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Abstract 

A boundary value problem of orthotropic piezoelectric solid circular cylinder which is in the state of 

antiplane shear deformation is studied. The whole boundary surface is loaded by an equilibrium axial 

traction. This paper gives an analytical solution of the considered antiplane shear deformation. 
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1. Introduction  

The antiplane shear deformation is a special case of the state of deformation of a solid body. This state 

is achieved when the displacements in the body are zero in the plane of interest but non-zero in the 

direction perpendicular to the plane. If the plane of antiplane shear deformation is the plane Oxy  of 

the rectangular Cartesian coordiante system Oxyz  and the displacement vector can be represented as 

.x y zu v w  u e e e  Here, ,xe  ye  and ze  are unit vectors in ,x  y  and z  directions, then the an-

tiplane shear deformation is defined by the next equations [1,2] 

 0, 0, ( , ).u v w w x y    (1) 

It means that if we consider a circular cylindrical body (Fig. 1) whose generators of the circular 

boundary surfaces are parallel to axis ,z  all cross sections of this solid body have the same deformati-

ons according to Eq. (1). The strain field of the infinitesimal antiplane shear deformation is as follows 

 , ,xz yz

w w

x y
 

 
 
 

 (2) 

where xz  and yz  are the shearing strains, other strains vanish. The cross section of the considered 

circular cylinder is a circle with radius R  and its surface is denoted by .A  The boundary curve of A  

is A  and its unit normal vector is x x y yn n n e e  (Fig. 2). 
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Figure 1. Piezoelectric circular cylinder. 

 

Figure 2. Cross section of the considered circular cylinder. 

 
2 2 2, , .x y

x y
n n x y R

R R
     (3) 

The circular cylinder is made from orthotropic piezoelectric material [3,4]. The applied surface 

traction on the cylindrical boundary surface acting on axial direction is 

 
2 2 2

2
, .z

f
p xy x y R

R
    (4) 

The surface traction forms an equilibrium force system since we have 

 2

0

d d d 0,

L

z z

A A

L
F p s z f xy s

R
 

      (5) 

 
2

2

0

d d d 0,

L

x z

A A

L
M yp s z f xy s

R
 

      (6) 
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2

2

0

d d d 0.

L

y z

A A

L
M xp s z f x y s

R
 

        (7) 

Our aim is to determine the axial displacement ,w  the shearing stresses, the electrical potential and 

the electric displacement vector. 

2. Governing equations 

In the present case the next constitutive equations will be used 

 55 15 ,xz xz xc e E    (8) 

 44 24 ,yz yz yc e E    (9) 

 15 11 ,x xz xD e E    (10) 

 24 22 .y yz yD e E    (11) 

In Eqs. (8‒11) xE and yE  are the component of electric field vector 

 , ,x yE E
x y

  
   

 
 (12) 

here ( , )x y   is the electric potential, furthermore xD and yD  are the components of electric 

displacement vector, 44c and 55c  are the elastic stiffness coefficients, 15e and 24e  are the piezoelectric 

constants, 11  and 22  are the electric permittivity coefficients. In the case of antiplane shear defor-

mation the equation of mechanical equilibrium and Gauss equation can be represented as 

 0, 0, ( , , ) .
yz yxz x

DD
x y z A L

x y x y

   
     

   
 (13) 

On the unelectroded curved boundary surface there is no free surface density, thus we have 

 0, ( , , ) .x x y yD n D n x y z A L     (14) 

The mechanical boundary condition is as follows 

 , ( , , ) ,xz x yz y zn n p x y z A L      (15) 

that is 

 , ( , , ) .xz yz

f
x y xy x y z A L

R
      (16) 

We are looking for the solution of boundary value problem formulated by Eqs. (8‒11) and Eqs. 

(13‒15) in  the next form 

 ( , ) , ( , ) .ww x y C xy x y C xy   (17) 
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From Eqs. (8‒11) and Eq. (17) it follows that 

  55 15 ,xz wc C e C y    (18) 

  44 24 ,yz wc C e C x    (19) 

  15 11 ,x wD e C C y   (20) 

  24 22 .y wD e C C x   (21) 

It is evident with arbitrary constants wC  and C  that the equation of mechanical equilibrium and 

Gauss equation are satisfied. From the stress boundary conditions and electric boundary conditions we 

get a system of linear equations for wC  and C  

    55 44 15 24 ,w

f
c c C e e C

R
     (22) 

    15 24 11 22 0.we e C C      (23) 

The solution of the system of linear equations (22‒23) is as follows 

 
    

11 22

2

55 44 11 22 15 24

,w

f
C

R c c e e

 

 




   
 (24) 

 

 
    

15 24

2

55 44 11 22 15 24

.
f e e

C
R c c e e


 




   
 (25) 

Substitution the expressions of wC  and C  into Eqs. (17‒21) leads to the explicit solution formula 

of the considered boundary value problem. 

The cross-sectional shear forces ,xV  yV  and cross-sectonal torque T  can be computed as 

  55 15d d 0,x xz w

A A

V A c C e C y A      (26) 

  44 24d xd 0,y yz w

A A

V A c C e C A      (27) 

 

     

  

    

4

44 55 24 15

2 2

3 44 55 11 22 24 15

2

44 55 11 22 15 24

d
4

.
4

yz xz w

A

R
T x y A c c C e e C

c c e ef
R

c c e e




 

 


 

        

   


   


 (28) 
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3. Example for the application of Betti theorem 

The solution of Saint-Venant torsion for solid circular cross section made of orthotropic electroelastic 

material is as follows [5] 

 , , ( , ), ( , ),u yz v xz w x y V U x y         (29) 

where   is the rate of twist and ( , )x y   is the torsion function, ( , )U U x y  is the electric po-

tential function for unit value of .  We have [5] 

 ( , ) , ( , ) .Ux y C xy U x y C xy    (30) 

Here 

 
  

    

2 2

55 44 11 22 15 24

2

55 44 11 22 15 24

,
c c e e

C
c c e e



 

 

   


   
 (31) 

 
 

    
55 24 44 15

2

55 44 11 22 15 24

2
.U

c e c e
C

c c e e 




   
 (32) 

In the case of Saint-Venant torsion the curved boundary surface of the circular cylinder is stress 

and charge free. According to the reciprocity relation of the linear piezoelectric bodies we have in our 

case 

  12 d d .z xz yz

A A

W L p s L y x A    


      (33) 

In Eq. (33) zp  is given by Eq. (4) and ,xz  yz  are given by Eqs. (18) and (19). The surface tracti-

ons of Saint-Venant torsion on the end cross section are in plane load which does not give any work 

on the axial displacement field of antiplane shear deformation. Since in the cases of Saint-Venant tors-

ion and condisered antiplane shear deformation there are no charge free surface and charge density 

free per unit volume and we have 0zD   in the whole body in our cases of antiplane deformation for 

Saint-Venant torsion the electric potential does not appear in Betti’s theorem and we have 

 21 0.W   (34) 

A detailed computation which is based on Eqs. (5, 19, 20, 21, 25 and 26) gives the next results 

 
  

    

2 23
44 55 11 22 24 15

2

44 55 11 22 15 24

d ,
4

z

A

c c e efR
p s

c c e e

 
 

 

   
 

   
  (35) 

  
  

    

2 23
44 55 11 22 24 15

2

44 55 11 22 15 24

dA .
4

yz xz

A

c c e efR
x y

c c e e

 
  

 

   
 

   
  (36) 

From Eqs. (35) and (36) it follows that according to Betti’s theorem we have in the present case 

 12 21 0.W W   (37) 
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4. Numerical example 

In the numerical example the next data are used: 
10

44 6.27 10 Pa,c    
10

55 5.13 10 Pa,c    
2

15 17 C / m ,e   
2

24 9 C / m ,e   
9

11 2.0797 10 C / Vm,    
9

22 2.186 10 C / Vm,    

20 MPa, f  R=0.05m. 

Fig. 3 shows the contour plot of ( , )w w x y  and the three-dimensional plot of axial displacements 

as given in Fig. 4. Fig. 5 and Fig. 6 illustrate the contour plot and three-dimensional plot of electric 

potential function ( , ).x y   The three-dimensional plot of the function 

 ( , ) ( , ) ( , )rz zx y x y p x y    (38) 

is shown in Fig. 7. This figure also illustrates that on the cylindrical boundary surface segment 

( , ) 0x y   according to the stress boundary condition (15). 

 

Figure 3. Contour plot of ( , ).w w x y  
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Figure 4. Three-dimensional plot of ( , ).w w x y  

 

Figure 5. Contour plot of ( , ).x y   
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Figure 6. Three-dimensional plot of ( , ).x y   

 

Figure 7. Three-dimensional plot of ( , ) ( , ).rz zx y p x y   
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