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Abstract. Flow-shop scheduling problems are classic examples of
multi-resource and multi-operation optimization problems. This paper
demonstrates our model and simulation for solving Flow-shop scheduling
optimization problems with resource availability constraints to minimize
makespan. Working hours, transfer times and setup times are taken into
account. Working hours could be interpreted in two ways. In the �rst
option, operations must �t into a single available time slot. In the second
option, the simulation could cut operations across multiple time slots.
We propose a simulation algorithm that accounts for both scenarios and
could be used with any permutation-based exact, heuristic, or search
algorithm.

Keywords: Flow-shop, Constrained Flow-shop, Resource constraints,
Scheduling, Optimization, Working hours, Transfer times, Setup times,
Makespan

1. Introduction

Scheduling tasks are often within the scope of production information engi-
neering. It is an interdisciplinary subject area in which the laws of the speci�c
systems and processes of the �eld appear together with the rules, methods,
and tools of applied informatics. Production information engineering is the
applied informatics �eld that deals with modeling, planning, and controlling
production systems and processes [1].

http://doi.org/10.32968/psaie.2022.1.3.
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Scheduling is a form of decision-making that is essential in several areas. It
deals with allocating limited available resources between the types of oper-
ations to be performed that can be optimized for one or more performance
metrics. Depending on the situation, resources and activities can take several
di�erent forms. Resources can be hospital nurses, bus drivers, machines in a
manufacturing system, processors, and mechanics in a workshop. Activities
can include manufacturing operations, tasks of nurses in a hospital, running
computer programs, car repair operations in a workshop.

We can also optimize for many di�erent performance metrics. These can be to
minimize lead time or the number of late jobs [2].

They have been scheduling in plant management, operations research, man-
agement, and computing for over �fty years. To date, a vast amount of knowl-
edge has accumulated in this area. Well-functioning scheduling algorithms can
signi�cantly reduce the cost of manufacturing operations, allowing the manu-
facturer to remain competitive. The scheduling problems studied in the 1950s
were relatively simple. Several algorithms for optimal results have been devel-
oped. The most prominent of which were developed by Jackson [3, 4], Johnson
[5] and Smith [6]. Over time, the problems became more sophisticated, and
researchers did not �nd algorithms that provided optimal solutions to them.
Most researchers have tried to develop e�cient branching and constraint (BB,
B&B, or BnB) algorithms for these, which are exponentially running algo-
rithms. With the development of complexity theory [7, 8, 9], researchers have
recognized that these problems are inherently complex to solve. In the 1970s,
many problems proved to be NP hard [10, 11, 12, 13].

In the 80s, scheduling took several directions in industry and academia. One
trend was the development and analysis of approximation algorithms. Another
direction was the growing attention to stochastic scheduling problems. From
then on, research in the �eld of scheduling has accelerated.

2. The extended problem

Graham et. al. [14] introduced the α|β|γ formal classi�cation scheme. The
α �eld denotes the resource environment. β describes the characteristics and
constraints regarding jobs. γ sets the objective functions, for which we optimize
[15, 10].

The β �eld has the following default values:

• Each job can only be at one machine at a time.
• A machine can only process one operation at a time.
• All the machines are available all the time.
• Every job is available right away, the can be started at any time.
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• The jobs are independent from each other. They can be �nished in any
order.
• The operations cannot be interrupted.
• The bu�er size between machines is in�nite.

Our scheduling problem can be de�ned as:

F,Calm|perm, si,j,m, T r
k,l|Cmax

The meaning of the symbols is the following:

• F � one way, multi-operation, shop level scheduling problem (Flow-shop
[5])
• Calm � the resources are constrained to a set of working hours.
• perm � the jobs cannot precede one another
• si,j,m � the resources must be set up between jobs. The setup time is
based on the order of jobs.
• T r

k,l � the transfer times between machines cannot be neglected. Transfer
times are based on the relative position of resources.
• Cmax � Minimizing makespan.

The general Flow-shop problem can be formulated as NJ number of jobs that
have to be processed on NR number of machines in order. Thus each job
consists ofNR number of operations pi,j , i ∈ {1, ..., NJ}, j ∈ {1, ..., NR} where
i is the index of the job and j is the index of the operation. Each machine can
handle only one job at a time and one job can only be processed on one machine
at once. We want to �nd a processing order s such that the time required to
complete all operations (the makespan) is minimized Cmax → min.

In our more generalized problem, we take the transfer times between machines
and setup times between jobs on each machine into account. In our problem the
machines are not available at any time, they also have working time-intervals
(time slots).

This problem and most of it's sub-problems are NP-hard [16, 17], therefore
they cannot be solved with an algorithm that has a polynomial run time and
guarantees an optimal solution [18, 15]. The maximal sub-problem that can
be solved in polynomial time is

F2||Cmax[5].

This problem can always be solved by Johnson's algorithm. The minimally
NP-hard sub-problem is
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F3||Cmax[8],

which can be solved by the Extended Johnson's algorithm in special cases.

3. The data-model of the problem

To change the model of the regular �ow-shop problem, we have to store the
working hours, the transfer times, and the setup times.

For the working hours, we need to store the start and end times of every slot
where the resource is available. There are multiple of these slots for every
resource.

The setup times represent con�guration and tool changes for every resource
between each job. In our model, every resource contains a table. The key for
each setup time value is a compound key. It contains the index of the ended
and starting jobs. Usually, the setup time value is set to 0 between matching
jobs.

A simple solution for storing transfer times is a global, shop-level table in
which the key is the index of the two machines and the value is the transfer
time between them. Another solution would be to slice this table and distribute
it between the resources. In this case, the key becomes the resource index from
which the workpiece is transferred.

4. The simulation

The problem's extension does not require any changes in implementing the
objective function and the scheduling algorithms. Every time the problem
changes, we only have to alter the simulation, and data-model [19]. Alongside
simulating the Flow-shop problem, we have to consider the additional criteria
we proposed in section 2.

For simulating working hours, we have two options. In the �rst option, the
operations cannot be interrupted. We have to �nish them in the available
time slot where they can be processed from start to �nish. In the second
option, operations can be processed across multiple available time slots. They
do not have to �nish processing in the same slot they are started in. Here, the
base schedule is used; there is no idle time, only the downtime is wedged in.
Therefore if we take out the downtime, we get the original, non-interrupted
schedule back.
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Case 1. Let the number of jobs be NJ = 4, the number of resources NR = 1,
the set of processing times ~p = {2, 2, 2, 1}, and the schedule set by the search

algorithm is ~s = {1, 2, 3, 4}.

In this case, the Gantt diagram of the original, �ow-shop case is:

1 2 3 4 5 6 7 8 9 10

1
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3

4

finish-to-start

finish-to-start

finish-to-start

Figure 1. Base case

Changes introduced in the �rst, non-interrupting case:
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Availability
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finish-to-start

finish-to-start

Figure 2. Non-interrupting case

Changes introduced in the second, interrupting case:
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Figure 3. Interrupting case

When we take setup times into account, the time it takes to set up each
machine is read from the setup table and added to the processing time of each
operation. In our case, the �rst operation does not require any setup, so the
setup time is 0. If we take the same case as before (case 1) and we de�ne the
setup table as:

Table 1. Setup table

Starting job Finished job time
1 1 0
1 2 1
1 3 2
1 4 1
2 1 3
2 2 0
2 3 2
2 4 2
3 1 1
3 2 2
3 3 0
3 4 2
4 1 1
4 2 1
4 3 2
4 4 0
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Considering setup times, the Gantt of the base case (case 1) changes to:

1 2 3 4 5 6 7 8 9 10 11 12
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finish-to-start

finish-to-start

Figure 4. Setup times

The setup time from the �rst job to the second is 1 unit of time. Therefore
the second job's processing time is p∗2 = p2 +1 = 3. If we continue throughout
every job, we get the following set of processing times:

Table 2. Processing times with added setup times

i pi setup p∗i
1 2 0 2
2 2 1 3
3 2 2 4
4 1 2 3

We also take into account the movement of the semi-�nished product between
the individual resources and machines. In this case, we add the delivery time
to the start time of the work, which depends on the previous and current
machine. In our case the transfer time before the �rst operation is 0.

Case 2. Let the number of resources be NR = 4, the number of jobs NJ = 1,
and the set of processing times ~p = {1, 3, 4, 1}.
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In this case, the Gantt of the problem without taking transfer times into ac-
count:

1 2 3 4 5 6 7 8 9
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finish-to-start

finish-to-start

finish-to-start

Figure 5. Gantt for case 2

Let transfer times be:

Table 3. Transfer times

Previous machine Next machine Time
1 1 0
1 2 1
1 3 2
1 4 1
2 1 3
2 2 0
2 3 2
2 4 2
3 1 1
3 2 2
3 3 0
3 4 2
4 1 1
4 2 1
4 3 2
4 4 0
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If we take transfer times into account, the Gantt of the schedule is the following:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

Figure 6. Transfer times

The table of the original and modi�ed schedule:

Table 4. Schedule when considering transfer times

j pi transfer ST ET ST ∗ ET ∗

1 1 0 0 1 0 1
2 3 1 1 4 2 5
3 4 2 4 8 7 11
4 1 2 8 9 13 14
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The algorithm for the simulation can be found in Algorithm 1. variable.field
denotes the �eld of a variable (struct or class). The list of parameters are:

Table 5. Parameters for the Simulation (algorithm 1)

Input parameters
NJ number of jobs
res resource data
resr.cal time intervals
resr.transr−1 transportation time of jobs from machine r − 1 to machine r
resr.setk,l setup time on machine r changing from job k to job l
NR number of resources (machines)
s schedule (the sequence of jobs to be executed)
t0 start time of the execution
mode mode of the job cutting (splitting)

Input/Output parameters
job calculated time data of the jobs
jobj .start starting time of job j on machine r
jobj .end �nishing time of job j on machine r
jobj .proc processing time of job j on machine r

Local Variables
j sequence index for jobs in schedule
r index for resources (machines)
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Algorithm 1 Simulation

for j ← 1, NJ do

for r ← 1, NR do

if j = 1 then . First job
if r = 1 then . First machine

jobssj .startr ← t0
else

jobssj .startr ←
jobssj .endr−1+
resr.transr−1

end if

jobssj .endr ←
jobssj .startr+
jobssj .procr+
resr.set1,sj

else

if r = 1 then . First machine
jobssj .startr ← jobssj−1 .startr

else

jobssj .startr ← max(
jobssj .endr−1 + resr.transr−1,
jobssj−1 .endr)

end if

jobssj .endr ←
jobssj .startr+
jobssj .procr+
resr.setsj−1,sj

end if

LoadToCalMode(jobssj .start, jobssj .end,
res, r, mode)

. Fit job to time slot

end for

end for

Algorithm 2 contains the procedure where the jobs are �tted to an available
time slot without interruption. Algorithm 3 contains the procedure where
splitting jobs across multiple available time slots is permitted. If no available
time slot is found, both algorithms append the job at the end and return with
−1. Algorithm 4 contains the function that calls the previous two procedures
according to the mode. If the mode is set to true, splitting jobs across mul-
tiple time slots is permitted. The list of parameters for all three algorithms
(algorithm 2, 3, 4) are:
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Table 6. Parameters for �tting jobs to time slots (algorithm 2, 3, 4)

Input parameters
res resource data
r resource index
resr.calc availability time interval c
resr.calc.st start time of availability time interval c
resr.calc.et end time of availability time interval c
resr.ncal number of availability time intervals
mode mode of the job cutting (splitting)

Input/Output parameters
st start time of the job
et end time of the job

Local Variables
fps start of the �rst part
found index of the time slot where the job is �tted
c counter for time slots
size size of job
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Algorithm 2 Fitting a job to working time slots without cutting

function LoadToCalNoCut(st, et, res, r)
found← −1
c← 0
size← et− st
while c < resr.ncal do

if st < resr.calc.et then
st← max(st, resr.calc.st)
et← st+ size
if et ≤ resr.calc.et then . The job �ts

found← c
return found

else . The job doesn't �t
c← c+ 1
if c ≥ resr.ncal then . No more slots available

st← resr.calc−1.et . Append to last slot
et← st+ size
return found

end if

continue to next iteration
end if

end if

c← c+ 1
end while

end function
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Algorithm 3 Fitting a job to working time slots with cutting

function LoadToCalCut(st, et, res, r)
fps← −1
found← −1
c← 0
size← et− st
while c < resr.ncal do

if st < resr.calc.et then
st← max(st, resr.calc.st)
et← st+ size
if fps = −1 then fps← st
end if

if et ≤ resr.calc.et then . The job �ts
found← c
return found

else . The job doesn't �t
c← c+ 1
if c ≥ resr.ncal then . No more slots available

et← st+ size
return found

end if

size← size− resr.calc−1.et− st . Remaining time
continue to next iteration

end if

end if

c← c+ 1
end while

end function

Algorithm 4 Fitting a job to working time according to the mode

function LoadToCalCutMode(st, et, res, r, mode)
if mode then . Cutting mode

return LoadToCalCut(st, et, res, r)
else

return LoadToCalNoCut(st, et, res, r)
end if

end function
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Case 3. Let the number of jobs be NJ = 3, the number of resources NR = 2,
the matrix of processing times

pi,j =

∣∣∣∣∣∣
10 12
20 5
22 15

∣∣∣∣∣∣ ,
and the schedule set by the search algorithm is ~s = {1, 3, 2}.

The resulting schedule represented on a Gantt chart is the following:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

finish-to-start

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

finish-to-start finish-to-start

Figure 7. Schedule of case 3

Case 4. Let the number of jobs, the number of resources, and the matrix of

processing times along with the schedule be the same as in case 3. Let the

transfer time between the two machines be t = 3. The table of setup times:

Table 7. Setup times for case 4

machine from to value

1 1 3 2

1 3 2 5

2 1 3 4

2 3 2 3
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The operating time slots for the machines:

Table 8. Operating time slots for case 4

machine from to

1 0 15

1 23 47

1 50 80

2 12 27

2 32 50

2 55 90

If every operation must be processed in a single time slot, the resulting schedule
is the following:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

setup

transfer

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

setup

setup setup

transfer

Figure 8. Schedule of case 4 with no cut

If we are allowed to execute an operation in multiple di�erent time slots, the
schedule changes to:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

setup setup

setup

transfer transfer

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

setup

transfer

Figure 9. Schedule of case 4 with cut

In this section, we demonstrated the operation of the advanced simulation
based on the extended data model. Experimental runs with our implemented
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system have proven that the algorithms work correctly, e�ciently, and meet
the requirements of industrial applications.

This proposed extended simulation can support to solve the �ow-shop sched-
uling problems, in which the resources (machines, workers and so on) are not
available continuously, the transportation times of the workpieces must be
considered, and the setup times of the resources cannot be ignored.

The main advantage of our proposed solution concept is that the search al-
gorithms developed to handle traditional �ow shop problems can still be used
without change, because the proposed simulation completely hides the speci�c
features of the real production systems. Our method also allows that the new
meta-heuristic search algorithms will be used directly to solve the �ow shop
type scheduling problems by exploiting the potential of the proposed simula-
tion.

5. Conclusion

Our research focused on scheduling work to be performed on time-limited re-
sources. The classic one-way overtaking scheduling task type was extended to
include material handling times and machine changeover times based on indus-
try needs and to associate resource availability time intervals with resources
and add them to the model as a constraint. This extension has signi�cantly
changed the characteristics of the underlying problem. The latest completion
date was used as the optimization goal. In the basic model, the search for
the best startup sequence was in�uenced only by the operation times of the
jobs. In the case of the problem, we examined the changeover times depending
on the work sequence, the material handling times between the machines, the
interruptibility of the operations of the jobs, and the availability times of the
machines that appeared.

We transform the extended problem to the classical one-way overtaking case us-
ing a simulation method, with the proposed simulation algorithms collectively
encompassing the features of the extended problem. As a result, the extended
problem has become manageable with any permutation search algorithm.

In addition to the fact that our solution method proved very e�cient in this
particular case, we also found that the proposed solution concept can be used
for other scheduling tasks. The advantage of our solution is especially evident
when resources are not available on time. Furthermore, the method can also
be used for continuously available resources because we get back to the time
axis of the original problem, which can be modeled so that each resource has
a single availability time interval, according to which it is available from the
initial time to in�nity.
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The results encouraged us to continue our research work, incorporate other
speci�c industrial needs into the simulation, and solve di�erent types of sched-
uling problems on a similar principle with a problem-transformation approach.
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