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Abstract 
Well logging inversion was carried out using Levenberg-Marquardt (LM) and Singular Value 

Decomposition (SVD) techniques for the determination of petrophysical parameters, respectively. In 

this research, synthetic data contaminated with 5% Gaussian noise, and field data were used to compare 

the results from the two inversion methods. MATLAB software has been developed to solve the 

overdetermined inverse problem. The estimated petrophysical parameters from both inversion methods 

had been compared to one another in terms of robustness to noise, rock interface differentiation, 

different fluid prediction, and the accuracy of the estimated parameters. This research returns the 

reason to the inner iterative loop which is considered more about the Jacobian matrix sensitivity. The 

inversion results showed that both methods can be used in petrophysical data estimation for a reliable 

well-log data interpretation. 

Keywords: Forward modeling, Local inversion, MATLAB, Borehole geophysics 

1. Introduction 

Borehole geophysics is one of the most common methods in geophysical surveys, which can provide 

information about the different types of rocks that are encountered by the drilling process. The 

evaluation of the acquired data from open-hole logging enables to estimate some petrophysical 

parameters such as porosity, shale volume, and fluid saturation. Several industrial fields are counting on 

the data from the borehole geophysics to construct or estimate a geological model such as oil industry 

or groundwater exploration. 

The inversion process can give a quick and accurate evaluation of the well-logging data, counter to 

the deterministic methods which need sequential steps, and each step depends on the previous result. In 

inverse modeling, the petrophysical parameters could be estimated automatically together at the same 

time with indicating the error percentage (Dobróka et al., 2016). The two common inversion methods 

are the local and the interval methods, the two methods that were used in this research are considered 

types of local inversion. In the local inversion method, the petrophysical parameters are estimated at the 
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same depth using the data acquired from the different logging tools. In the forward modeling phase, an 

initial model is constructed using the response functions, which in turn will be optimized to decrease the 

difference between the actual and the theoretical data (Szabó and Dobróka, 2020). In this research, the 

initial model was refined using the LM and SVD schemes and the results were compared for three 

models (5 % Gaussian noise synthetic model, and real measured data). The most important aim of the 

inversion process is to extract the most reliable and accurate parameters. The noise of the data highly 

affects the quality of the estimated parameters; then, the degree of the accuracy of the evaluation of the 

borehole data is very important to give a better understanding of the rock properties. Therefore, in the 

case of the LM method, the relative data distance was estimated at each iteration, while in the SVD a 

threshold value has been chosen to stop the optimization process. 

Understanding the well-logging inversion procedure requires, in the beginning, to realize the aim 

from the evaluation of well-logging data as well as the relationship between the model parameters and 

measurement data (Szabó and Dobróka, 2013). Consequently, the final aim of the inversion process is 

to get a geological interpretation of the rock interface, in other words, getting a separation between 

different formations, estimate the thickness of the layers, and calculate the different petrophysical 

parameters such as porosity, fluid content, and shale volume. According to (Dobróka and Szabó, 2011) 

and (Szabó, 2018) well-logging inversion can be considered as a joint inversion procedure with two 

groups of parameters. The first group of parameters so-called the zone parameters, do not have a 

significant change with depth interval (e.g., saturation exponent, cementation exponent, and water 

resistivity). The second group can be formed by the parameters called the layer parameters, which can 

be nearly fixed through a given layer but change from one to another (e.g., mineral composition, shale 

volume, and permeability). 

2. Theoretical Background 

In hydrocarbon exploration, a combination of logging tools called triple combo or quad combo is usually 

used. This combination consists of lithology, porosity, and fluid saturation sensitive tools. Through this 

section, the theoretical background of the forward modeling and local inversion based on two different 

optimization techniques (LM and SVD) are going to be discussed. 

2.1. Forward modeling 

The relationship between the logging data and the petrophysical properties can be expressed in the form 

so-called response function. The following equations represent the response function used for data 

calculation and initial forward model construction  (GR, ρb, ∅𝑁, Pe, Rd, and Rs  are gamma-ray, density, 

neutron porosity, photo-electric, deep resistivity, and shallow resistivity logs respectively) (Szabó, 2018; 

Drahos, 2005; Szabó, 2011; Alberty and Hashmy, 1984): 

𝐺𝑅 = 𝜌𝑏
−1 (𝑉𝑠ℎ  𝐺𝑅𝑠ℎ𝜌𝑠ℎ + ∑𝑉𝑚𝑎,𝑖𝐺𝑅𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 

𝑁

𝑖=1

), (1) 

𝜌𝑏 = ∅[𝜌𝑚𝑓 − 1.07(1 − 𝑆𝑥𝑜)(𝛼0𝜌𝑚𝑓 − 1.24𝜌ℎ)] + 𝑉𝑠ℎ𝜌𝑠ℎ + ∑𝑉𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 ,

𝑁

𝑖=1

 (2) 
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∅𝑁 = ∅{

∅𝑁.𝑚𝑓 − (1 − 𝑆𝑥0)𝐶𝑐𝑜𝑟

−2∅(1 − 𝑆𝑥0) − 𝑆ℎ𝑓(1 − 2.2𝜌ℎ)

. [1 − (1 − 𝑆𝑥0)(1 − 2.2𝜌ℎ)]

} + 𝑉𝑠ℎ𝜌𝑠ℎ + ∑𝑉𝑚𝑎,𝑖 ∅𝑚𝑎,𝑖 ,

𝑁

𝑖=1

 (3) 

𝑃𝑒 =
1.07

𝜌𝑏 + 0.19
[∅𝑆𝑥0𝑈𝑚𝑓 + ∅(1 − 𝑆𝑥0)𝑈ℎ + 𝑉𝑠ℎ𝑈𝑠ℎ + ∑𝑉𝑚𝑎,𝑖 𝑈𝑚𝑎,𝑖 ],

𝑁

𝑖=1

 (5) 

1

√𝑅𝑑

= [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ

+
√∅

𝑚

√𝑎𝑅𝑤

]√𝑆𝑤

𝑛
, (6) 

1

√𝑅𝑠

= [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ

+
√∅

𝑚

√𝑎𝑅𝑚𝑓

]√𝑆𝑥0

𝑛
, (7) 

∅ + 𝑉𝑠ℎ + ∑𝑉𝑚𝑎,𝑖 = 1,

𝑁

𝑖=1

 (8) 

where Vma, i  (v/v) refer to the fractional volume of the i-th matrix constituent [9], The total number of 

mineral components is defined via N, the fractional volume of pore spaces that are free of shale is labeled 

by ∅ (v/v), where ∅𝑁𝑠 (neutron value in front of a thick volume of pure sandstone rock) ≠ 0 because the 

neutron log is calibrated for limestone, not for sandstone, and the water saturation fraction in the invaded 

and uninvaded areas are Sx0 and Sw respectively. The physical properties of mud filtrate (mf), 

hydrocarbon (h), shale (sh), mud filtrate correction coefficients (Ccor), mud filtrate coefficient (𝛼0), m is the 

cementation exponent (m), saturation exponent (n) and the rock matrix (ma) are expressed by the zone 

parameters in equations 1 to 7. As prementioned, these zone parameters are considered constants during 

the forward modeling phase. These zone parameters could be provided from special and conventional 

core analysis tests, drilling information, or graphics processing techniques. Table 1 shows the actual 

values of zone parameters. The Indonesian formulae (eq. 6 and 7) were used for calculating the 

resistivities of uninvaded and invaded zones Rd and Rs, respectively. Equation 8 is the material balance 

equation which, represents a constraint in solving the inverse problem. 

2.2. Local Inversion 

Before the local inversion has been started, the data must be prepared in matrix form. The data 

preparation consists of grouping the petrophysical parameters for shaly-sand formations in column 

parameters vector: 

𝑚 = [∅, 𝑉𝑠ℎ, 𝑉𝑉𝑠𝑑 , 𝑆𝑤, 𝑆𝑥0]
𝑇 , (9) 

where T is the symbol of transpose. And by the same way the measured well-logging data at the same 

depth are represented in a column data vector: 

𝑑(0) = [𝐺𝑅, ∅𝑁, 𝜌𝑏 , 𝑅𝑠,𝑅𝑑 , 𝑃𝑒]
𝑇 . (10) 
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The length of the data vector is larger than the model parameters vector, which defines the inverse 

problem of borehole geophysics as an overdetermined problem (Dobróka and Szabó, 2011). The 

relationship between the calculated data and model parameters can be expressed as a nonlinear 

relationship as (Menke, 1984): 

𝑑(𝑐) = 𝑔(𝑚), (11) 

where g is the response function, that is used for calculating the well-logging data at a certain depth. 

Table 1. Zone parameters are used for the traditional processing of borehole geophysics (Szabó and 

Dobróka, 2020). 

Well log Zone Parameter Symbol Value Dimensional 

unit 

Natural gamma-ray Sand GRsd 10 API 

Shale GRsh 154 API 

Gamma-gamma (density) Sand ρsd 2.65 g/cc 

Shale ρsh 2.54 g/cc 

Mud filtrate ρmf 1.02 g/cc 

Hydrocarbon(gas) ρh 0.2 g/cc 

Neutron porosity Sand ФN,sd -0.04 v/v 

Shale ФN,sh 0.31 v/v 

Mud filtrate ФN,mf 0.95 v/v 

mf correction coefficients Ccor 0.69 - 

Residual hydrocarbon Shrf 1.2 - 

Deep resistivity Shale Rsh 1 Ohm.m 

Pore water Rw 0.5 Ohm.m 

Mud filtrate Rmf 0.28 Ohm.m 

Cementation exponent m 1.5 - 

Saturation exponent n 1.8 - 

Tortuosity factor a 1 - 

Photo-electric  Sand Usd 4.8 Barn/cm3 

Shale Ush 9 Barn/cm3 

Mud filtrate Umf 0 Barn/cm3 

Hydrocarbon(gas) Uh 0 Barn/cm3 

 

The objective function to be optimized is (Szabó, 2012):  

𝐷 = √[
1

𝑁
∑ (

𝑑𝑘
(𝑜𝑏𝑠)

− 𝑑𝑘
(𝑐𝑎𝑙)

𝑑𝑘
(𝑜𝑏𝑠)

)

2𝑁

𝑘=1

] ∗ 100 (%). (12) 

where 𝑑𝑘
(𝑜)

𝑎𝑛𝑑  𝑑𝑘
(𝑐)

 are the measured or observed and calculated data, respectively, where N is the 

number of inverted data. 

2.2.1. Levenberg-Marquardt (LM) 

LM method can be considered as a linear inversion method, where the initial model is iteratively refined 

until the best fitting is achieved (Marquardt, 1963). The model update equation can be expressed as: 
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(𝐺(𝑚𝑖)𝑇𝐺(𝑚𝑖) + 𝜆𝐼)𝛿𝑚 = −𝐺(𝑚𝑖)𝑇𝛿𝑑, (13) 

where λ is a damping factor by training it could range from 100 to 0.01. The function of this damping 

factor is to overcome the singular matrix problem of the term  𝐺(𝑚𝑖)𝑇𝐺(𝑚𝑖). I is the identity matrix, 

G(m) is the sensitivity matrix or Jacobian matrix, δm is (M (number of parameters) x1) parameters 

updates vectors, and δd is (Nl (number of well logs) x1) the difference between calculated and observed 

data. Meanwhile, the G(m) (Jacobian matrix) could be calculated numerically by the finite difference 

method to obtain the partial derivatives of parameters with each response function (f(m)), the G(m) can 

be written as: 

𝐺(𝑚) =

[
 
 
 
 
𝛿𝑓1(𝑚)

𝛿(𝑚1)
…

𝛿𝑓1(𝑚)

𝛿(𝑚𝑀)
⋮ ⋱ ⋮

𝛿𝑓𝑁(𝑚)

𝛿(𝑚1)
…

𝛿𝑓𝑁𝑙(𝑚)

𝛿(𝑚𝑀) ]
 
 
 
 

, (14) 

the iterative scheme of LM can be concluded in the following equation to update the model parameter 

(Heriyanto and Srigutomo, 2017): 

𝑚𝑖+1 = 𝑚𝑖 + (𝐺(𝑚𝑖)𝑇𝐺(𝑚𝑖) + 𝜆𝐼)
−1

𝐺(𝑚𝑖)𝑇𝛿𝑑, (15) 

2.2.2. Singular Value Decomposition Scheme 

(Meju, 1992) has formulated an iterative equation of model parameter update using the idea of 

factorizing the Jacobian matrix into three other matrices as follow: 

𝐺(𝑚𝑖) =  𝑈𝑆𝑉𝑇 , (16) 

where U is (NxM) data eigenvector, V is (MxM) model parameters eigenvector, and S is (MxM) matrix 

with eigenvalues in its diagonal. These positive values represent the eigenvalues of G(m) matrix with i 

≤ M. The SVD based inversion method standing on the idea stated that the matrix produced from the 

term 𝐺(𝑚𝑖)𝑇𝐺(𝑚𝑖) is said to be ill-conditioned in case of small eigenvalues. Therefore, the SVD 

scheme suggested adding a positive bias to the eigenvalues of the term 𝐺(𝑚𝑖)𝑇𝐺(𝑚𝑖). By substitute 

equation (16) into equation (13): 

(𝑉𝑆2𝑉𝑇 + 𝜆𝐼) 𝛿𝑚 = −(𝑉𝑆𝑈𝑇) 𝛿𝑑, (17) 

by applying the idea of adding the damped factor to the diagonal non zero values [15], the left-hand side 

of equation (17) can be written as: 

(𝑉𝑆2𝑉𝑇 + 𝜆𝐼) = (𝑉 𝑑𝑖𝑎𝑔(𝜂𝑖
2)𝑉𝑇) + 𝜆2𝐼 = 𝑉 𝑑𝑖𝑎𝑔(𝜂𝑖

2 + 𝜆2)𝑉𝑇 , (18) 

where ηi is the i-th eigenvalue, the following equation shows the inverse of equation (18): 

(𝑉 𝑑𝑖𝑎𝑔(𝜂𝑖
2 + 𝜆2)𝑉𝑇)−1 =  𝑉 𝑑𝑖𝑎𝑔 {

1

𝜂𝑖
2 + 𝜆𝑖

2} 𝑉𝑇 . (19) 

Consequently, the final equation to update the model parameters provided by (Ekinci and Demirci, 

2008) can be written as: 
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𝑚𝑖+1 = 𝑚𝑖 + 𝑉 𝑑𝑖𝑎𝑔 {
𝜂𝑖

𝜂𝑖
2 + 𝜆𝑖

2} 𝑈𝑇𝛿𝑑. (20) 

The damping factor has been developed by comparing the misfit of the L-th test at any iteration and 

(L+1)-th test; if the misfit has been enhanced, it will be accepted. This method called the RIDGE 

method, where a biased positive value has been added to the diagonal matrix eigenvalues (Arneson and 

Hersir, 1988), according to the following equation: 

𝜆 =  𝜂𝐿  𝛥𝑋
1
𝐿 , (21) 

where ∆X can be given by: 

∆𝑋 =  
 𝑋𝑅−1 − 𝑋𝑅

𝑋𝑅−1
, (22) 

where XR-1 and XR are the previous and present iterations misfit. 

3. Results 

In this research, 5% Gaussian noise synthetic data, and field data were used to apply both LM and SVD 

based inversion. The misfit between the calculated and measured data was calculated using equation 12 

of relative data distance as prementioned in section 2.2. 

3.1. Synthetic data 

The LM and SVD were applied on the 4-layers model (shaly sand, sand, shale, and sand), where the 

synthetic model supposed the presence of hydrocarbon and water zones. There are sublayers inside layer 

1 to represent the transform inside the layer from sand to shale. The data vector that resulted from the 

forward model belongs to GR, ρb, ∅𝑁, Rs, and Rd. Figure (1) shows the forward well-logging data 

derived from equations 1 to 8 of 25 m of rocks, the right side shows the diagrammatic block of the 4-

layer earth model and the fluid distribution. The predefined model shows that layer 1 consists of sand-

shale sequence with hydrocarbon filling the pore spaces, while layer 2 shows one sand layer filled with 

hydrocarbon then water, finally layers 3 and 4 show no change in fluid type (water) but the lithology 

change from shale to sand; so, the number of minors layers is 7. The synthetic model suggested the 

presence of hydrocarbon and water where the Oil-Water Contact (OWC) or the Gas-Water Contact 

(GWC) lies at depth of 9 m. 

The data calculated from the pre-mentioned response functions were inverted using LM and SVD 

schemes. The results obtained show a small relative data distance, which can be seen in table 2. Inversion 

results depend on the initial model. If the initial model was too far from the solution, the inversion 

problem may be trapped in a local minimum and produce a high relative data distance. In the 

overdetermined inversion problem, there is another problem that may cause deviation from the real 

model parameters; this problem is the response function itself which produces overestimated or 

underestimated model parameters to decrease the misfit between real and calculated data. Therefore, the 

SVD method used the RIDGE criteria to avoid this problem. 
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Figure 1. Synthetic well-logging data with 5% Gaussian noise, the right schematic block shows the 

predefined layers model (Sand (yellow), shale (green), and fluid distribution (hydrocarbon (red), 

water (blue)). 

Table 2. True and estimated model parameters using LM and SVD. 

 True LM SVD 

Layers Ф Vsh Sw Ф Vsh Sw Ф Vsh Sw 

1 0.04 

0.02 

0.05 

0.11 

0.78 

0.07 

0.2 

1 

0.3 

0.036 

0.023 

0.055 

0.2 

0.45 

0.17 

0.17 

0.11 

0.2 

0.03 

0.037 

0.069 

0.2 

0.43 

0.15 

0.18 

0.11 

0.21 

2 0.1 0.07 0.3 

1 

0.096 0.06 0.3 

0.95 

0.12 0.06 0.32 

0.8 0.1 0.07 0.096 0.06 0.12 0.06 

3 0.02 0.83 1 0.022 0.78 1 0.09 0.65 1 

4 0.05 0.15 1 0.046 0.18 1 0.095 0.13 1 

 

Figures (2) and (3) show the synthetic data and the calculated data using LM and SVD, respectively. 

The results show that the calculated data using the LM has a better fitting than the calculated data from 

the SVD method, but the calculated data from LM is more sensitive to the noise than those from the 

SVD method. 

Figures (4) and (5) show the resulted model parameters from both inversion schemes. The model 

parameters were more resolved in the case of the SVD method than LM. Besides that, the LM inversion-

based driven parameters are appeared to be more sensitive to the noise of the data. In the case of the 

linear inversion problem, the thickness of layers can be identified by notice the change in petrophysical 

parameters ranges within each layer, therefore, the resolution of SVD results can be more helpful than 

those of the LM method to detect the thickness of different layers. The GWC has been detected at depth 

of 9 m by both inversion methods. Both methods detect that the model has 4 main layers, layer 1 is 

shaly-sand (0 – 5m), layer 2 is sand (5 – 15m), layer 3 is shale (15- 20 m), and layer 4 is sand (20- 25m). 
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Also, both methods are sensitive to fluid change and detect that layer 2 consists of 2 parts the upper part 

is occupied by hydrocarbon, and the lower part is occupied by water. Figures (6a and 6b) show the 

convergence of both inversion schemes. The SVD starts to converge as the LM but needs more iterations 

until all the calculated well-logging data converge, which could be reflected from the idea of test the 

sensitivity of parameters changes with a certain well-log tool. The number of iterations needed for the 

convergence in the case of the LM method is around 10 iterations, while the convergence needed in the 

case of the SVD method is 10 to 50 to obtain convergence in all calculated well log data. 

 

Figure 2. Observed synthetic data compared to the calculated data using LM inversion scheme 

(iteration 50). 

 

Figure 3. Observed synthetic data compared to the calculated data using SVD inversion scheme 

(iteration 50). 
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Figure 4. Model parameters derived from LM-based inversion (in lithology track, black is the shale 

fraction while the yellow is the sand fraction, while in water saturation track, blue is water saturation 

fraction in the uninvaded zone and cyan in the invaded zone). 

 

Figure 5. Model parameters derived from SVD-based inversion (in lithology track, black is the shale 

fraction while the yellow is the sand fraction, while in water saturation track, blue is water saturation 

fraction in the uninvaded zone and cyan in the invaded zone). 
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(a) 

 

(b) 

Figure 6. Relative data distance (a) LM-based Inversion and (b) SVD-based Inversion. 

3.2. Field data 

After LM and SVD schemes have been examined using synthetic data, this research implemented those 

methods to field data. The field data is well-logging data from a gas field located in the northwestern 

part of Egypt. From the regional geology of the area, the reservoir rocks consist mainly of tight sandstone 

with siltstone streaks which affect the quality of the reservoir and increase the heterogeneity inside it. 

The drilling information provided that the thickness of the reservoir is almost 170 m with hydrocarbons 

(gas) and water were occupied in its pore spaces. the data vector of this well is d= [ 𝐺𝑅, ∅𝑁, 𝜌𝑏 , 𝑅𝑠,𝑅𝑑]. 

As pre-mention, the results of the linearized inversion problem depend on the initial model, if the 

initial model is too far from the answer, it may be trapped in a local minimum. Therefore, the initial 

parameters have been chosen concerning the quick look interpretation of the well-logging data. The 

permeable intervals (low GR) have been given porosity ranges from 0.1 to 0.15 and water saturation of 

0.5, while the impermeable intervals (high GR) have been given porosity ranges from 0.06 to 0.08 and 

water saturation of 0.8. In the preconditioning step, the measured data have been filtered using a median 

filtered of degree 10. 

Figures (7) and (8) show the field data and calculated data using LM and SVD inversion methods, 

respectively.  Both methods show an excellent fitting between field and calculated well-logging data 

with relatively high fitting in the case of LM-based inversion. Figures (9) and (10) show the model 

parameters resulted from both LM and SVD inversion schemes. The results have a significant 

notification; the SVD-based inversion can derive the same petrophysical parameters of LM-based 

inversion without using the trial-and-error method to pick the valid damping factor. Both methods are 

sensitive to the fluid presence, whereas, the GWC has been detected by both methods at depth of 65 m. 

Figures (11a) and (11b) show the relative data distance of both inversion schemes. The SVD-based 

inversion starts to converge from iteration 10 to 40, while the LM-based inversion starts to converge 

from iteration 14 to 20. The SVD code shows more stability than the LM one. The convergence behavior 

of the LM shows a sharp decrease of the relative data distance reached 0.03, while in the case of SVD 

the convergence behavior shows a logarithmic decrease of the relative data distance which shows 
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stability at a relative data distance of 0.21. Both methods have a good fitting, but the SVD failed at some 

points at depth beyond 160 to deliver a good fitting which is responsible for a higher data distance. 

 

Figure 7. Observed Field data compared to the calculated data using LM inversion scheme (iteration 

50). 

 

Figure 8. Observed Field data compared to the calculated data using SVD inversion scheme 

(iteration50). 
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Figure 9. Model parameters derived from LM-based inversion (in lithology track, black is the shale 

fraction while the yellow is the sand fraction, while in water saturation track, blue is water saturation 

fraction in the uninvaded zone and cyan in the invaded zone). 

 

Figure 10. Model parameters derived from SVD-based inversion (in lithology track, black is the shale 

fraction while yellow is the sand fraction, while in water saturation track, blue is water saturation 

fraction in the uninvaded zone and cyan in the invaded zone). 
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(a) 

 

(b) 
Figure 11. Relative data distance (a) LM-based Inversion and (b) SVD-based Inversion. 

Figure 12 shows the comparison between the derived porosity from the SVD and LM methods and 

the projected cored porosity. The comparison shows that the porosity derived from SVD coincides with 

the LM porosity with some misfit points at the deeper parts. The predicted porosity is reliable at some 

depth intervals, which have been validated using the core porosity values. 

 

Figure 12. Projection of core porosity (blue stars) on the porosity derived from both SVD (Black line) 

and LM (red dots) schemes. 
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4. Discussion 

Considering the synthetic data contaminated by 5 % Gaussian noise, the fitting between synthetic and 

calculated well-logging data is good. The LM-based inversion shows relatively better data fitting than 

SVD-based.  The degree of fitting and the iterations number needed for the convergence depending on 

the damping factor used in both methods, the LM-based method used the trial-and-error techniques to 

estimate the amount of damping factor which has been chosen to be high and multiplied by a factor less 

than one to damp the calculation within each iteration. The results from the SVD-Based method are less 

sensitive to the amount of noise than those of the LM-based. The SVD-based inversion method tried to 

solve the overdetermined well-logging problem using the concept of RIDGE to overcome forcing the 

model parameters to enhance the fitting in the same step, where the damping factor has been chosen in 

each step as a function of the eigenvalues of the Jacobian matrix, then tested with next calculated data 

before accepting the change in those parameters. This inner loop provides stability in the inversion 

MATLAB code as well as avoids the underestimated parameters. In the case of the LM-based inversion, 

the development of convergence was smooth and steady sharply after 10 iterations, while in the SVD-

based inversion scheme the development of convergence was smooth and steady at iteration no. 40. 

In the field data, in SVD, eigenvalue selection is considered a vital way because the method 

considered more the matrix’s sensitiveness. The results from both schemes show that the SVD-based 

inversion scheme can be used to derive the petrophysical parameters by using the damping factor derived 

from the sensitivity matrix where in the case of the LM-based method the results depend on the value 

of damping factor which was chosen based on the trial-and-error method. Furthermore, the SVD-based 

inversion method could overcome the heterogeneity change within the reservoir which affects the 

response of the well-logging tool. The field data is considered as a deep reservoir that is affected by the 

overburden weight, therefore, the response of some logs such as density log can be deceptive and 

produce fake inversion results. As the thickness of the layers in the local inversion techniques can be 

noticed from the change in the petrophysical parameters from one layer to another, the SVD-based 

method can be recommended in the heterogeneous reservoir because of the consideration of the details 

of the Jacobian matrix’s sensitiveness. 

5. Conclusion 

This research study examined LM-based and SVD based inversion methods, as well as compared them 

using synthetic data contaminated by 5% Gaussian noise and a deep heterogeneous reservoir. Both 

methods are good to be used in the synthetic data, where the LM converges faster than SVD. In the case 

of the field data, a method of choosing and testing the damping factor is recommended in the case of 

using the LM-based inversion to control the underestimation or the overestimation in petrophysical 

parameters. In the case of the SVD-based inversion method, the selection of the eigenvalues enhanced 

the resulted petrophysical parameters by considering the Jacobian matrix’s sensitiveness. Both methods 

predicted the presence of hydrocarbon above the depth of 65m. The projection of the porosity core points 

and the derived porosity data using the SVD method showed a good fitting. 
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