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Abstract  

We deduct conditions for the Hamiltonian coupling strengths necessary to achieve flat bands in 

polymers (i.e. a pentagon chain) considering many-body spin-orbit coupling and external magnetic field. 
We consider itinerant electrons on pentagon chains with first neighbour hoppings, on-site electron 

potentials and spin-flip first neighbour hoppings representing the Rashba type spin-orbit interaction 

(SOI). The external magnetic field is also present in the system via the Peierls phase factors. The band 

structure is obtained by solving the secular equation of the diagonalized one particle part of the 

Hamiltonian in k-space (momentum-space). The flat band conditions make the bands k-independent, 

providing a highly a degenerate state, which gives broad possibilities for applications. In our work we 

have shown how the SOI is able to relax the strict, rigid flat band conditions given by the Hamiltonian 

coupling strengths. The role of the external magnetic field was also investigated. 

Keywords: flat bands, conducting polymers, spin-orbit coupling 

1. Introduction 

Given by their huge degeneracy, flat bands generate a real interest since allow the appearance of several 

condensed phases for different systems, e.g. conducting polymers (Gulácsi et al., 2010), twisted bilayer 

graphene (Dong et al., 2021; Lisi et al., 2021), honeycomb optical lattice (Wu et al., 2007), non-

Hermitian optical lattices (Zhang et al., 2019). 

In this study we first introduce the analysed system and its Hamiltonian, then transform the one 

particle part of the Hamiltonian to the k-space. With the transformation given, we deduct the band 

structure of the system by diagonalizing the one particle part of the Hamiltonian and solving the secular 

equation. By eliminating the k-dependent parts in the band structure, we get a highly degenerate state, 

called a flat band. The elimination of the k-dependent parts is obtained by the flat band conditions. 

However, manufacturing flat bands in real systems seems to encounter real difficulties given by the 

rigidly fixed flat band conditions (strict relations between Hamiltonian parameters) they require. We 

show in this paper that taking many-body spin-orbit coupling (SOI) and the action of external magnetic 

field into account, these rigidly fixed flat band conditions can be substantially relaxed, enhancing the 

engineering possibilities of flat bands in real systems. 
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(2) 

In this paper we study conducting polymers. The base of the conducting polymer is a pentagon (e.g. 

polyaminotriazole type of chain). We considered two SOI strengths, first λ𝑐 on the external links and 

the second λ in the base.  

In order to make the model even more suitable for possible technical applications we have taken 

external magnetic field into account during our investigation.  

2. The system analysed 

The system analysed is a pentagon chain, with an external magnetic field perpendicular to the plane of 

the cell (see Fig.1,2). The unit cell of the system contains 6 sites, including the external link. 

 

Figure 1. The pentagon chain 

The Hamiltonian of the system has the form 

𝐻 = ∑𝑖   ∑𝜎,𝜎′ (𝑡1̅,5
σ,σ′

𝑐𝑖,1,σ
† 𝑐𝑖,5,𝜎′ + 𝑡2̅,1

𝜎,𝜎′

𝑐𝑖,2,𝜎
† 𝑐𝑖,1,𝜎′ + 𝑡4̅,3

𝜎,𝜎′

𝑐𝑖,4,𝜎
† 𝑐𝑖,3,𝜎′ + 𝑡5̅,4

𝜎,𝜎′

𝑐𝑖,5,𝜎
† 𝑐𝑖,4,𝜎′ +

𝑡�̅�
𝜎,𝜎′

𝑐𝑖+𝑎,7,𝜎
† 𝑐𝑖,4,𝜎′ + 𝑡ℎ𝑐𝑖,3,𝜎

† 𝑐𝑖,2,𝜎 + 𝑡𝑓𝑐𝑖,6,𝜎
† 𝑐𝑖,5,𝜎 +  ℎ. 𝑐. ) + ∑ 𝜖𝑛𝑐𝑖,𝑛,𝜎

† 𝑐𝑖,𝑛,𝜎𝑖,𝑛,𝜎 .  (1) 

Where ϵ𝑛 are the on-site one-particle potentials, on the site 𝑛. Considering the symmetry of the unit 

cell, we use the notations ϵ1 = ϵ𝑛=1 = ϵ𝑛=4 , ϵ2 = ϵ𝑛=2 = ϵ𝑛=3 ,  ϵ3 = ϵ𝑛=5 ,  ϵ4 = ϵ𝑛=6 . The 

neighbouring cells connect trough the Bravais vector a. In addition 𝑛𝑖,𝑛
𝜎 = 𝑐𝑖,𝜎

† 𝑐𝑖,𝜎 is the number operator, 

where 𝑐𝑖,𝜎
†

 creates an electron on site 𝑖 with the spin 𝜎. The 𝑐𝑖,𝜎
† 𝑐𝑖,𝜎′≠𝜎 type hopping terms, (i.e the spin-

flip hopping terms) represent the Rashba type spin-orbit interaction for polymers (Li et al., 2017). 

The external magnetic field 𝐵 is considered along the axis z and acts only trough the Peierls phase 

factor. The Peierls phase factors can be calculated via: 

𝑡�̅�𝑖(𝐵) = 𝑡𝑗𝑖𝑒
𝑖
2𝜋
𝜙0

∫ �⃗�
𝑗

𝑖
𝑑𝑙⃗⃗⃗⃗⃗

= 𝑡𝑗𝑖𝑒𝑖𝜑𝑗𝑖 , 

where ϕ0 =
ℎ𝑐

𝑒
 is the flux quantum, c being the speed of light, e is the electron charge, h is the Plank 

constant. The 𝑡𝑗𝑖 are the hopping couplings in the system without the magnetic field, φ𝑗𝑖 are the so called 

Peierls factors. By calculating the Peierls phase factors, we get 𝜑32 = 𝜑1,𝜑21 = 𝜑43 = 𝜑2, 𝜑54 =

𝜑15 = 𝜑3, 𝜑56 = 𝜑74 = 0, where 𝜑𝑙, 𝑙 = 1,2,3 has the form:  

 

𝑡3̅2
↑,↑ = 𝑡ℎ̅𝑒𝑖𝜑1 ,   𝜑1 =

2𝜋

𝜙0
(−𝐵𝑦2), 
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(3) 

(4) 

𝑡2̅1
↑,↑ = 𝑡𝑒𝑖𝜑2 ,   𝑡4̅3

↑,↑ = 𝑡𝑒𝑖𝜑2 ,   𝑡2̅1
↑,↓ = 𝜆𝑒𝑖𝜑2 ,   𝑡4̅3

↑,↓ = 𝜆𝑒𝑖𝜑2 ,   𝜑2 =
2𝜋

𝜙0
𝐵

|𝑦2|𝑏2

2
, 

𝑡5̅4
↑,↑ = 𝑡𝑒𝑖𝜑3 ,   𝑡1̅5 = 𝑡𝑒𝑖𝜑3 ,   𝑡5̅4

↑,↓ = −𝜆𝑒𝑖𝜑3 ,   𝑡1̅5
↑,↓ = −𝜆𝑒𝑖𝜑3 ,    𝜑3 =

2𝜋

𝜙0
𝐵

𝑦1𝑏

4
. 

We used the following notations for the SOI coupling strengths  λ = 𝑡5,1
↑,↓ = 𝑡1,5

↓,↑ = 𝑡1,2
↓,↑ = 𝑡2,1

↑,↓ =

𝑡3,4
↓,↑ = 𝑡4,3

↑,↓ = 𝑡4,5
↑,↓ = 𝑡5,4

↓,↑ , 𝑡𝑐
↑,↓ = λ𝑐 , while 𝑡𝑖,𝑗

↑,↓ = −𝑡𝑗,𝑖
↑,↓

 holds. The first neighbour hopping terms are 

denoted by 𝑡, 𝑡ℎ , 𝑡𝑐 and 𝑡𝑓.  

 

Figure 2. Unit cell defined, with in-cell 

notations of sites 𝑛 = 1,2,3,4,5,6. 

3. Deducing the flat band conditions 

In order to be able to study flat band conditions for the system we have to investigate the band structure, 

We can extract the band structure by diagonalizing the one particle part of the Hamiltonian (𝐻0) in k-

space and solve the secular equation. 

3.1. The Hamiltonian in k-space 

We translate 𝐻0  to k-space, thus the fermionic operators are Fourier transformed 𝑐𝑖,𝑟𝑛,σ =
1

√𝑁𝑐
∑ 𝑒−𝑖𝑘(𝑖+𝑟𝑛)𝑐𝑛,𝑘,σ𝑘 . Here 𝑁𝑐 is the number of cells and 𝑘 is directed along the 𝑥 axis (see Fig.2). The 

𝐻0 becomes: 
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(5) 

(6) 

(7) 

𝐻0 =  ∑𝑘 ∑𝜎,𝜎′ [𝑡1̅,5
𝜎,𝜎′

𝑐𝒌,1,𝜎
† 𝑐𝒌,5,𝜎′𝑒𝑖𝐤(𝐫𝟏−𝐫𝟓) + 𝑡2̅,1

𝜎,𝜎′

𝑐𝒌,2,𝜎
† 𝑐𝑖,1,𝜎′𝑒𝑖𝐤(𝐫𝟏−𝐫𝟐)  + 𝑡4̅,3

𝜎,𝜎′

𝑐𝒌,4,𝜎
† 𝑐𝒌,3,𝜎′𝑒𝑖𝐤(𝐫𝟒−𝐫𝟑)

+ 𝑡5̅,4
𝜎,𝜎′

𝑐𝒌,5,𝜎
† 𝑐𝒌,4,𝜎′𝑒𝑖𝐤(𝐫𝟓−𝐫𝟒) + 𝑡�̅�

𝜎,𝜎′

𝑐𝒌,1,𝜎
† 𝑐𝒌,4,𝜎′𝑒𝑖𝐤(𝐚−𝐫𝟒) + 𝑡ℎ𝑐𝒌,3,𝜎

† 𝑐𝒌,2,𝜎𝑒𝑖𝐤(𝐫𝟑−𝐫𝟐)

+ 𝑡𝑓𝑐𝒌,6,𝜎
† 𝑐𝒌,5,𝜎𝑒𝑖𝐤(𝐫𝟔−𝐫𝟓)  +  ℎ. 𝑐. ]  + ∑ 𝜖𝑛

𝑛

𝑐𝒌,𝑛
† 𝑐𝒌,𝑛. 

Where the exponents are (see Fig.2): 

𝑘(𝑟4 − 𝑟3) = 𝑘(𝑟2 − 𝑟1) = 𝑘𝑏2, 𝑘(𝑟6 − 𝑟5) = 0, 𝑘(𝑎 − 𝑟4) = 𝑘𝑏′, 

𝑘(𝑟3 − 𝑟2) = 𝑘𝑏1, 𝑘(𝑟5 − 𝑟4) = 𝑘(𝑟1 − 𝑟5) =
𝑘𝑏

2
. 

Here we denoted the external link of the pentagon chain with 𝑏′and the length of the base with 𝑏 =
𝑏1 + 2𝑏2. 

 

𝐻0 = ∑ ∑ [𝑡1̅,5
𝜎,𝜎′

𝑐𝒌,1,𝜎
† 𝑐𝒌,5,𝜎′𝑒𝑖

𝑘𝑏
2 + 𝑡2̅,1

𝜎,𝜎′

𝑐𝒌,2,𝜎
† 𝑐𝑖,1,𝜎′𝑒𝑖𝑘𝑏2 + 𝑡4̅,3

𝜎,𝜎′

𝑐𝒌,4,𝜎
† 𝑐𝒌,3,𝜎′𝑒𝑖𝑘𝑏2

𝜎,𝜎′𝑘

+ 𝑡5̅,4
𝜎,𝜎′

𝑐𝒌,5,𝜎
† 𝑐𝒌,4,𝜎′𝑒𝑖

𝑘𝑏
2 + 𝑡ℎ𝑐𝒌,3,𝜎

† 𝑐𝒌,2,𝜎𝑒𝑖𝑘𝑏1 + 𝑡𝑓𝑐𝒌,6,𝜎
† 𝑐𝒌,5,𝜎 + 𝑡𝑐

𝜎,𝜎′

𝑐𝒌,1,𝜎
† 𝑐𝒌,4,𝜎′𝑒𝑖𝑘𝑏′

+ ℎ. 𝑐. ] + ∑ 𝜖𝑛𝑐𝒌,𝑛
† 𝑐𝒌,𝑛

𝑛

. 

3.2. The band structure  

The band structure is obtained by diagonalizing the one particle part of the Hamiltonian (6) 

 

𝐻0 =  ∑𝑘 ∑𝜎,𝜎′(𝑐𝑘,1,↑
† , … , 𝑐𝑘,6,↑

† , 𝑐𝑘,1,↓
† , … , 𝑐𝑘,6,↓

† ) �̅� (𝑐𝑘,1,↑
† , … , 𝑐𝑘,6,↑

† , 𝑐𝑘,1,↓
† , … , 𝑐𝑘,6,↓

† )
𝑇

, 

 

the matrix �̅� is: 
 

𝜖1 𝑡𝑒−𝑖�̅�2  0 𝑡𝑐𝑒𝑖𝑘𝑏’ 𝑡𝑒−𝑖�̅�3  0 0 −𝜆𝑒−𝑖�̅�2 0 𝜆𝑐𝑒𝑖𝑘𝑏’ −𝜆𝑒−𝑖�̅�3 0 

𝑡𝑒𝑖�̅�2  𝜖2 𝑡ℎ𝑒−𝑖�̅�1  0 0 0 𝜆𝑒𝑖�̅�2 0 0 0 0 0 

0 𝑡ℎ𝑒−𝑖�̅�1  𝜖2 𝑡𝑒−𝑖�̅�2 0 0 0 0 0 −𝜆𝑒−𝑖�̅�2 0 0 

𝑡𝑐𝑒−𝑖𝑘𝑏’ 0 𝑡𝑒𝑖�̅�2  𝜖1 𝑡𝑒−𝑖�̅�2  0 −𝜆𝑐 0 𝜆𝑒𝑖�̅�2 0 𝜆𝑒𝑖�̅�3  0 

𝑡𝑒𝑖�̅�3  0 0 𝑡𝑒−𝑖�̅�3 𝜖3 𝑡𝑓 𝜆𝑒−𝑖�̅�3 0 0 −𝜆𝑒−𝑖�̅�3 0 0 

0 0 0 0 𝑡𝑓 𝜖4 0 0 0 0 0 0 

0 𝜆𝑒−𝑖�̅�2 0 −𝜆𝑐𝑒𝑖𝑘𝑏’ 𝜆𝑒−𝑖�̅�3 0 𝜖1 𝑡𝑒−𝑖�̅�2  0 𝑡𝑐𝑒𝑖𝑘𝑏’ 𝑡𝑒−𝑖�̅�3  0 

−𝜆𝑒𝑖�̅�2 0 0 0 0 0 𝑡𝑒𝑖�̅�2  𝜖2 𝑡ℎ𝑒−𝑖�̅�1  0 0 0 

0 0 0 𝜆𝑒−𝑖�̅�2  0 0 0 𝑡ℎ𝑒𝑖�̅�1  𝜖2 𝑡𝑒−𝑖�̅�2  0 0 

𝜆𝑐𝑒−𝑖𝑘𝑏’ 0 −𝜆𝑒𝑖�̅�2 0 −𝜆𝑒𝑖�̅�3 0 𝑡𝑐𝑒−𝑖𝑘𝑏’ 0 𝑡𝑒𝑖�̅�2  𝜖1 𝑡𝑒𝑖�̅�3 0 

−𝜆𝑒𝑖�̅�3 0 0 𝜆𝑒−𝑖�̅�3  0 0 𝑡𝑒𝑖�̅�3  0 0 𝑡𝑐𝑒𝑖𝑘𝑏’ 𝜖3 𝑡𝑓 

0 0 0 0 0 0 0 0 0 0 𝑡𝑓 𝜖4 
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(8) 

(9) 

(11) 

(12) 

(13) 

(10) 

 

�̅�1 =  𝑘𝑏1 + 𝜑1, �̅�2 =  𝑘𝑏2 + 𝜑2, �̅�3 = (
𝑘𝑏

2
− 𝜑3). 

We deduce the diagonalized energies (i.e. the bare band structure) from the secular equation of �̅�. 

We solve the characteristic equation, by reducing B(𝐸, {x}, {𝑡𝑟𝑖𝑔(𝐚𝐤)}) = �̅� − 𝐼𝐸, where 𝐸  are the 

energy eigenvalues, 𝐼 is the identity matrix. 

The {x} represents a set of the Hamiltonian parameters, while {𝑡𝑟𝑖𝑔(𝐚𝐤)} holds the trigonometric 

functions of the Bravais vector and contains the 𝐤 momentum dependence of the band structure. These 

𝐤 dependent trigonometric functions in the characteristic equation are from the exponents in matrix �̅�. 

The band structure is given by: 

 

B(𝐸, {x}, {𝑡𝑟𝑖𝑔(𝐚𝐤)}) = 0. 

In this case the condition B(𝐸, {x}, {𝑡𝑟𝑖𝑔(𝐚𝐤)})=0 for the matrix �̅� can be written as: 

 

B(𝐸, {𝑥}, 𝑡𝑟𝑖𝑔(𝐚𝐤)) = 𝐹0 + 𝐹1𝑐𝑜𝑠(𝐚𝐤 + 𝜑) + 𝐹2𝑠𝑖𝑛(𝐚𝐤 + 𝜑) = 0, 

where 𝜑 = 𝜑1 + 2𝜑2 + 𝜑3.  

3.3. The flat band conditions 

In the case of flat bands we find that the 𝐸 of the flat band is not dependent of the 𝐤 momentum. The 𝐤 

dependent parts appear in the band structure in 𝐹({𝑥})𝑡𝑟𝑖𝑔(𝐚𝐤)  form(10), meaning the flat band 

conditions are:  

 

𝐹({𝑥}) = 0. 

Since 𝐹({𝑥}) is in function of the Hamiltonian parameters, each flat band condition will give us rigid 

conditions regarding the set of {x} parameters. 

During the investigation of the flat band conditions for the studied system, the origin of the energy 

axis is fixed to the position of the flat band, i.e. 𝐸 = 0 holds. This means that the flat band will be fixed 

and appear on the ox axis. 

The flat band conditions for the system are: 

 

𝐹1 = (−𝐾𝑣 − 𝑆𝑢), 𝐹2  =  (𝐾𝑢 − 𝑆𝑣 ). 
While 

 

𝐾 = 𝜖4

𝑐𝑜𝑠(4𝜑3 + 𝜑𝑏)

𝜖3𝜖4 − 𝑡𝑓
2 − 𝑡ℎ

𝑐𝑜𝑠(2𝜑3)

𝜖2
2 − 𝑡ℎ

2 , 𝑆 = 𝜖4

𝑠𝑖𝑛(4𝜑3 + 𝜑𝑏)

𝜖3𝜖4 − 𝑡𝑓
2 − 𝑡ℎ

𝑠𝑖𝑛(2𝜑3)

𝜖2
2 − 𝑡ℎ

2 , 

 

𝑣 = 2(2λλ𝑐𝑡 + 𝑡𝑐(λ2 − 𝑡2)), 𝑢 = 2(−2λ𝑡𝑡𝑐 + λ𝑐(λ2 − 𝑡2)), 

where 𝜑𝑏 = 𝜑1 + 2𝜑2. 
The solution for 𝐹1 = 0, 𝐹2 = 0 can be summarized as 𝐾 = 0, 𝑆 = 0, since other seemingly possible 

solutions would lead us to complex λ, λ𝑐 coupling strengths which are not physical solutions for our 1D 

system with Rashba spin-orbit coupling. 
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(14) 

(15) 

(16) 

(17) 

(18) 

The 𝐾 = 0, 𝑆 = 0 gives restrictions for the Peierls phase factors, thus restriction for the external 

magnetic field values trough (3): 

 

𝜑𝑏|1
= 2 arctan(cot(𝜑3)) + 2𝜋𝑚, 𝜑𝑏|2

= −2 arctan(tan(𝜑3)) + 2𝜋𝑚,  

while tan(𝜑3|1,2
) (tan2(𝜑3|1,2

) − 1) ≠ 0,     
2𝜑3|1,2

−𝜋

2𝜋
∉ 𝑍, 

or              (𝜑𝑏|3
= 2𝜋𝑛,                 𝜑3|3

=
1

2
(𝜋 + 2𝜋𝑚)), 

(𝜑𝑏|4
= 𝜋 + 2𝜋𝑛, 𝜑3|4

= 𝜋𝑚), 

            (𝜑𝑏|5
= 𝜋 + 2𝜋𝑛,           𝜑3|5

=
1

2
(𝜋 + 2𝜋𝑚)), 

where m, n ∈ Z. 

While for each solution 𝜖4
1

𝜖3𝜖4−𝑡𝑓
2 = 𝑖𝜑𝑡ℎ

1

𝜖2
2−𝑡ℎ

2  stands. These Peierls phase factors can be 

categorized into two groups, by the value of 𝑖𝜑; for the solutions (𝜑𝑏|2
, 𝜑3|2

), (𝜑𝑏|5
, 𝜑3|5

), 𝑖𝜑 = 1, while 

for the (𝜑𝑏|1
, 𝜑3|1

), (𝜑𝑏|3
, 𝜑3|3

), (𝜑𝑏|4
, 𝜑3|4

) 𝑖𝜑 = −1. 

The 𝑖𝜑 = 1 solutions are consistent with the solutions without external magnetic fields (i.e a system 

with both 𝜑3and 𝜑𝑏values zero). In this case the flat band condition is:  

 

𝜖4

1

𝜖3𝜖4 − 𝑡𝑓
2 = 𝑡ℎ

1

𝜖2
2 − 𝑡ℎ

2 . 

This gives us a restriction for the value of  𝑡𝑓: 

 

𝑡𝑓|1,2
= ±

√−ϵ4(ϵ2
2 − 𝑡ℎ

2) + ϵ3ϵ4𝑡ℎ

√𝑡ℎ

 . 

For the solutions with 𝑖𝜑 = −1, the flat band condition is: 

 

𝜖4

1

𝜖3𝜖4 − 𝑡𝑓
2 = −𝑡ℎ

1

𝜖2
2 − 𝑡ℎ

2 . 

And the restriction for 𝑡𝑓 becomes: 

 

𝑡𝑓|1,2
= ±

√ϵ4(ϵ2
2 − 𝑡ℎ

2) + ϵ3ϵ4𝑡ℎ

√𝑡ℎ

 . 
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(19) 

(20) 

(21) 

(22) 

Besides the flat band conditions, there is another restriction to satisfy (10), for that part of the secular 

equation which does not contain 𝐤 dependence. We denoted this condition with 𝐹0: 

 

𝐹0 = 𝐴2 − 𝜆𝑐
2 − 𝑡𝑐

2 − (𝜆2 + 𝑡2)2  (
𝜖4

2

(𝜖3𝜖4−𝑡𝑓
2)

2 +
𝑡ℎ

2

(𝜖2
2−𝑡ℎ

2)
2 −  2𝑐𝑜𝑠(2𝜑3 + 𝜑𝑏)

𝜖4𝑡ℎ

(𝜖2
2−𝑡ℎ

2)(𝜖3𝜖4−𝑡𝑓
2)

), 

𝐴 = 𝜖1 − (𝑡2 + λ2) (
𝜖4

𝜖3𝜖4−𝑡𝑓
2 +

𝜖2

𝜖2
2−𝑡ℎ

2). 

Dividing the solution of 𝐹0 = 0 by the value of 𝑖𝜑, we notice that for those (𝜑𝑏 , 𝜑3 ) solutions which 

belong in the group 𝑖𝜑 = 1  the 𝐹0 = 0  equation is once again consistent with the system without 

external magnetic field.  In this case the value of  2𝑐𝑜𝑠(2𝜑3 + 𝜑𝑏) = 1, and one can easily use this 

condition to calculate the 𝜆𝑐 or 𝜆 value. 

The solution of 𝐹0 = 0 , while 𝑖𝜑 = −1  differ from the previous. In this case the value of 

 2𝑐𝑜𝑠(2𝜑3 + 𝜑𝑏) = −1, and we get different two 𝜆𝑐 or 𝜆 values, as it has been shown on Fig.3. 

To see, how the magnetic field, and the SOI can change the rigid flat-band conditions first we turned 

our attention to investigate the flat band conditions for the system without SOI and external magnetic 

field.  

In this case from the flat band conditions (12) 𝐹2 is automatically zero, since 𝜆𝑐 , 𝜆, 𝜑3, 𝜑𝑏 are zero, 

while for 𝐹1 we have: 

 

𝐹1 = −𝐾𝑣. 

𝐾 = 𝜖4

1

𝜖3𝜖4 − 𝑡𝑓
2 − 𝑡ℎ

1

𝜖2
2 − 𝑡ℎ

2 , 𝑣 = −2𝑡2𝑡𝑐 

 

Since the first neighbour hopping coupling strengths 𝑡, 𝑡𝑐 are nonzero numbers, the solution for the 

condition 𝐹1 = 0 is 𝐾 = 0, which in agreement with the solution seen in (15). I.e the solution for the 

system with SOI without external magnetic field is the same at 𝑖𝜑 = 1. This means that for the system 

without magnetic field or SOI the flat band condition for 𝑡𝑓 remains (16). For the condition 𝐹0 = 0 we 

get: 

 

𝐹0 = 𝐴2 − 𝑡𝑐
2 − 𝑡4 (𝜖4

1

𝜖3𝜖4−𝑡𝑓
2 − 𝑡ℎ

1

𝜖2
2−𝑡ℎ

2)
2

, 

𝐴 = 𝜖1 − 𝑡2 (
𝜖4

𝜖3𝜖4−𝑡𝑓
2 +

𝜖2

𝜖2
2−𝑡ℎ

2). 

This was used to calculate the value of 𝑡𝑐: 

 

𝑡𝑐|1,2
= ±

(ϵ2+𝑡ℎ)(ϵ1(ϵ2−𝑡ℎ)−𝑡2)

√(ϵ2
2−𝑡ℎ

2)
2

. 

These solutions for the flat band conditions for the system without SOI and magnetic field are known 

and are in agreement with the literature (Gulácsi, 2013). The latter strict condition for the value of 𝑡𝑐 

can be evaded, by changing the SOI coupling of the system. If we change the strict, rigid values for 𝑡𝑐 

given by the flat band conditions for the system without SOI and external magnetic field, Eq.(22) by 

Δ𝑡𝑐, the flat band becomes a dispersive band. The flat band can be achieved again by changing the  𝜆𝑐 
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or 𝜆  value of the system to a value which can be calculated from (19). (see Fig.3)

 

Figure 3. The strict, rigid values for 𝑡𝑐 given by the flat band conditions for the system without SOI 

and external magnetic field (22) are changed by 𝛥𝑡𝑐. The flat band achieved by a) 𝜆/𝑡 b) 𝜆𝑐/𝑡 

provided by the flat band conditions for the system with SOI and magnetic field (19). The 𝑖𝜑 = 1 curve 

is congruent with the system with SOI and without magnetic field. The H parameters are 𝜖1 =
0.77, 𝜖2 = 1.19, 𝜖3 = 0.72, 𝜖4 = 0.26, 𝑡ℎ = 0.9, 𝑡𝑐 = 2.7 and are given in the first neighbour hopping 

t units. The 𝑡𝑓 = 0.12 for 𝑖𝜑 = 1 ,is calculated from (15), 𝑡𝑓 =0.6 for 𝑖𝜑 = −1 is calculated from (18).  

4. Summary 

We worked out the band structure for an itinerant electron system in polymer chains, with first neighbour 

hopping terms, first neighbour spin-flip hopping terms (which are present in the system due to Rashba 

type spin-orbit interaction), on-site electron potential and external magnetic field. We calculated the 

strict restrictions between Hamiltonian coupling strengths necessary to obtain flat bands in the case of 

no magnetic field or SOI. 

Exemplifying our obtained results in the case of conducting polymers, we show that taking the action 

of the many-body spin-orbit interaction in the presence of external magnetic fields into account, the 

rigidly fixed flat band conditions can be substantially relaxed, allowing an easier creation in practice of 

flat bands in real systems. This result seems to be advantageous from the point of view of technological 

applications, since the SOI coupling strengths can be continuously tuned by external electric field. We 

also found that flat bands can also appear in the presence of external magnetic field, which further 

expands possibilities of technical applications. 

5. Acknowledgement 

N. K. acknowledges the support of ÚNKP-21-3-II New National Excellence Program of the Hungarian 

Ministry of Human Capacities. 

 
References 
[1] Gulacsi, Z., Kampf, A., Vollhardt, D. (2010). Route to ferromagnetism in organic polymers. Phys. 

Rev. Lett. 105, 266403. https://doi.org/10.1103/PhysRevLett.105.266403 

https://doi.org/10.1103/PhysRevLett.105.266403


Kucska, N., Gulácsi, Zs. Flat-band conditions 

179 

[2] Dong, K., Zhang, T., Li, J., Wang, Q., Yang, F., Rho, Y., Wang, D., Grigoropoulos, C. P., Wu, 

J., Yao, J. (2021). Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. 

Lett. 126, 223601. https://doi.org/223601.10.1103/PhysRevLett.126.223601 

[3] Lisi, S. et al. (2021). Observation of flat bands in twisted bilayer graphene. Nature Physics, 17, 

189-193. https://doi.org/10.1038/s41567-020-01041-x 

[4] Wu, C., Bergman, D., Balents, L., Das Sarma, S. (2007). Flat bands and wigner crystallization 

in the honeycomb optical lattice. Phys. Rev. Lett. 99, 070401, 1. 

https://doi.org/10.1103/PhysRevLett.99.070401 

[5] Zhang, S. M., Jin, L. (2019). Flat band in two-dimensional non-Hermitian optical lattices. Phys. 

Rev. A 100, 043808. https://doi.org/10.1103/PhysRevA.100.043808 

[6] Li, H. et al. (2017). Research of spin-orbit interaction in organic conjugated polymers, IOP Conf. 

Series: Materials Science and Engineering 213 012005.  

https://doi.org/10.1088/1757-899X/213/1/012005 

[7] Gulácsi, Z. (2013). Exact Ground States of Correlated Electrons on Pentagon Chains. 

International Journal of Modern Physics B, 27(14) 1330009, 

https://doi.org/10.1142/S0217979213300090 

 

https://www.nature.com/nphys
https://doi.org/223601.10.1103/PhysRevLett.126.223601
https://doi.org/10.1038/s41567-020-01041-x
https://doi.org/10.1103/PhysRevLett.99.070401
https://doi.org/10.1103/PhysRevA.100.043808
https://doi.org/10.1088/1757-899X/213/1/012005
https://doi.org/10.1142/S0217979213300090

