
 


Production Systems and Information Engineering

Volume 10 (1), pp. 15�28
doi: 10.32968/psaie.2022.1.2.

15

THE PAST AND THE FUTURE OF COMPUTER

VISUALIZATION

Péter Mileff

University of Miskolc, Hungary
Department of Information Engineering

mileff@iit.uni-miskolc.hu

Judit Dudra

Bay Zoltán Nonpro�t Ltd. for Applied Research, Hungary
Department of Structural Integrity and Production Technologies

judit.dudra@bayzoltan.hu

Abstract. Computer visualization has a long history with many great
results. However the 21th century has seen the greatest progress in
development. The area continuously followed the evolution of the avail-
able hardwares. As more and more computing capacity based computers
became available, computer visualization had been unfolded. New algo-
rithms and technologies have appeared. Nowadays, there is no area in
our daily lives where the need for visualization does not appear, whether
it be a car, a computer game, or even an IoT device. This paper ex-
amines and makes a brief overview abount the dominant trends that
modern real-time visualization currently follows. Key technologies are
covered that are an integral part of today's rendering and the opportuni-
ties that could be decisive for future real-time rendering. It is di�cult to
predict the future of visualization and the preferred technology by the
developers, as it depends heavily on what hardware vendor-supported
technology becomes widely accepted and dominant.

Keywords: computer visualization, voxel based rasterization, software
rendering, ray-tracing

1. Introduction

The beginning of computer visualization can be traced back to the time of the
�rst computers. The availability of hardware as a natural need has led to the
development of the area. Visualization has now become an integral part of our
lives. There is almost no area where it has not appeared in some form. Any
application that collects data may require visualization. We can even think of
the dashboard and auxiliary displays of modern cars here. There are areas,

http://doi.org/10.32968/psaie.2022.1.2.


16 P. Mileff and J. Dudra

where the application development can only be done visually. Examples are a
computer game, a cartoon, or even a CAD model of a part. There are no ads or
TV commercials that do not include any visualization. The human is a visual
type. Whatever we need to demonstrate, understand or comprehend, we prefer
to use illustrations, animations and other graphics to increase intelligibility.

The most important goal of computer visualization is to model reality as ac-
curately as possible with the available hardware, which is a very complex,
multifactorial task. Based on these, two important types of rendering can be
distinguished: real-time rendering and so-called o�ine rendering. The two
groups have been separated from the beginning. As their needs are di�erent,
their development has taken di�erent forms.

O�ine rendering is designed to achieve high image quality. Its typical applica-
tion areas are the rendering of frames for (animated) �lms, three-dimensional
models (e.g. car, building, etc.) taken from a given view. Since the main goal
is to reach the highest image quality and the best possible approximation of
reality, the calculation of pixels is not performed in real time.

The calculation of the frame without a strict time limit makes it possible to
take into account the thermal interest factor that determines a realistic repre-
sentation accurately and physically correctly. Typically, such factors are the
e�cient handling of light, illumination model, re�ection, surface material prop-
erties, and shadows. In these forms of representation, the really good result
is actually the use of the so-called global illumination, where the (necessary)
indirect lights are also modeled and calculated.

The �eld of o�ine visualization has evolved a lot over the years, but not as
much as real-time visualization. Most of the algorithms that try to approx-
imate reality correctly were already available in the very early days, but the
limitation was the hardware available in each case. With this form of represen-
tation, it was recognized from the outset that the calculation of frames could
not be left to a single computer. Over time, local and now global so-called
render farms appeared.

Now in modern 3D computer graphics (design) software (e.g. Blender, Au-
todesk 3ds Max) there is a built-in ability to con�gure and distribute the
rendering calculation of a graphics content between di�erent computers. This
can be called a local render farm. Because the rendering process usually has
huge computing power requirements and it is not easy to maintain an own
computer rendering farm, online render farms have been appeared.

As well as with the spread of broadband internet and the rapid development
of web and cloud technologies, online rentable computing capacities are now
available to compute the visual elements of a single frame or even an entire



The Past and the Future of Computer Visualization 17

movie. It is important to note that only CPU-based computing capabilities
have been available in the area for quite some time, but GPU�based farms are
now available. The reason for the proliferation of relatively late GPU solutions
is that they often adhere to 64�bit computing to achieve high image quality.
GPUs, on the other hand, only o�er this in recent years. The other reason, due
to the late support, is that we can even divide the calculation of one frame into
several machines. However, for GPUs, this was also di�cult at �rst, because
driver and API support had to be developed for this.

The article hereinafter focuses on real-time visualization, which can undoubt-
edly go a long way behind it, and has undergone tremendous development in
recent years. A strict condition for real-time rendering is (usually) that at
least as many frames per second be calculated as is already continuous to the
human eye and that is necessary for the given visualization or interaction. For
computer games, this typically means 50 to 60 frames per second. Below this,
for certain types of games - where events change faster - the gaming experi-
ence is not satisfactory. Here, perhaps, the above-mentioned goal of computer
visualization could be supplemented, according to which the most accurate
modeling of reality is the most important guideline. In fact, everything needs
to be achieved in real-time visualization, evolving to the point where images
produced now o�ine are produced in real time. The development of hardware
and all e�orts are mostly in this direction, which is why we can say that it
is the most developing area. In the following the most important trends and
techniques of visualization are reviewed below.

2. Evolution of the hardwares

It is safe to say that the main driving force of computer visualization is the
gaming industry. Since the advent of the �rst computers, there has been a
growing demand for playing with the computer in some form. And of course,
since visual quality is a key player in the end result, it has undergone a very
strong development. In the beginning, it was only possible to play quality
games on arcade machines. The real explosion was the advent of home com-
puters at the right price, when it became available to almost anyone to buy at
least one desktop computer.

Important players in this age were the 386, 486, 586, 686 and Pentium I.
type computers. These hardwares did not have good performance compared
to today's computer. Weak CPU, low and slow memory, limited BUS speed
(ISA, PCI) and of course a complete lack of hardware-accelerated rendering.

In comparison, an Intel 486DX-33 (1990) at the time had 0.03 GFLOPS per-
formance, while an Intel Core i7-3770 (Ivy Bridge) (April 2012) had 108.8



18 P. Mileff and J. Dudra

GFLOPS performance. Despite this (and the lack of internet) the gaming
industry began to �ourish, this period is called the DOS era.

Despite the low hardware performance, great graphics applications / games
were born. The typical language of software development was C, PASCAL,
and performance-critical parts were then embedded as assembly blocks. The
programs (especially for games) had to be well optimized, as neither a dedicated
GPU-based graphics card nor serious performance was available, everything
was calculated by the CPU. This was further complicated by the fact that
the programming tools and environments available at that time were not as
�exible and comfortable as they are today. Perhaps the Pentium I, II, III, and
IV families can be mentioned as a separate era. A very important milestone
was that the so-called MMX extended instruction set was already available
in the central unit of the �rst-generation Pentium, and later more advanced
versions of it were called the SSE family.

Hardware-accelerated GPUs were still not developed at this time, the graphics
were still calculated by the CPU. MMX and SSE are a SIMD (single instruc-
tion, multiple data) instruction set. They allow the same arithmetic operation
to be performed on a large amount of data at a time. SIMD was a major step
forward in accelerating calculations, allowing large vectors or matrices to be
manipulated in less time. SIMD instructions allow easy parallelization of al-
gorithms used in audio, video, and video processing. In practice, in computer
visualization, this meant that the processor was able to perform some transfor-
mation on multiple pixels simultaneously. Following its release, the software
soon began to support the new family of instructions, even though creating
speed-critical parts of a software based on MMX / SSE was not a trivial task.
Shortly after the MMX line was born, AMD also came up with an expanded set
of instructions, 3DNOW!, which was a similar extension, mainly to help with
three-dimensional rendering. Hardware manufacturers soon realized that the
rendering process could be well separated from the rest of a piece of software as
well as parallelized. In response to this demand, after many developments, the
�rst true dedicated GPUs [3DFX Voodoo I (1996), Voodoo II (1998), GeForce
256 (1999)] were born. The great advantage of these was that they were able
to make a signi�cant improvement in image quality and speed.

Although this paper focuses mainly on the PC line, many technological steps
have been required to complete these GPUs. Many smaller bigger success-
ful chips and cards were born. Such was the case with the AGA (Advanced
Graphics Architecture - 1992) add-on for the Amiga 4000. Video cards be-
gan to spread explosively, being available at relatively a�ordable prices in any
store. And the software immediately began to support it through the OpenGL
and DirectX APIs that were started to develop at the time. The GPU market



The Past and the Future of Computer Visualization 19

has been growing steadily since then, despite no major technological innova-
tion since then. Initially, video cards had a �xed-function pipeline, and the
programmer had little or no say in the rendering process. An important stage
in the development was the appearance of programmable pipeline and the
shaders. Development has come a long way, with GPUs for portable devices
also appearing. It is safe to say that today's GPUs already have very high
performance. In addition to visualization, they can also be used for general
computational tasks. If we look at the list of the fastest computers registered
by the TOP500, many GPU-based computers are at the forefront.

We must not forget that the GPU is not a panacea. Although they are fast,
their price has multiplied over the years, and their power consumption has also
increased signi�cantly [1]. Observing the market, a very strong marketing /
media support can be felt. Today, almost every device gets a GPU, so it goes
without saying that we use it for visualization. This is not necessarily right in
all cases, because the used hardware usually restricts the applicable rendering
technique. However, the industry has forgotten that there is already a good
hardware in the computer that can be used to display or complement it: the
CPU.

3. Polygon based geometry

Several approaches have emerged to represent shapes in memory, but the most
common and dominant object representation today is the polygon-based ap-
proach. In this case, the object or model is usually divided into the simplest
convex polygon(triangles) during the modeling, and in the process of drawing
these elements are rasterized using some type of algorithm.

The performance and nature of the rendering always heavily depends on the
rasterization algorithm. Although a number of di�erent solutions have evolved
over the years (e.g. raytracing, volume rendering, etc.), GPU manufactur-
ers use the triangle traversal approach during the eal-time rendering as the
prevailing process. The reason for the choice is the performance because the
implementation allows for signi�cantly faster visualization than, for example,
ray-based algorithms. The triangle, as a separate unit, has a particular impor-
tance and can be considered practically the atomic unit of real-time represen-
tation.

3.1. Triangle traversal

The triangular traversal based approach was already the basis of early com-
puter visualization and is still the dominant visualization solution today. To
put it very simply, the essence of the process is as follows. Triangles mapped



20 P. Mileff and J. Dudra

to the region of the screen, like any non-intersecting plane polygon, divide the
plane into two regions: the inner area, which is �nite, and the outer, which is
not.

The boundary between the two is formed by the boundaries of the triangle,
that is, the edges. To rasterize a triangle, we essentially have to traverse a
set of points with some algorithm that is in some sense part of the triangle
mapping, or follow some pattern, and calculate which points are inside the
triangle [2]. The color of the inner points/pixels can then be determined. The
process is essentially a discretization process:

Figure 1. Pixel rendering as a discretization process

In the classical sense, the �lling process is performed pixel by pixel so the
internal iteration and various calculations have to be performed quite often.
Although the process seems simple, the performance of �lling, and thus the
performance of the application, depends largely on the implemented algorithm,
its level of optimization, and the level at which we model reality (lights, re�ec-
tions, shadows, etc.).

Today, two staining approaches are known that are widespread: scanline and
half-space-based algorithms [2]. The basic idea of the scanline approach de-
veloped earlier in time is that during rasterization, the triangles are traversed
from top to bottom row by row (scanline). Each row represents a line whose
start and end are the points of intersection of the sides of the triangle and
the scanline along the x-axis. Endpoints can be determined incrementally by
calculating the slope value of the edges. The process of �lling is essentially the
determination of the pixel color values of this line. The half-space-based ap-
proach starts from the convexity of polygons: the interior of a convex polygon
with n edges can always be described by the intersections of n half-spaces.

Thus, in the case of triangles, the three half-spaces clearly de�ne the range to
be �lled. By calculating the minimal bounding box of the triangle, using the
equation of the three planes and traversing it, the pixels inside the triangle can
be �lled [2].



The Past and the Future of Computer Visualization 21

Di�erent modi�ed versions of both algorithms can be found in the literature
[3]. GPUs use the second approach due to easier parallelization.

3.1.1. Ray based solutions

Another dominant direction in rasterization is ray-based solutions. To name
a few: Ray-tracing, Ray-marching, Cone tracing, Beam tracing, etc. These
solutions are fundamentally di�erent from the triangle �lling-based algorithms.

These approaches work with rays coming from light sources placed in the vir-
tual world. They try to model reality by illuminating spatial objects with
photons / rays from light sources while the rays bounce from object to object.
With this solution, global illumination can be reached if the movement of a
su�cient number of rays is tracked. In practice, it means millions of rays. This
is why these methods require a lot of computation, so far they have been used
mainly for o�ine rendering for �lm and other high-level graphical modeling.

However, today's modern hardware is already powerful, and more and more
e�orts are being made to use these algorithms in some form, even in limited
quality, in real time. The most common problem when making animated �lms
is that designers want to look at a given scene from multiple angles, with
multiple light sources with di�erent parameters. And all this without having
to wait minutes to render such a scene. The e�orts are also visible from the
perspective of video card manufacturers. Ray Tracing has never been GPU
supported, only in recent years have certain tools (e.g. NVIDIA OptiX TM API,
NVidia RTX based cards) started to appear. And in 2019, Crytek released the
�rst true executable demo application based on real-time ray tracking.

The ray-based approach is a good future direction. As shown in the picture
(Figure 2) as an example, more and more exciting ray-based transcripts are in
the works. With current hardware, we are almost on the verge of running in
real time.

3.2. The future of polygon based methods

More and more news in the �eld of ray tracing supports the fact that the
(near) future of visualization will be based on some kind of ray-based global
illumination technique. The question arises as to what is the problem with
triangle �lling if everyone has supported this approach for so many years. If
we look at today's AAA computer games, we can see that they have lavish
visuals. However, the quality of this cannot be improved to the extreme. To
see a result of this quality on the screen, a lot of little tricks, algorithms and
other additional solutions that falsify reality must be used. Such a game engine
is already very complex. In the case of a simple (seemingly) point light source,



22 P. Mileff and J. Dudra

Figure 2. An upcoming version of the famous Minecraft using ray
tracing. The quality di�erence is clear.

four shadow maps have to be created and we have not even talked about their
quality.

Re�ections, refractions, surface roughnesses are all part of a complex machine
that has its limits. Global illumination cannot be achieved with solutions based
on triangle traversal alone. Hardware performance has reached a point that is
likely to result in a technological shift in the market in the near future. With
beam-based solutions, most of these problems are eliminated immediately, as
the di�erent image synthesis there is already basically a realistic picture, no
other additional �tricks� are needed.

The other weight that computer graphics carry is the representation of a trian-
gle. For simpler applications, polygon representation is appropriate, but also a
major constraint. Polygon-based representation and GPU is the reason why to-
day's games are "static." The structure of the environment cannot be changed,
a wall cannot be destroyed, etc. In some AAA games, similar solutions can be
found, but in each case, based on a pre-�wired� logic, the object breaks down
and the wall collapses. The reason for the lack of dynamism is the triangular
representation. Building a long wall from two triangles and some e�ects means
adequate rasterization speed and quality, but there is not enough information
to modify or puncture the wall structure. To create a hole in the wall, the
polygon mesh must be modi�ed in real time, on which multiple textures are



The Past and the Future of Computer Visualization 23

usually applied. So based on the location and logic of the fracture, new vertices
and triangles must be created, and all of these must be associated with some
texture coordinate. This is not an easy task in itself, but since the a�ected ge-
ometry data is stored in the GPU memory due to the fast visualization, all this
would have to be brought back to the CPU side into the main memory, made
the necessary modi�cations and then reloaded into the GPU memory. It can
be seen that the implementation of this would require extreme complexity and
it is not excluded that such tasks cannot be fully solved with this technique.
The last problem that arises is to further improve the image quality. Video
cards �don't like� a large number of vertices, so developers usually design the
models of the game world that saves on polygons where possible. Because cur-
vatures require a higher-resolution polygon mesh, the gaps can be discovered
the most at these points.

Although GPUs have evolved a lot over the years, they still try to increase
the detail economy of a graphics arena not primarily by increasing the num-
ber of vertices, but mainly by increasing surface e�ects. Such a solution for
a brick wall is, for example, Parallax Mapping, Relief Mapping, etc. GPUs
have evolved a lot in this area, being able to handle many textures with high
performance at the same time. However, texture e�ects cannot bring image
quality even closer to reality in the long run. One of the key factors in improv-
ing quality is to increase the resolution of the geometric mesh if the brick wall
were constructed as a detailed polygon mesh of many triangles and vertices.
Ideally, as the performance of GPUs increases, they will be able to model an
increasingly complex world in which objects are made up of more and less
triangles. Just think of a forest with a ton of details.

If manufacturers continue this trend, the GPU will have to work with smaller
and smaller triangles. Rasterizing tiny details results in very tiny polygons is
not a suitable alternative for the GPU (and CPU) either now and in the distant
future. This is because during the triangle �lling process each triangle involves
a so-called setup cost [2]. For a world made up of too many tiny triangles,
performance is expected to be consumed by the many setup costs.

GPUs from OpenGL 4.0 and DirectX 11 allow for so-called hardware-accelerated
GPU-based tessellation [1]. Manufacturers have also recognized the natural
need that arises when the camera gets closer to a geometric object. As long
as the object is away or there is no need for a very detailed model, since the
small details are not visible. Arriving at the object, however, all the triangles
(even more) are needed. A proven solution from previous years was to create
multiple detail versions of the same object and then show the version needed
(LOD - Level of Detail) as a function of the camera distance.



24 P. Mileff and J. Dudra

Tessellation can break down a given surface into additional triangles depending
on the distance to the camera. This technique is very useful, it could seem to
�x the problems mentioned earlier, but it is a real-time tessellation that can be
controlled by the programmer but everything is automated. It is clear that the
details of the entire virtual world cannot be left to such a solution. Although
it generally improves the end result, in many cases a tessellated object cannot
be distinguished from a properly applied Displacement Mapping.

In the (far) future, triangular �lling and the polygon representation itself will
disappear from computer visualization. When every little detail of an object
is needed, you would need tiny triangles, but in this case we reach the level of
voxels.

4. Voxel based solutions

Voxel-based visualization is not new in computer visualization, it was available
from the beginning, but early slow hardware performance was not yet ready for
an approach based on atomic architecture. They also had limited capabilities
in memory and storage, so it's no wonder polygon-based image synthesis has
become dominant. Initially, the rasterization process was done by only one
central unit, only later did the graphics accelerator hardware appear.

Nevertheless, the technology has been constantly evolving over the years,
mainly due to computer games, but today it seems to be one of the most
important trends in the �eld of photorealistic visualization. The essence of
the name and method is that, in contrast to the polygon-based representation
that is common today, it builds a model from so-called voxels (volumetric pix-
els), which can also be called a voxel set. What a voxel means is di�cult to
de�ne, and is often referred to in the literature as a three-dimensional pixel,
but it can even be called an atom. A typical representation usually includes
position, extent, and color information in the model. In addition, rendering
engines using di�erent technologies can store other information (such as a nor-
mal vector) that is used for a more realistic visualization (such as Ambient
Occlusion). They are also used in medical image processing, to display geolog-
ical data, and of course in (mainly old) computer games (e.g. Blade Runner,
Delta Force, Crysis, Voxatron, Minecraft, Motocross Stunt Racer, Red Alert,
etc.) to model terrain and various smaller and larger objects. The voxel sets
have the advantage that the model can be arbitrarily modi�ed if required,
resulting in a destructive environment. However, all of this comes at a high
cost, a large data set. When the position and orientation of objects change in
space, the voxels have to be transformed one by one. This in itself means a
lot of data that requires a lot of memory and CPU / GPU computing power.
Although many computer games in the literature used voxel technology, there



The Past and the Future of Computer Visualization 25

were very few (e.g. Hexplore, Voxelstein, Voxatron, etc.) that would have
built all of the game world objects entirely on voxels [4]. They often had some
limitations (e.g., the number of degrees of freedom). If we want to work with
voxels, we run into several obstacles. There is no suitable toolkit at present,
most modeling software available on the market can only handle polygon mesh.
In addition to static objects, animation is also required. Skeleton-based voxel
animation software is not currently available on the market. Nevertheless, we
have already encountered this solution in the Voxelstein 3D game.

One of the barriers to the spread of voxel-based technologies is that today's
graphics hardware does not directly support the rendering of a voxel set. There
are new directions and clever tricks based mainly on ray-based rendering, but
there is no suitable uniform direction of support from GPU manufacturers for
e�cient rendering as we can see in polygon-based solutions.

While it is enough to specify a set of vertices and textures in case of polygon
rendering and the GPU is able to render the model directly, for voxel-based
models the programmer must create his own shader to implement this (ray-
based solutions). The rendering engines of the future are expected to be based
on voxel technology when the required computing capacity is available. Nowa-
days, they can be observed as an additional technique to support for example
the calculation of global illumination lights. But there are also e�orts to model
the entire virtual world in real time (e.g., Atomontage Engine [5], Unlimited
Details [6]). Here, however, the limitations of GPUs can already be felt sig-
ni�cantly. Although GPUs are fast, the capacity of memory is limited. GPU
manufacturers are constantly expanding their technology, up to 6 GB cards
are now available, but because of the limitation we can't upload any size of a
virtual world to the video card memory. In addition, if we need to modify the
details (voxels) of the world, we would also need to move the required data to
the CPU side. In the absence of this, games will still remain static.

5. Computer visualization of the future

What the technology of the future will bring is hard to predict. However, the
trends and the signs of change are already noticeable at the moment. If we
look at the future from the point of view of rasterization, we can state that
polygon-based rendering will remain with us for a long time to come. However,
more and more technology demos are coming from either the ray tracing side
or the world of voxels. Voxels, as an atomic-level form of representation, will
result in signi�cant improvements in the structure, detail, and modi�ability of
the playing �eld. And the dominant display approach in the future is likely
to be represented by some ray-based solutions. These will increase the visual
quality without applying any of the other tricks and constraints that were



26 P. Mileff and J. Dudra

Figure 3. Ruined voxel building with modi�able environment. Ex-
cerpt from the Atomontage graphics engine demo

required for a polygon-based approach. The change in technology is unlikely
to happen quickly. Modern game engines should also be prepared for voxel-
based rendering, and even some hybrid rendering should be used during the
transition period. The change in technology is unlikely to happen quickly.
Modern game engines should also be prepared for voxel-based rendering, and
even some hybrid rendering approach should be used during the transition
period. In the history of computer games, there are already some that use a
hybrid representation: for example, the game world used a normal polygon-
based method, but other various game elements were implemented as voxels.
In future solutions, the number of voxel elements and, of course, their quality
may increase. Mainly targeting elements that have su�cient richness of detail,
as these are the areas that are suitable for voxelation. Transforming a �at
surface into a voxel model that does not have any surface characteristics is
currently not worth it.

If we approach the rasterization problem from the hardware side, another path
can also be outlined. Currently, the market is fully utilizing the GPU for vi-
sualization, the price of which has increased signi�cantly in recent times. We
have to pay a lot for a good video card today. Previously, the trend was that in
exchange for the same amount, we were able to buy a signi�cantly better card
in a few years. This trend isn't entirely true today, because a card that runs



The Past and the Future of Computer Visualization 27

today's modern games properly costs signi�cantly more than before. In addi-
tion to GPUs, the continuous increase in CPU performance is clearly visible. If
we investigate the graphics programming solely from a programming perspec-
tive, the CPU would certainly be the right tool for development in the distant
future. The reason for this is that the programming model and language of the
graphics would not di�er from the usual environment, more memory would be
available, and data exchange would be easier and more �exible. An experimen-
tal video card called Intel Larrabee attempted to accomplish this goal [7]. The
architecture was a hybrid approach between the GPU and the CPU, where
the programming of the graphics card was based on the x86 instruction set.
Modern CPUs with a number of cores (e.g. AMD Ryzen 9�12 core, 24 thread)
are now available for general use. Thus, a possible direction for the future
would be that the central unit should be not only responsible for the business
logic but also can take some rendering tasks.The result is a shared computa-
tional model similar to that already exempli�ed in the literature (Battle�eld 3,
a multi-thread tile-based software rendering technique is outlined where only
the CPU is used for light calculations and had great performance results.).
This results in a hybrid architecture that combines the bene�ts of both the
CPU and the GPU side. After all, it is not necessarily a good solution if the
CPU side is busy with only 2-3 threads and the rest is not used.

6. Conclusion

Today, the �eld of computer visualization is dominated by polygon-based
model representation, and graphics hardware manufacturers have based their
rasterization-accelerating hardware on this approach. Although the hardware
has been constantly evolving over the years, so far there has been no opportu-
nity to replace the rasterization model based on the classic triangle painting.
Nowadays, there seems to be a strong drive on the part of GPU manufacturers
to apply real-time ray tracing. This would move the visualization signi�cantly
forward, even on a di�erent footing, even if it were to take a step back in image
quality from current, highly e�ect-based solutions. Although the �greatness�
of the GPU is constantly pouring out of the marketing machinery, developers
will once again realize the potential of the CPU, as 12-core desktops are now
available. CPU-based visualizations are expected to provide a more �exible
environment whether to display richly detailed voxel sets or a beam-tracking
rasterized polygon world.

References

[1] Sun, Y., Agostini, N. B., Dong, S., and Kaeli, D.: Summarizing cpu and
gpu design trends with product data. arXiv preprint arXiv:1911.11313.



28 P. Mileff and J. Dudra

[2] Mileff, P., Nehéz, K., and Dudra, J.: Accelerated half-space triangle ras-
terization. Acta Polytechnica Hungarica, 12(7), (2015), 217�236, URL https:

//doi.org/10.12700/aph.12.7.2015.7.13.

[3] Akenine-Moller, T., Haines, E., and Hoffman, N.: Real-time rendering.
AK Peters/crc Press, 2019.

[4] Mileff, P. and Dudra, J.: Simpli�ed voxel based visualization. Production
Systems and Information Engineering, 8, (2019), 5�18, URL https://doi.org/

10.32968/psaie.2019.001.

[5] Voxel-based atomontage engine. URL https://www.atomontage.com/. 2022.

[6] Euclideon unimited 3d. URL https://www.euclideon.com/. 2022.

[7] Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey,
P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., et al.: Larrabee: a
many-core x86 architecture for visual computing. ACM Transactions on Graphics
(TOG), 27(3), (2008), 1�15, URL https://doi.org/10.1109/hotchips.2008.

7476560.

https://doi.org/10.12700/aph.12.7.2015.7.13
https://doi.org/10.12700/aph.12.7.2015.7.13
https://doi.org/10.32968/psaie.2019.001
https://doi.org/10.32968/psaie.2019.001
https://www.atomontage.com/
https://www.euclideon.com/
https://doi.org/10.1109/hotchips.2008.7476560
https://doi.org/10.1109/hotchips.2008.7476560

	1. Introduction
	2. Evolution of the hardwares
	3. Polygon based geometry
	3.1. Triangle traversal
	3.2. The future of polygon based methods

	4. Voxel based solutions
	5. Computer visualization of the future
	6. Conclusion
	References

