Multidiszciplináris Tudományok https://ojs.uni-miskolc.hu/index.php/multi <p>A Multidiszciplináris Tudományok a Miskolci Egyetem folyóirata.</p> Miskolci Egyetemi Kiadó hu-HU Multidiszciplináris Tudományok 2062-9737 The rise of the agile approach https://ojs.uni-miskolc.hu/index.php/multi/article/view/3772 <p style="font-weight: 400;">Agile has become a buzzword in business. Agile is known for software development, excelled in project management, and today is about the agile transformation of management and personal life. The increase in the number and scope of related scientific articles and case studies about agility leads to a kind of self-confirmation of the approach. Compared to traditional (waterfall) project management, agile projects have a higher creative content, and participants learn more and feel more valued. At the same time, agile has several preconditions and requirements that must be fulfilled. Missing those will undoubtedly lead to failure. The study gives an overview of the agile principles, approach, and the considerations that should be made before an organization changes to it</p> László Berényi Copyright (c) 2025 László Berényi 2025-11-26 2025-11-26 15 3 3 10 10.35925/j.multi.2025.3.1 Exploring opinion patterns https://ojs.uni-miskolc.hu/index.php/multi/article/view/3773 <p style="font-weight: 400;">Due to the great variety of stakeholders and the rapidly changing environment, the multi-criteria decision problems are common in the field of management. Such problems require specific solutions due to their complexity and limited information. In an increasingly dynamic environment, managers should include tools and methods that can be flexibly adapted to address novel challenges. There are technical and personal barriers in case of a long list of items to set in order. A simple ranking may be impracticable, but pairwise comparison or the Q-sort method offers an old but rediscovered management tool for ranking and building opinion patterns. The study gives an overview of the opportunities.</p> László Berényi Copyright (c) 2025 László Berényi 2025-11-26 2025-11-26 15 3 11 19 10.35925/j.multi.2025.3.2 Numerical modeling of pipe-soil interaction under surface loading https://ojs.uni-miskolc.hu/index.php/multi/article/view/3954 <p>Buried steel pipelines (BSPs) subjected to large surface-induced ground movements (e.g., fault displacements) exhibit complex behavior that is not yet fully understood. Such ground-induced deformations give significant risks to pipeline integrity, motivating detailed investigation into BSP response under extreme conditions. This study addresses the problem by numerically modeling pipe–soil interaction under a 1.0 m vertical fault displacement, illustrating the pipeline’s stress–strain response and highlighting the challenges of this complex engineering scenario. The purpose of this paper is to demonstrate a robust simulation approach that captures the intricate BSP behavior under large ground shifts, thereby advancing understanding and aiding in the safe design of buried pipelines. The analysis employs a Pasternak elastic foundation model coupled with a finite element method (FEM) in Abaqus, using special pipe–soil interaction (PSI) elements to simulate the soil support and pipeline coupling. The numerical results provide detailed stress and displacement distributions along the pipeline, confirming an elastic–plastic deformation pattern. Permanent deformations (plastic yielding) develop primarily in the vicinity of the fault, while pipeline regions farther than roughly 100 m remain in the elastic region.</p> Attila Baksa Erika B. Varga Copyright (c) 2025 Attila Baksa, Erika B. Varga 2025-11-26 2025-11-26 15 3 20 31 10.35925/j.multi.2025.3.3 Invisible data, visible experiences https://ojs.uni-miskolc.hu/index.php/multi/article/view/3959 <p>Recent advancements in artificial intelligence have begun to reshape the practices of contemporary city marketing by enabling the development of more targeted, efficient and personalised communication and development strategies. By analysing real-time data gathered from digital interactions and user feedback, AI technologies support the creation of segment-specific content and the improvement of the user experience, while fostering a stronger sense of belonging to a community among various stakeholders, including residents, tourists, businesses and students.</p> <p>This article provides a comprehensive overview of the role regarding data-driven decision making in city marketing. European best practises – such as Madrid’s VisitMadridGPT system and Helsinki’s MyHelsinki platform – show that AI contributes not only to communication, but also to strategic and operational dimensions of urban development. These examples emphasise the ability of AI to improve both the competitiveness and long-term sustainability of cities. Ethical considerations, particularly in relation to data privacy, are also addressed as integral components of responsible AI adoption. The study aims to summarise current trends, practical implementations and critical challenges in the application of AI regarding city marketing and ultimately contribute to the development of more conscious, data-driven urban strategies.</p> Noémi Hajdú Copyright (c) 2025 Noémi Hajdú 2025-11-26 2025-11-26 15 3 32 41 10.35925/j.multi.2025.3.4 Deep learning-based gross vehicle weight estimation in Bridge Weigh-in-Motion by using sensors in one cross-section https://ojs.uni-miskolc.hu/index.php/multi/article/view/3970 <p>Gross Vehicle Weight (GVW) estimation plays a crucial role in ensuring the safety, maintainability, and sustainability of road transportation by identifying and filtering out overloaded vehicles. Bridge Weigh-in-Motion (B-WIM) systems enable the determination of axle loads, vehicle speeds, axle spacings, and other vehicle parameters as they cross a bridge, using data from strain gauges installed beneath the bridge deck. This paper proposes a novel deep learning-based GVW estimation method designed for B-WIM systems equipped with sensors at a single cross-section. Unlike conventional axle load estimation-based GVW estimators, the proposed method does not rely on vehicle speed estimation or axle detection steps. The method is evaluated on an annotated dataset of 91 vehicles measured on the Monostori Bridge. Results demonstrate B+ accuracy with a Mean Absolute Percentage Error of 2.47% for GVW estimation in accordance with the COST 323 Weigh-in-Motion classification standard. Furthermore, the proposed solution can be integrated into standard B-WIM pipelines using ensemble models. Tests on the same dataset indicate that the ensemble approach may outperform existing B-WIM pipelines in GVW estimation accuracy by reducing the Mean Absolute Percentage Error by 0.1%.</p> Bence Szinyéri Bence Kővári Dénes Kollár István Völgyi Attila László Joó Copyright (c) 2025 Bence Szinyéri, Bence Kővári, Dénes Kollár, István Völgyi, Attila László Joó 2025-11-26 2025-11-26 15 3 42 54 10.35925/j.multi.2025.3.5 Hipoid fogaskerékpár zaj- és rezgésjellemzőinek vizsgálata szimulációs módszerekkel https://ojs.uni-miskolc.hu/index.php/multi/article/view/3771 <p>Az autóiparban széles körben alkalmazott hajtáselemnek minősülnek a hipoid fogaskerekek. Ez különösen ott igaz, ahol nagy teljesítményátvitelre és kompakt kialakításra van szükség. Egyúttal ezek jelentős tervezési kihívásokat jelentenek zaj- és rezgésjellemzőik szempontjából. A jelen tanulmány célja a hipoid fogaskerékpárok NVH-viselkedésének elemzése szimulációs módszerekkel, kiemelten vizsgálva a hordképet, az átviteli nyomaték stabilitását, valamint az átviteli hiba (Transmission Error, TE) spektrális tulajdonságait. A kutatás során MSC Adams kereskedelmi szoftverrel készített többtest-dinamikai modellel vizsgáltuk a fogazati kapcsolatokat. Az eredmények szerint a hordkép optimalizálása akár jelentős zajcsökkentést eredményezhet. A frekvenciaspektrum elemzése alapján a legjelentősebb zajforrások az 200–800 Hz-es tartományban találhatók. Ezek a frekvenciák közvetlen kapcsolatban állnak a fogazati gerjesztésekkel. Az eredmények alapján javasolt az érintkezési nyomás eloszlásának és a fogprofil geometriájának további optimalizálása.</p> Krisztián Horváth Ambrus Zelei Copyright (c) 2025 Krisztián Horváth, Ambrus Zelei 2025-11-26 2025-11-26 15 3 55 65 10.35925/j.multi.2025.3.6