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Abstract 

This paper deals with the Saint-Venant’s torsion of thin-walled isotropic nonhomogeneous open ellip-

tical cross section whose shear modulus depends on the one of the curvilinear coordinates which de-

fine the cross-sectional area of the beam. The approximate solution of torsion problem is obtained by 

variational method. The usual simplification assumptions are used to solve the uniform torsion prob-

lem of bars with thin-walled elliptical cross-sections. An example illustrates the application of the 

derived formulae of shearing stress and torsional rigidity. 
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1. Introduction 

The Saint-Venant’s torsion of elastic thin-walled beam with open cross section is a usual topic of elas-

ticity textbooks (Saada, 1974), (Timoshenko, et al., 1970), (Lurie, 1970), (Lebejzon, 1943), (Wang, 

1953), (Vlasov, 1961), (Sun, 2006), (Oden, 1967). For thin-walled open cross section the solution of 

torsion problem is based on the membrane analogy and the approximate solution of uniform torsion of 

narrow rectangular cross section with sides a and t in which a is much longer than t (Saada, 1974), 

(Timoshenko et al., 1970), (Lurie, 1970), (Sun, 2006). Fig. 1 shows a homogeneous thin-walled rec-

tangular cross section whose Prandtl stress function is denoted by ( , )U U x y . The approximate solu-

tion of uniform torsion of this homogeneous cross section is derived from the following boundary 

value problem (Saada, 1974), (Lurie, 1970), (Vlasov, 1961), (Sun, 2006), (Oden, 1967) 
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It is important hypothesis that the Prandtl’s stress function U does not depend on the x coordinate. 

In  

 

Figure 1. Narrow rectangular cross section 

 

 

Figure 2. Thin-walled open elliptical cross section 

Eq. (1) G denotes the shear modulus of the material of homogeneous beam with narrow rectangular 

cross section. The approximate solution of the uniform torsion in this case is as follows (Saada, 1974), 

(Timoshenko et al., 1970), (Lurie, 1970), (Vlasov, 1961), (Sun, 2006) 

  2( ) ,U y G yt y   (3) 
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In the above equation xz  and yz  are the shearing stresses,   is the rate of twist with respect to 

the axial coordinate of the beam, S is the torsional rigidity of the considered thin-walled rectangular 

cross section. In this paper an approximate solution of Saint-Venant’s torsion is presented for thin-

walled nonhomogeneous open elliptical cross section. Fig. 2 shows the considered open thin-walled 
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elliptical cross section. To give the boundary contours of elliptical cross section we introduce an or-

thogonal curvilinear coordinate system O  (Fig. 3) 

 cosh cos , sinh sin .x c z c      (6) 

 

Figure 3. The coordinate lines of elliptical coordinate system O  

The focuses of boundary contour ellipse are the points 1F  and 2F  and theirs distance is 2c. In Car-

tesian coordinates x and y the equation of the curved boundary of the considered thin-walled cross 

section is 

 
2 2

2 2 2 2
1, ( 1,2).

cosh sinhi i

x y
i

c c 
    (7) 

The coordinate lines of the elliptical coordinate system O  are ellipses and hyperbolas as shown 

in Fig. 3 

The unit vectors of constant   and constant  coordinate lines are (Saada, 1974), (Slivker, 

2007) 

  
1

cosh sin sinh cos ,x y
h

      e e e  (8) 

  
1

sinh cos cosh sin ,x y
h

     e e e  (9) 

 2 2 2cosh cos .h     (10) 

The expression of the area element dA  is as follows 

 2 2d d d d d .A x y c h     (11) 
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The two-dimensional del operator   can be represented as 

 
1

.x y
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    
     

    
e e e e  (12) 

2. Governing equations and approximate solution 

Denote ( , )U U    the Prandtl’s stress function of the thin-walled open nonhomogeneous cross sec-

tion. According to the variational formulation of Saint-Venant’s torsion we know that ( , )U U    

can be obtained as the solution of the following variational problem (Slivker, 2007) 
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where the statically admissible Prandtl’s stress function satisfies a homogeneous boundary condition 

on the whole boundary of nonhomogeneous thin-walled elliptical cross section, that is we have 

 1 2( , ) ( , ) 0, 0 2 ,U U          (15) 

 1 2( ,0) ( ,2 ) 0, .U U          (16) 

The approximation solution of the considered Saint-Venant’s torsion is based on the following two 

assumptions 

1. The Prandtl’s stress function does not depend on the curvilinear coordinate ,  that is 

 ( )U U   (17) 

2. The boundary conditions (16)1,2 are not satisfied 

3. The shear modulus does not depend on ,  that is 

 ( ).G G   (18) 

Combination of equation (13) with equation (17) gives 

 1 2
ˆ ( , ) ( ), , 0 2U U             (19) 

and 
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According to the stationary condition of Timoshenko functional (13) under the condition 
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 1 2( ) ( ) 0, 0 2U U        (21) 

it can be shown that ( )U U   is the solution of the undermentioned ordinary differential equation 

 2d 1 d
cosh2 0.
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The solution of the boundary value problem given by equation (21) and (22) is 
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The torsional rigidity of the thin-walled elliptical cross section is obtained from equation (24) 
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A detailed computation gives 
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where 
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For given applied torque the rate of twist   is obtained as 

 .
T

S
   (28) 

The expression of shear stress vector in terms of ( )U U   is as follows (Fig. 1) 
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Combination of equation (28) with equation (29) gives for ( , )      
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The zero-curve of the shearing stresses where 

 ( , ) 0     (31) 

is an ellipse between the boundary ellipses on which 1   and 2  . The equation of zero-curve 

is  
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3. Example 

In the numerical example the following data are used 

4
1 2 0 020 mm, 0.46, 0.5, 2 10 MPa, 0.5, ( ) exp( ), 1000 Nmm.c G G G T           

Fig. 4 shows the plot of the Prandtl’s stress function for 1 2     

The graphs of the shearing stresses ( , )    for 1,   2   and 0   0 2    are 

shown in Fig. 5. 

The value of the curvilinear coordinate of the zero stress curve is 

 0 0.4801659   (34) 

and the approximate value of the torsional rigidity is 

 5 23.05735008 10 Nmm .S    (35) 

In this example the shear stress resultant at 0   and 2   is 

 
2
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2 7 N
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which shows that the stress free boundary condition at the inclusion in weak form is satisfied. 
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Figure 4. The graph of the Prandtl’s stress function 

 

Figure 5. The graphs of the shearing stresses as a function of   

4. Conclusions 

An approximate analytical solution is presented for the Saint-Venant’s torsion of thin-walled isotropic 

nonhomogeneous open elliptical cross section. Timoshenko’s variational method is used to derived the 

expression of the Prandtl’s stress function. The usual assumptions for thin-walled open cross section 

bars gain adaptations to solve the considered uniform torsion problem. 
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