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Abstract 

This work presents an interpolated spline method to mathematically represent experimental data of a 

thermal distribution on a tube with heat flux. Linear regression was compared with the double linear 

interpolation process with an optimization algorithm and cubic spline curve method with the proposed 

problem. The results show that the interpolated experimental data can highly improve the efficiency of 

the cubic spline curves and lead to a smooth empirical equation for the experiments. The optimization 

algorithm chooses the interpolated points in a way that provides more minor errors. 

Keywords: Interpolated spline; Optimization; Curve fitting; Cubic spline; Linear regression; Heat exc-

hanger, Turbulent flow. 

1. Introduction

Optimization algorithms (Ghafil and Jármai, 2020a) are powerful techniques to find the best possible 

solution among many other feasible or unfeasible solutions. Artificial bee colony (Ghafil and Jármai, 

2018) and particle swarm optimization (Alsamia et al., 2021) are famous examples of metaheuristics 

(Almufti, 2019) which can be inspired by natural or human-made phneomina (Ghafil et al, 2021). One 

of the critical applications for optimization is curve fitting (Chen et al., 2005) which is a traditional 

engineering concept. Many methods were employed to find the best equation representing Cartesian 

space points like mean square error (Sarbishei and Radecka, 2011), linear regression (Yan and Su, 2003), 

and splines (De Boor, 1978). Cubic spline curves are piecewise polynomials consisting of adjacent seg-

ments. The most crucial engineering application for splines is path planning (Mahmood et al., 2019) in 

robotics (Ghafil and Jármai, 2019). The heat exchanger (Bouchenna et al., 2021) is a device used to heat 

transfer between two or more fluids for various applications, including power plants, nuclear reactors, 

refrigeration and air condition system, automotive industries, heat recovery system, chemical processing 

and food industries. In order to calculate the heat transfer. Acknowledge the prevailing temperature field 
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is the first requirement. Most calculating the temperature distribution methods within a tube wall are 

given in the literature by constant wall temperature (Askar et al., 2020) or constant heat flux (Karamallah 

et al., 2016). The heat transfer equipment industry is a vast and expensive part of the world economy 

due to the cost and size of the heat transfer equipment (Rohsenow et al., 1998). A large part of this cost 

to the industry is due to rising fuel prices.  As a result, methods to enhance the heat transfer process are 

of great interest. Even small reductions in fuel costs could make the difference between a successful and 

failing in the power industry (Siddique et al., 2010). 

In this paper, interpolated data using a metaheuristic algorithm is used to enhance the efficiency of 

the cubic spline curve to fit experimental data of a heat exchanger. First of all, the initial control points 

on the spline are chosen the same as the experimental data; then in-between point is created and chosen 

by the optimization algorithm. Axiomatically, the position of the control points is affecting the final 

shape of the spline, so the optimal position of the in-between points is crucial to develop an optimal 

spline that well-fit data. The interpolated spline method is compared with the pure spline method and 

linear regression method. 

2. Problem definition 

The physical problem is chosen to be a pipe of (1.58 cm) outer diameter and (1.4 cm) inner diameter, 

with (150 cm) length as shown in Figure 1. The outer surface of the tube is electrically heated by a coil 

made from Nichrome material (Chemical Composition: 80% Ni, 20% Cr, and has a melting point: 

1400°C) connected to an AC power supply to generate heat flux. It is (16.7 mm) long and (1.25 mm) 

diameter of wire with (1.36 Ω/m) resistance, and (AWG is 16). An electric insulator of Fiberglass is 

wrapped around the tube. Drilled ceramic bead elements are inserted around the wire heater to insulate 

the electrical heater, and then the wire heater is wrapped around the pipe. An Aluminum foil and secti-

onal pipe insulation of glass wool type with (1.9 cm) internal diameter and (6.35 cm) outer diameter 

thermal insulation operating in temperature up to (230 °C) nominal density is (64 kg/m3) used to insulate 

the testing tube. The surface temperature distributions along the tube length for different flow rate values 

are illustrated in Table 1. and Figure 2. The symbol f in Figure 1. and Figure 2. denotes the flow rate 

in the pipe. 

Table. 1. Experimental data of the tube subjected to heat flux. 

X (m) T (°C) 

0 45.1 45.6 45.5 45.5 45.4 45.5 45.3 45.1 45.2 

0.22 62.1 62.3 60.1 59.5 58.9 56.3 56.2 56.1 55.2 

0.44 65.3 63.6 61.4 61.2 61.2 57.8 57.1 56.5 55.7 

0.66 64.4 62.9 60.2 60.1 60 57.4 56.5 55.7 55.5 

0.88 64.7 63.4 60.7 59.9 59.7 57.9 56.8 55.9 55.8 

1.1 65.6 65.1 62.1 61 60.2 58.8 57 56.6 56.4 

1.32 66.8 66.9 63.4 62.3 61.5 59.7 57.7 57.3 56.7 

1.54 55.3 53.5 52.2 51.3 50.6 50.2 49.9 49.6 49.4 

flow rate (L/min) 1 1.5 2 2.5 3 3.5 4 4.5 5 
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Figure 1. Tube with different flow rates. 

 

 

Figure 2. Thermal distribution on the tube with different flow rates. 

3. Polynomial equation 

In this section, a polynomial of the fourth order was proposed to represent the data in section 2, as shown 

in equation (1). Polynomial regression analysis (Montgomery et al., 2021) was used to find the coeffi-

cients of the equation 𝑎𝑜, 𝑎1, 𝑎2, 𝑎3, and 𝑎4. 

𝑇(𝑥) = 𝑎𝑜𝑥
4 + 𝑎1𝑥

3 + 𝑎2𝑥
2 + 𝑎3𝑥 + 𝑎4, (1) 

The coefficients in equation (1) are calculated by the polynomial regression method, and they have 

been found as follows: 
𝑎𝑜 = −82.344 , 𝑎1 = 264.270 , 𝑎2 = −291.969 , 𝑎3 = 130.381 , 𝑎4 = 45.048. 

Figure 3., illustrates the real data curve vs polynomial curve denoted as fitting data, for the case flow 

rate equal to 1. 
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Figure 3. Real data vs polynomial regression curve. 

4. Cubic Spline curves 

Knot spline curve (Likhachev, 2021) is used in this study to represent the experimental data by defining 

the data set as a control point on the spline. Figure 4. shows the comparison between the knot spline 

curve and real data from experiments. In this section, knot spline was used purely by defining its control 

points in terms of real data. 

 

Figure 4. Knot spline curve compared with real data curve. 

5. Interpolated spline curve 

In this section, the Dynamic Differential Annealed Optimization (DDAO) algorithm is presented and 

used to find the best fitting equation and the results will be compared with other methods. 
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5.1. Dynamic Differential Annealed Optimization 

Dynamic differential annealed optimization is a new metaheuristic that is stimulating the manufacturing 

process of the dual-phase (DP) steel. Figure 5. reveals the physical scheme behind the algorithm which 

is used for continuous domains. 

 

Figure 5. Description of dual-phase steel production process. 

DDAO simulates the numerous cooling rates during manufacturing of the DP steel by the following 

equation: 

Sk = (Sci - Scj)+ Sr, (2) 

where Sk is a new solution proposed for the iteration number (k), k = 1…n, where n is the number of 

iterations, and Sci and Scj, are randomly chosen solutions from the population with random (i) and ( j) 

indices. Sr is a randomly generated solution within the search space of the problem out of the population. 

Equation (2) represents the simulation of the mechanical operations during the  production 
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where F is called forging parameter and rem is the remainder after division by 2, and this parameter has 

two values; 1 at odd iteration numbers, and a random number [0,1] if the iteration number is even. Since 

forging is done in parallel with cooling, Equation (2) can be modified as follows: 

Sk = (Sci - Scj )+ Sr*F. (4) 

In real production of DP steel, formation of new phases can be occurred at high temperatures more 

than at low temperatures. To mimic that in mathematics, DDAO has proposed equations (5) and (6): 
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where P is the probability of having a new solution, E is the difference between the objective value of 

the proposed solution from equation (4) and the objective value of the solution  SL, which is a solution 

of index L in the population, L =1,…, population size. T is the temperature variable, which should be 

damped from a high value to a lower value. Figure 6. shows the pseudocode of the algorithm which is 

also can be freely downloaded at: 

https://www.mathworks.com/matlabcentral/fileexchange/75526-dynamic-differential-annealed-op-

timization-ddao 

 

Figure 6. Pseudocode of proposed DDAO algorithm. 

5.2. The objective  

The objective function for the fitting problem can be summrized as the summation of differences among 

y-axis of the experimental data and the correponding y-axis on the fitting curve on the same x-axis value. 

The perfect cost function value that can be reached for the fitting problem is zero. 

The objective function is described by the following  





n

i

iaip yyO
1

  , (7) 

where O  is the objective function that should be minimized, yp is the y-coordinates on experimental 

data, ya is the y-coordinates on the fitting curve, and i is the index of the experimental data in the set of 

n experiments. Figure 7. shows the representation of the objective function which is described by equ-

ation (7). 

https://www.mathworks.com/matlabcentral/fileexchange/75526-dynamic-differential-annealed-optimization-ddao
https://www.mathworks.com/matlabcentral/fileexchange/75526-dynamic-differential-annealed-optimization-ddao
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Figure 7. Representation of the objective function. 

5.3. Experiment 

The efficiency of the knot spline curve is improved by considering interpolated points represented by 

cross symbol in Figure 8. The position of the interpolated points is highly affecting the final shape of 

the spline, consequently, the efficiency of the fitting process. The domain between adjacent segments is 

continuous. Therefore, an optimization algorithm is proposed to create and optimize the interpolated 

points. Dynamic differential annealed optimization (Ghafil and Jármai, 2020b) is used for the optimiza-

tion problem where it is responsible for the optimal positions of the interpolated points on each succes-

sive control point. Figure 9. reveals the interpolated spline curve with experimental data where it is 

clear that the developed curve greatly matches the experiments. 

The cubic spline in Figure 9. representing the experimental data on the continuous domain [0 , 1.6] 

smoothly and perfectly except for a bit of subdomain [0.23 , 0.28]. This is an acceptable error on the 

method that can be overcome by increasing the number of interpolated points developed by the optimi-

zation algorithm. The eight control points which are used in this experiment are the same as the experi-

mental data in Table 1. for a flow rate equal to five. Thus the number of interpolated points are seven 

considering using one interpolated point between each two successive control points. Each interpolated 

point should be in the best possible position in order to have the best curve that fits the data. This best 

position or coordination is estimated by the objective function described in equation (1). The objective 

function is used by DDAO to return coefficients for equation (1) that are corresponding to the minimum 

cost function. The output of the DDAO is the red curve in Figure 8. which is consists of 100 points. In 

other words, We have used the eight control points from experimental data to generate a curve with 100 

points using the DDAO with the help of seven interpolated points. The comparison between the perfor-

mance of the interpolated spline method in Figure 9. and spline method in Figure10. reveals the  effi-

ciency of the proposed method in this article. Table 2. shows the statistical results of comparison pure 

spline and interpolated spline methods on fitting experimental data in Table 1. 
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Figure 8. Interpolated spline method. 

 

Figure 9. Interpolated spline method compared with experimental data. 

 

Figure 10. spline method compared with experimental data. 

 control points 

Interpolated points by 

optimization algorithm 
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The error percentage was calculated using the following equation 

𝐸𝑟𝑟𝑜𝑟% =
|𝑦𝑓 − 𝑦|

𝑦
∗ 100 (7) 

where y is the y-coordinate of the experimental data and yf is the y-coordinate of the corresponding y-

coordinate on the fitting curve. The statistical results reveal that the efficiency of the interpolated spline 

method is better than spline in fitting experimental data. In many cases, interpolated spline curve is 

matching the experimental data, and in very narrow ranges there are small overshots that can be an 

acceptable limitation on the method. The best results were written in bold line in Table 2. 

Table. 2. Results of the comparison beween spline and interpolated spline methods. 

Experimental data Method yf -axis error% 

x-axis y-axis 
0.1 49.74 Interpolated spline 49.74 0% 

spline 55.89 12.3% 

0.3 55.365 Interpolated spline 55.3 0.11% 

spline 55.9 0.96% 

0.5 55.645 Interpolated spline 55.715 0.12% 

spline 55.558 0.15% 

1.2 56.53 Interpolated spline 56.73 0.35% 

spline 56.9 0.65% 

1.4 54.06 Interpolated spline 54.06 0% 

spline 55.401 2.4% 

6. Conclusion 

In this paper, interpolated cubic spline curve was developed to fit experimental data and represent them 

in the best possible equation. The interpolated spline was compared with the linear regression method 

and pure knot spline on the same experiments. The proposed interpolated spline is overcome linear 

regression and pure knot spline in fitting the data set. However, the efficiency of the proposed method 

is depending on the degree of the polynomial in the regression and the number of control points in the 

spline interpolation. 
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