarized backscatter coefficients that transmit-receive polarisation (VV) 

because they are less susceptible to system noise and cross-interference than the weaker cross-

polarised coefficients (HV and VH). The Synthetic Aperture Radar (SAR) data collection date was 

then downloaded to ensure accuracy during soil moisture sensor modelling. The dates that fit the field 

measurement data were picked, i.e. the measured soil moisture date and period (2 am). While this time 

(2 am) was different of each satellite passing time, the chosen time displayed a consistent night 

reading that did not affect the temperature, which plays a significant role in measuring soil moisture. 

 

 

Figure 2. Sentinel 1B satellite imagery of Tard village with the parcels used for the study delineated in 

red.  

The specifications of the Sentinel-1B satellite images used are listed below: 

Table 1. Specifications of the Sentinel-1B data used in the study 

Specifications Sentinel-1B 

Acquisition times January 2019–June 2019 

Imaging Mode IW. 

Imaging frequency C-Band (5.4 GHz) 

Polarization VV-VH 

Data product Level 1—GRD 

Resolution mode 10 m 
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3.1.3. Landsat 8 Imagery 

Landsat 8 comprises Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments 

that provide high-resolution images. Multi-spectral images have a resolution of 30 m and a revisiting 

period of 16 days. In this study, OLI was used and of the nine spectral bands; band 4 (Red: 0.64 – 0.67 

µm) and band 5 (Near-Infrared: 0.85 – 0.88 µm) were used for deriving NDVI. Four Landsat 8 images 

were downloaded from January to June 2019 (Table 2). The measured soil moisture dates were 

matched by the nearest acquisition date of the Landsat 8 image.  

Table 2. Landsat 8 acquisition dates 

Measured Soil Moisture Acquisition Date Landsat 8 Image Acquisition Date 

30 January 2019 21 January 2019 

6 February 2019 6 February 2019 

10 May 2019 13 May 2019 

6 June 2019 14 June 2019 

3.2. Methods 

3.2.1. Data Collection 

Data were collected bi-weekly in the field using a 2-step synchronisation process. Firstly, the sensor 

was connected to a Bluetooth enabled device, e.g. smartphone or tablet via a preinstalled flower power 

app. Data collection started automatically once a connection was successful. Secondly, data were then 

uploaded to the cloud (data synchronisation) either using an internet connection (3G or Wi-Fi). 

Finally, data was downloaded from the cloud to an excel CSV format, which was reviewed for any 

irregularities. If any anomalies were detected, the data point was removed from the raw data set at a 

given time. Examples of anomalies included missed data as the sensor neglected to register, and 

irregular readings mostly attributable to low batteries or cracking disruptions. In this study, less than 5 

per cent of the data contained anomalies; thus, the data measured were appropriate for review. 

3.2.2. Extraction of Covariates 

For the selection of multiple covariates, a mixture of literature and statistical processing was used. 

Based on the literature, covariates had to follow three criteria; firstly, they had to be descriptive of 

soil-forming factors; secondly, they had to have a clear association with SM; thirdly, they had to be 

generally accessible [34]. Since many environmental covariates can be obtained from DEM, only a 

few have been selected, specifically those with a high correlation to soil moisture (Table 3) 
 

Table 3. Pearson’s correlation of field SM data and the selected four terrain variables (2019 March) 

Covariate Pearson’s Correlation 

DEM 0.627 

Slope 0.552 

Aspect 0.489 

Relief 0.571 

 

The entire study area's DEM source was extracted from the EU-DEM 1:10 000 using the clipping 

tool in ArcGIS [37]. The DEM was the most important parameter of this analysis since three 

environmental covariates were extracted from it. The slope was the first environmental covariate 
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extracted from the DEM. The slope affects the drainage of surface water, the rate of penetration, and 

the rate of erosion, both of which are important to soil moisture analysis. In ArcGIS, the slope was 

measured using the DEM as input raster using the Spatial Analyst Tools/Surface/Slope. The method 

identifies the slope (gradient or rate of maximum change in z-value) of each raster surface cell. 

The next environmental covariate to be derived was the aspect ratio. The orientation of the slopes 

determines the soil moisture content of the soil. For example, areas with southern slopes were more 

exposed to sunlight radiation, rendering their surface-level more dry. On the other side, the northern 

slopes tended to be somewhat wet and more humid. The aspect was extracted using the Spatial 

Analyst Tools/Surface/Aspect.  

Relief intensity (RI) is one of the most widely used surface characterisation environmental 

covariate. RI is calculated as the difference between the highest and lowest points within an assigned 

unit of area, i.e. the amount of potential energy. The value is generally expressed in m/area of a circle. 

Due to the study area's small size, a 500-m diameter circle was calculated using the "focalrange" 

command in the Focal Statistics toolbox in ArcGIS. Then, flow-accumulation/contribution area was 

the fourth component since this derivative describes the flow of surface water and the possible transfer 

of surface water and soil moisture along the slope. 

3.2.3. Site geology 

The study area is characterised by a dominant NW-SE path valley and range structure, which explains 

the high significance of the aspects. The agricultural area has heavy textures of clay and loamy sand. 

The interfluves/plateaus are covered with heavy clay, while the valley slopes with higher gradients are 

mostly sandy materials beneath the clay strata and vulnerable to the erosion of the covering clay. As a 

result, the landscape describes much of the soil parent material shifts and soil forms. Of course, this 

connection is only real geographically, but these kinds of locally valid terrain variables can be 

extracted from other relatively limited scale places. Similar field data can be extracted from precision 

farm machinery data so that the method can be extended conveniently anywhere precision farming 

with real-time kinematic (RTK) navigation is used. 

3.2.4. Pre-Processing and Selection of Sentinel 1B satellite Imagery 

The Sentinel-1B satellite image Ground Range-Detected (GRD) product was selected because its 

products consist of SAR data that has been detected, multi-looked and mapped to the ground range 

using the Earth ellipsoid model as opposed to a single complicated look (SLC). For the GRD products, 

their ellipsoid projection is corrected using the terrain height defined in the product's general 

annotation. The downloaded Sentinel 1B images were subjected to analysis to eliminate noise from the 

images that may affect the final backscatter coefficient. The study was conducted using specially 

planned pre-processing measures (Figure 3), including the implementation of the orbit file, thermal 

noise reduction, calibration and ground correction [39], which were performed using SNAP program 

version 7.03. These procedures were followed to acquire the coefficient of backscatter of Sigma " σ" 

The unitless backscatter coefficient is then transformed to σ(dB) using a logarithmic transformation 

using the following formula [40]: 

 

   (1) 

 

whereby DN is a raw digital number. 
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Figure 3. Sentinel 1B ground range detection (GRD) pre-processing workflow, adapted from [39]. 

 

The selection of Sentinel 1B images was chosen based on the resulting image produced after the pre-

processing process. In ArcGIS, corrected raster images were visually analysed to see which image had 

the least "noise" interference after GRD pre-processing. The degree of noise was determined by 

comparing the deviation of the pixel value in the test area against Sentinel 1 GRD processed image. 

The Sentinel-1B images with minimal noise and good backscatter values were chosen on four dates: 

30th January, 2nd February, 10th May and 6th June 2019. 

3.2.5. Spatial Interpolation Methods 

Three interpolation methods were chosen to describe and analyse soil moisture content. The 

geostatistical interpolation techniques used were multiple linear regression, regression kriging and 

cokriging. Kriging is a stochastic model that characterises unknown spatial variability. Dobos et al. 

[41] described kriging's ability to produce spatial prediction in digital soil mapping. 

Multiple Linear Regression (MLR): MLR is capable of predicting physical soil properties using 

multi-spectral data. This study used it to model the relationship between environmental covariates 

(explanatory variables) and observed soil moisture at a 0.01 significance. The regression model's 

predicted value included an error variable that showed the difference between the predicted value and 

the data point's observed value. 

Regression Kriging (RK): RK also referred to as universal kriging or kriging with external drift, 

integrates the regression of the target variable on environmental covariates with the regression 

residuals [31]. RK was calculated as the sum of the MLR projection and the ordinary kriging of the 

regression residuals. RK's benefit is its potential to expand the approach to a wider variety of 

regression techniques and interpret the specified interpolated components [42]. 

Cokriging (CK): Cokriging is a multivariate variant of ordinary kriging, which uses two or more 

variables to estimate or predict a primary variable. Cokriging calculates estimates or predictions for a 

poorly sampled variable and usually reduces the prediction error variance and outperforms the kriging 

process if the second variable is strongly correlated with the primary variable [43]. This study chose 

three combinations: DEM + Sentinel, NDVI + Sentinel, and DEM + Sentinel + NDVI. 

4. Results and Discussion 

4.1. Results 

4.1.1. Multiple Linear Regression (MLR.) 

An MLR model was used to estimate soil moisture in the upper 10 cm of the soil profile, and the resulting 

equations are shown in Table 4. 



Kibirige, D., Dobos, E. Estimation of soil moisture 

30 

Table 4. Multiple Linear Regression Equations 
Date Intercept Slope Aspect Relief Flow Acc. Sigma 

(σVV) 

NDVI No. of 

Observa

tions 

30 January 
2019 

46.981453 −0.020519 0.007187 −0.004488 −0.000907 −0.337625 −65.115101  
76 

p-value 0.000000 * 0.974165 0.628897 0.396057 0.561509 0.243762 0.430837 

6 February 

2019 

33.61278 0.031734 −0.005617 0.000073 −0.001149 0.30704 53.4524  

76 

p-value 0.000001 0.953766 0.669784 0.988039 0.405165 0.130149 0.012407 

10 May 

2019 

47.490637 −0.400499 −0.014023 −0.000658 0.000131 0.531087 −3.42735  

46 

p-value 0.000000 * 0.461386 0.390445 0.896895 0.931458 0.05184 0.555235 

6 June 2019 47.719149 −0.071528 0.000421 0.001496 0.000924 0.289084 −3.045411  
47 p-value 0.000113 0.928151 0.982766 0.823476 0.60737 0.376018 0.804289 

 

The predicted SM images' spatial structure's interpretation describes weather conditions trends and 

SM's redistribution due to soil-landscape processes. Figure 4 displays eight SM images of the study 

area using the same colour scheme.  

 

     Predicted SM for all land uses [A]   Predicted SM for wheat land uses [B]  

  
 

Figure 4. MLR - All land use [A] and Wheat [B]: Predicted soil moisture maps 2019 (V%) — (a) 

January, (b) February, (c) May, and (d) June, respectively. 

We had a dry January and a little wetter February. May and June were much wetter with high rainfall, 

and increased evapotranspiration attributed to increased biomass and the mild summer weather. This 

indicates that June's water balance shifted from positive to negative, and the area began to dry up. This 

mechanism is apparent, with the reintroduction of the greenish colours on the northern part of Figure 

4B(d) resulting in a textbook-like example of SM redistribution due to water seepage streaming. 

The two sets of images (Figures 4A and 4B) are so different because the "all land uses"(Figure 4A) 

images are well adjusted to the terrain, due to the more general and variable land-use sampling, so the 

land use effect is "dissolved". While the images in Figure 4B, where only the wheat land use was 
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sampled, show a misleading impact on land use. The strong blue areas of Figure 4B(a) and the green 

ones of Figure 4B(c) are not due to higher or lower soil moisture but instead represent the pastures, 

forests, orchards and non-agricultural areas around Tard village. Therefore, a general conclusion is 

deduced that the resulting images show a realistic spatial pattern for the sampled areas in “all land 

uses” (Figure 4A) but more so in the wheat land use (Figure 4B), which matches expert judgements. 

The spatial patterns showed the model overestimates the low values and underestimates the high ones 

while matching values close to the mean. Then, the smoothing impact on the image explains the good 

realistic spatial patterns, but the values are again over- and underestimated towards extreme values. 

4.1.2. Regression Kriging 

The MLR model results presented a good spatial structure which explained the deterministic part 

model and the variability of the model was described as fair. To illustrate the stochastic part by 

decreasing deviation from the observed values and the spatial SM values, all observation sites' errors 

were calculated and krigged to develop continuous layers of error distributions study area (Figures 5A 

& 5B). These layers' values were added to the regression results to correct the deviation from the 

observed values.  

 

           Predicted SM for all land uses [A]       Predicted SM for wheat land uses [B] 

  
 

Figure 5. RK - All land use [A] and Wheat [B]: Predicted soil moisture maps 2019 (V%)—(a) 

January, (b) February, (c) May, and (d) June, respectively. 

4.1.3. Ordinary Cokriging 

Cokriging using the ordinary kriging method was split into three different covariate setups— one, 

DEM + Sentinel, two; NDVI + Sentinel, and three; DEM + Sentinel + NDVI which was done for the 

four dates and two land-use classes. During the months of January and May 2019, cokriging yielded 

slightly better results in the wheat land-use class than the ‘all land-use” class (Figures 6A & 6B). On 

the contrary, in February and June 2019, cokriging increased the performance of the model of only the 

"all land use" class (Figure 6A), and the wheat class (Figure 6B) performances always performing 
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were poorer. This could be attributed to the low number of observation points. For maximum 

performance, kriging or any spatial interpolation method requires a fair density of the observation sites 

covering all geomorphologic soil-landscape units' representative points. If there is any gap in the 

observation network, an unrealistic estimation is possible if real spatial autocorrelation between the 

neighbouring points is non-existent.  

The regression method was not as sensitive to changes; because it uses a point vector base. This is 

why it performed better in a limited data density scenario. So, the best results in the "all-land use" 

class were from the NDVI + Sentinel setup, while for the wheat class was always the DEM + Sentinel 

+NDVI setup. The three cokriging setups' results showed marginal differences in both classes, 

meaning that the cokriging procedure's covariates could not add much extra information to the kriging-

based estimation. 

 

Predicted SM for all land uses [A]    Predicted SM for wheat land uses [B] 

   
 

Figure 6. CK - All land use [A] and Wheat [B]: Predicted soil moisture maps 2019 (V%)—(a) 

January, (b) February, (c) May, and (d) June, respectively. 

4.2. Discussion 

The results of the three different approaches were developed, tested and compared - per monthly, per 

land use to determine the best method per month, and the RMSE values were presented (Table 5). The 

overall results are summarised below for each approach: 

1. MLR was comparatively good compared to the cokriging approach, significantly when the results 

were corrected using the krigged error layers, i.e. the regression kriging approach. The linear 

regression model provided a very plausible SM distribution across the landscape that suited the 

established driving forces of the SM distribution, where the RMSE ranged from 3.77 to 5.85. The 

findings were consistent with those reported by Chatterjee et al. [29]. The R2 values ranged from 

0.19 to 0.35, which are relatively low, but more or less correlate to the literature's findings at this 

scale. These results were similar to Chatterjee et al. [29], who reported an R2 of 0.24. The reason 
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for low R2 values was that the model overestimated the low values and underestimated the high 

vales. Therefore, it decreased the estimated values' range down to approximately 60% of the 

measured values. This approach's major advantage was that it is less sensitive to the number of data 

points and the data density. 

Table 5. Summary of results. 
Date Land use No. Observations RMSE—MLR RMSE—RK RMSE—CK (Various) 

30 January 

2019 

All 76 5.85 4.39 * 6.11 

(NDVI, σVV) 

Wheat 32 4.67 3.05 * 6.18 

(DEM, σVV, NDVI) 

6 February 

2019 

All 76 5.18 1.30 * 5.65 

(DEM, σVV, NDVI) 

Wheat 41 4.60 2.81 * 5.72 

DEM, σVV, NDVI 

10 May 2019 All 46 4.14 2.81 * 4.72 

(DEM, σVV, NDVI) 

Wheat 31 3.77 1.92 * 4.61 

(DEM, σVV, NDVI) 

6 June 2019 All 49 5.86 4.18 * 5.37 

(DEM, σVV, NDVI) 

Wheat 27 4.76 2.52 * 5.73 

(DEM, σVV, NDVI) 

 

2. Regression kriging (RK), due to its refinement of findings, is one of the most common spatial 

interpolation techniques in soil science [26]. RK results indicated better performance of the 

empirical model in predicting soil moisture content which recorded an RMSE range of 1.30 to 4.39. 

These results were dependant on the standard deviation of the measured values, which was 

considered acceptable considering the sample size, and area mapped. To clarify the unexplained 

stochastic component of variation, the observation sites' error values were calculated and krigged, 

assuming a spatial dependence structure in the values-driven by some unexplained landscape 

factors. After that, the values were then used to correct the regression estimation, and the process 

was validated with the leave-one-out cross-validation approach in ArcGIS. The calculated RMSE 

values were significantly lower and often resulted in a considerable accuracy improvement in all 

land class cases. Despite this, the statistics' improvement depends on the spatial setup and 

representativity of the sampling design and does not always correct the error evenly over the 

landscape and land uses. 

3. Cokriging results recorded the weakest performance out of the three methods. The covariates did 

not have a traceable impact, which could be attributed to the low impact of combined covariates 

kriging approach. There is a rich literature on cokriging as an interpolation method for soil 

moisture data estimation. For example, Zhang et al. [30] reported RMSE values between 2.62 and 

3.01 using different kriging approaches, like ordinary, cokriging, and extended kriging. Also, Zeng 

et al. [28] reported RMSE in the same range, but their study was performed on a bare soil surface, 

lacking the vegetation effect on the estimation unlike this study what comprised mainly of winter 

wheat. On the other hand, Gharechelou et al. [25] reported even better RMSE for an arid area, 

where the original value range was between 0% and 10% difference in SM with an of RMSE 
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around 1.8. These examples show that even though the cokriging results were poor, studies 

highlight other variables that need to be considered to ensure the model's improvement. 

5. Summary 

In this study, three statistical methods were applied to map soil moisture content using Sentinel-1B 

satellite data, NDVI images, and terrain information. Multiple linear regression, regression kriging, 

and cokriging were tested for quick SM mapping using low-cost sensor data from CO. MLR provided 

a more realistic spatial pattern over the landscape, even in a data-poor environment. RK was found to 

be a potential tool to refine the results, while cokriging was found to be less effective than the other 

methods. In relation to our aim of whether CO data can be used as a reliable source, it was concluded 

that the CO data has a real potential to provide inputs for temporal SM mapping using easy-to-access 

freely available datasets, such as DEM, Sentinel-1 and Landsat 8 satellite imagery. The recorded 

RMSE values of the regression kriging are comparable or even better than those reported for similar 

digital soil mapping approaches and ranged between 1.3 and 4.39. The models always identified the 

trends, but the value ranges were consistently lower than the original values though the overall data 

represents major SM distribution trends over the landscape. A positive finding was that the trend 

describing the moist areas was well explained, whereas the model needed improvement in the dry 

regions. At the same time, the deviations of the estimation from the observed values increased towards 

the extremes. Therefore, to fully understand these trends, further studies are needed to overestimate 

and underestimate predicted values, and the comparisons with capacitance probes could even enhance 

the models. 
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