

Production Systems and Information Engineering
Volume 10 (1), pp. 1�14
doi: 10.32968/psaie.2022.1.1.

1

EFFECTIVE PIXEL RENDERING IN PRACTICE

Péter Mileff

University of Miskolc, Hungary
Department of Information Engineering

mileff@iit.uni-miskolc.hu

Judit Dudra

Bay Zoltán Nonpro�t Ltd. for Applied Research, Hungary
Department of Structural Integrity and Production Technologies

judit.dudra@bayzoltan.hu

Abstract. The graphics processing unit (GPU) has now become an
integral part of our lives through both desktop and portable devices.
Thanks to dedicated hardware, visualization has been signi�cantly ac-
celerated, softwares today only use the GPU for rasterization. As a result
of this development, now we use only triangle-based rendering, and pixel-
based image manipulations can only be performed using shaders. It can
be stated that today's GPU pipeline cannot provide the same �exibil-
ity as the previous software implementation. This paper discusses an
e�cient software implementation of pixel-based rasterization. After re-
viewing the current GPU-based drawing process, we will show how to
access pixel level drawing in this environment. Finally, a more e�cient
storage and display format than the classic solution is presented, which
performance far exceeds the previous solution.

Keywords: Software rendering, optimization, pixel rasterization

1. Introduction

High quality computer visualization is one of the most important areas and
requirements these days. Modern image synthesis is now practically present in
almost every �eld: in computer gaming, in multimedia applications, in design
or other graphics softwares. Today, the realm of visualization is dominated
by GPU-based rendering. The hardware itself is beyond great development,
the industry has nearly 20 years of development behind it. Its main driving
force was the computer game industry, where there is a constant pursuit for
better rendering quality even closer to reality. The use of GPUs has become
virtually standard, all mainstream operating systems have closed or even open

http://doi.org/10.32968/psaie.2022.1.1.

2 P. Mileff and J. Dudra

source drivers, despite the fact that the architecture of video cards is not open
to those engineers who would like to write a driver.

However, the GPU is not a miracle tool. Their price and power consumption
has increased signi�cantly in recent years. The power consumption of a modern
video card can be even 280 W during active usage. Their appearance signi�-
cantly transformed the previously known process of visualization. Developers
had to break with previous software visualization methods and adapt to the
available programmable API of video card drivers (Glide, OpenGL, DirectX).
This particular process of visualization has not changed much over the years.
Initially, a so-called �xed-function pipeline was used in the image synthesis,
later with the advent of shaders, various parts of the pipeline became pro-
grammable for the developers, thus paving the way for custom solutions used
in programs.

To put it very simply, we can say that in the pre-GPU period of visualiza-
tion, the programmer had full control over every pixel on the screen or in the
main memory. With the advent of GPUs, this high degree of �exibility has
disappeared, especially before the shader world. Today's visualization is based
on a wireframe model. Every object must be a mesh of triangles that de�nes
the �shape� of the object. The texture is applied to this wireframe using the
perspective texture mapping technique. For fast visualization, the video card
is designed to have its own memory. It must contain all the elements and ob-
jects that will be drawn. Therefore, one of the �rst steps of any software (e.g.
loading a level) is to load all the elements into the GPU RAM before drawing.
So the GPU is like a separate island.

The triangle-based model is e�cient and suitable for most display purposes
[1]. However, the programmer is forced to the solutions provided by the GPU
APIs. It would be the use of shaders that gives us the �exibility we had in
early times to work with even pixels, but unfortunately these �xed processes
do not satisfy all needs. Today, we can no longer deal with pixels and the
entry point for those who want to learn computer visualization has increased
signi�cantly.

The purpose of this article, therefore, is to examine the possibilities by which
the pixel-level programmability can be achieved. We will show how to draw
e�ciently with the help of the CPU, which will be veri�ed with measurement
tests.

2. General steps of GPU rendering

The methods that can be used in today's computer visualization are limited,
determined by GPUs. GPU-based display is currently present in virtually any

Effective Pixel rendering in Practice 3

area of the world, dominating the area. Therefore, we can only e�ectively apply
in practice methods that are supported by the GPU and the driver. Typically,
this type of task is pixel-based drawing. Modifying or accessing a pixel is not
explicitly supported, and there are situations where it would be necessary.

In the following, the general process of GPU rendering will be reviewed, and
then we will examine how to make possible the pixel-based drawing on today's
GPUs.

Figure 1. GPU rendering process from a general perspective

If we look at the �gure, it is clear that the rendering process can be divided
into two main parts on the GPU side. The �rst part (Geometry Stage) is
responsible for vertex transformation. All operations related to any vertices
are performed here. Typical tasks are: transforming vertices into the right
place in the virtual world based on the world matrix of game objects, possibly
calculating certain types of lights, or even inserting new vertices. So it is clear
that anyone who wants to see anything on the screen has to work with vertex-
based models and data in any case. And this is practically a big constraint
compared to the software model where we want to display something without
a GPU. For executing the vertex phase, the vertex (and geometry) shader is
responsible.

After the geometric phase, we reach the level of the fragments. This is where
the actual rasterization takes place on primitives assembled and transformed
in the vertex phase. The fragment shader, which is executed once for each
fragment, is responsible for executing the process. The output of this stage is
the color of the current fragment.

4 P. Mileff and J. Dudra

In practice, this stage gives the opportunity to the programmer to control how
the color of a given fragment should be modi�ed. Di�erent fragment-level
algorithms can be used here. This typically includes the calculation of Per-
Pixel lighting, but also the application and calculation of shadows or other
image space e�ects (e.g. Bump mapping, Normal Mapping, etc.). While we
have the ability to in�uence pixels, this solution o�ers nowhere near as much
�exibility as software rendering, where we essentially do what we want with a
pixel.

Current GPU-based rasterization works well, a huge industry is built on it. The
advantage is that � according to a �xed programming logic � the programmers
get a uniformly higher level of abstraction. There is no need to program the
visualization at a low level. With the advent of shaders, it was a big step in
GPU-based visualization. This made it possible to replace the �xed-function
pipeline and introduced better programmability from a developer side. Today,
all software need to use shaders if they use GPU ror rendering, this is a hard
requirement from the GPU APIs (OpenGL, DirectX). Although they greatly
improve the programmability of GPUs, cannot and will probably never achieve
the capabilities of software rasterization. As in this case they would have to
become virtually a CPU, losing the acceleration bene�ts of a specialized archi-
tecture. A further disadvantage is that, for beginners who want to deal with
computer visualization, the entry level has been greatly increased. Creating an
API-level �Hello World� application is not easy either, as geometry, matrices,
shaders, and other tasks need to be addressed, and two-dimensional rendering
is no exception.

3. Pixel level software rasterization

In the early stages of computer visualization, all graphical applications used
only software, CPU-based rendering, because no GPU device was available at
the time. Despite the fact that the hardware at the time did not perform very
well, the memories were slow, we still got very nice results if we look at the
history of the computer games. These softwares handled the pixels themselves,
and according to the standardized interface of VESA VBE (VESA BIOS Ex-
tensions), no special video card driver or other API (OpenGL, DirectX) was
required. VBE was a complement to the INT 10h BIOS video features. Achiev-
ing the desired resolution and pixels (read / write) from a few lines of program
code was feasible even for a beginner. Games born in the DOS period were
built on this solution, using so-called memory mapped display RAM. The video
card memory in windows (128K, 64K, 32, 32) [2] was practically directly acces-
sible to the program. There were no shaders or other API calls, if the correct
byte was written to the correct location in the display RAM, the result was

Effective Pixel rendering in Practice 5

immediately visible. However, this possibility has disappeared with the advent
of graphics cards in today's sense.

3.1. Pixel based rendering on modern GPU-s

With the advent of modern video cards, direct support for pixel-based draw-
ing has been removed. So if someone wants to work with pixels today, they
have to look for other ways. Unfortunately, there is little information available
on the internet to achieve this e�ectively. In practice, two possible directions
are available, which are described below.

3.1.1. Drawing with the operating system

Every modern operating system o�ers the ability to work with pixels. Of
course these solutions in the background use the video card hiding the shader
and other di�culties from the programmer. For example, in Windows, we
can create Bitmap objects that have a SetPixel function. In addition, the
operating system has a BitBlt function that allows block-based transfers of
rectangular pixel arrays from one source to another. This essentially makes
software drawing possible.

For Linux systems, programmers have a similar opportunity. For systems
that use the X11-based display, XLib is available as an operating system-level
library. XLib has a lot of features. The easiest way is to draw something to the
screen we need to create a Display object that represents the screen / window,
and use XLib functions such as XDrawPoint, XDrawLine, etc. An alternative
to Windows's BitBlt function is the XCopyArea function.

Pixel-level drawing is thus possible with the above solutions, but in practice
programmers do not choose these solutions. One reason for this is that the
above solutions are platform dependent. Of course this limitation can also be
solved by developing an abstraction layer above these. However, development
is more di�cult in this case because it must be tested on multiple operating
systems at the same time, at least until the �nished abstraction layer can
serve all needs and is massively stable. The most important disadvantage is
that since pixel drawing is implemented through the operating system, it is
not the most e�cient solution in terms of performance.

3.1.2. Rasterization through hardware APIs

The capabilities of today's video cards can only be properly exploited through
the two available APIs (OpenGL, DirectX). If we want to achieve high perfor-
mance, it is advisable to start from these, follow the process that is required

6 P. Mileff and J. Dudra

and expected by the APIs. In this paper, we will choose the OpenGL API to
demonstrate the implementation of pixel-based visualization.

Before describing the only suitable option for pixel drawing, it should be men-
tioned that there was an option in OpenGL from the beginning that made this
possible. The glDrawpixels function was an extremely easy-to-use option for
moving a rectangular set of pixels, a speci�c area of the main memory to the
framebu�er of the video card. Software rendering is accomplished the way that
the programmer created an array of bytes corresponding to a given resolution
and color depth in the main memory and then drawing into it. Drawing was
essentially a series of memory operations. Then, after drawing, we could use
glDrawpixels to move the �nished array to the framebu�er, during which the
contents of the array were displayed on the screen. Although it was a very
convenient solution, it was removed from the OpenGL 3.2 standard and is no
longer supported. And for portable / mobile devices, it was never part of the
standard (OpenGL ES). In addition, the performance of the method was not
necessarily satisfactory. The reason for this is described later along with the
presented methods.

3.1.3. The method of drawing at the pixel level

The GPU is designed to work e�ciently with vertex and texture data. It is
therefore worth choosing a solution that uses these processing steps at some
level. By default, no special APIs other than OpenGL or DirectX are required
to implement pixel-level drawing. The key idea of the solution is to use an
orthogonal projection (like in 2D games) and create a texture that matches
the resolution of the screen. This screen texture is formed by two triangles
and is de�ned and positioned depending on the resolution so that it completely
covers the screen. With this, we practically create a virtual canvas where we
need to draw somehow.

However, the process of drawing is not entirely trivial. This is because any
graphical object we want to display, the graphical APIs (OpenGL, DirectX)
require that all the data in the object should be in GPU memory (except
for very large worlds [streaming]). Of course, this is where the need arises
for GPUs to have more and more memory, as all the objects of the game to
be displayed must be available in the GPU. For OpenGL, VAO / VBO is
the expected storage structure for e�cient rasterization speeds. The problem
comes from the fact that the GPU stores the data structure, the memory area
which needs to be modi�ed from the CPU side. There are several ways to
modify the pixels of a texture object, but in each case we have to move the
texture data and memory area between the GPU memory (GPU side) and the

Effective Pixel rendering in Practice 7

main memory (CPU side) several times. The following �gure illustrates this
process:

Figure 2. The process of software rendering on today GPU's

In the �rst case when we want to draw, the data movement is performed from
the GPU to the main memory, and the second time, when we are done with
the pixel modi�cation, the data is loaded into the video RAM again. Plus,
it's all at least 50-60 times per second [1], which is a critical requirement for
games. In order to illustrate the amount of data being transferred, a 1920 ×
1080 pixel image in RGBA quality means 8,294,400 bytes of movement, which
must be done 50 to 60 times. In a computer game, we rarely work with images
of this size (possibly in case of the background), but there are usually many
smaller image on the screen at a time.

So whatever solution we choose from those provided by the OpenGL or DirectX
APIs, we are limited by the BUS speed of the current architecture. Most
modern machines today use PCI Express 4.0, a 2011 standard with a theoretical
maximum baud rate of 16 GT / s bits that just doubles PCI Express 3.0.
Although the PCI Express 5.0 (2017) and PCI Express 6.0 (2022) standards
are already available, the family of hardware that supports them will not be
available for years to come.

There are several ways to modify the pixel data in the GPU memory on the
CPU side in OpenGL:

• glTexImage2D/ glTexSubImage2D: a classic solution is to use the
glTexImage2D function to create a texture and the glTexSubImage2D
function to modify parts of it or even the whole as needed.

• Pixel Bu�er Object (PBO): The main advantage of PBO is fast

pixel data transfer to and from a graphics card through DMA (Direct

8 P. Mileff and J. Dudra

Memory Access) without involving CPU cycles. And, the other advan-
tage of PBO is the asynchronous DMA transfer.

4. Software rendering in practice

The practical e�ectiveness of software rasterization depends largely on how
it is implemented. Achieving high performance and optimization is essential
and requires serious expertise in many cases. In the following, we review some
important rules and techniques.

4.1. Storing the image data

Today's software works with 32-bit (4 byte � RGBA) color depth images. Tex-
tures can be divided into two groups based on color channels: there are image
elements with and without alpha channels. The distinction is important be-
cause the display procedure and the rendering acceleration options are di�erent
for the two groups. Images without alpha channel have no transparency, only
RGB color components. This means that any two objects can be drawn on
top of each other without having to mix the colors of the objects below each
other, making their drawing mechanism faster and easier [3].

Handling images with an alpha channel is not more di�cult, but needs more
computational power. This is because within a texture, the transparent and
non-transparent parts (e.g character animation, cloud, particle e�ects, etc.)
can change randomly, which causes the drawing to be performed pixel by pixel
[3]. When it comes to software rasterization, the pixels of an image object are
usually stored in main memory in the following form:

Figure 3. The common way to stora pixels in the main memory

The pixels are composed of four components (R, G, B, A), each component
is 1 byte. These value types are important when the pixel array needs to be

Effective Pixel rendering in Practice 9

moved to the video RAM. On the CPU side, when calculations are performed,
the pixels are often stored as �oats in the interval [0,1].

In the following, through C++ examples we will show how to store and draw
the pixels and the image itself e�ciently. It is important to note that because
drawing per pixel requires signi�cant performance due to the large amount of
memory read and write operations, any non-optimized operation in the drawing
cycle represents a strong decrease in �nal performance.

4.1.1. Naive pixel rendering

The simplest form of pixel representation is to store each component of a pixel
as a separate unsigned char (0�255). This storage format, as long as we do not
require any special storage format, is virtually the same as the texture (RGBA)
created in the GPU storage format which can be accessed when mapping it to
the CPU side. Based on this, an image storage structure can be easily created:

struct texture_t

{

unsigned int width ;

unsigned int he ight ;

unsigned int interna lFormat ;

unsigned char ∗ t e x e l s ;
} ;

From the above de�nition, texels will be the memory block that will contain
the pixels of the loaded image, which will be created for an RGBA image as
follows:

t e x i n f o . interna lFormat = 4 ;

t e x i n f o . t e x e l s = (unsigned char∗) mal loc (s izeof (unsigned char) ∗
t e x i n f o . width ∗ t e x i n f o . he ight ∗ t e x i n f o . interna lFormat) ;

Drawing a pixel array created in this way is relatively simple. The example
assumes that the texture and the underlying screen-covering mesh have been
already created on the GPU side. Texture (screen) pixels can be accessed
by covering them with the gGraphics.GetFrameBu�er() wrapper class. The
mechanism of drawing in this case:

unsigned int wHelp = mTexture . width ∗4 ;
CFrameBuffer f b u f f e r = gGraphics . GetFrameBuffer () ;

for (unsigned int i =0; i < mTexture . width ; i++){

for (unsigned int j =0; j < mTexture . he ight ; j++){

unsigned int iHe lp = i ∗4 ;
unsigned char a = ∗(mTexture . t e x e l s + j ∗wHelp + iHelp + 3) ;

unsigned char r = ∗(mTexture . t e x e l s + j ∗wHelp + iHelp + 2) ;

10 P. Mileff and J. Dudra

unsigned char g = ∗(mTexture . t e x e l s + j ∗wHelp + iHelp + 1) ;

unsigned char b = ∗(mTexture . t e x e l s + j ∗wHelp + iHelp) ;

// no draw i f p i x e l i s f u l l y t ransparen t

i f (a == 255) continue ;

i f (p o s i t i o n . x + x >= f b u f f e r . width | | p o s i t i o n . y + y >= f b u f f e r . he ight)

continue ;

unsigned int o f f s e t = po s i t i o n . y+y∗ f b u f f e r . width + po s i t i o n . x + x ;

f b u f f e r . mFrameBuffer [o f f s e t] = r ;

f b u f f e r . mFrameBuffer [o f f s e t + 1] = g ;

f b u f f e r . mFrameBuffer [o f f s e t + 2] = b ;

f b u f f e r . mFrameBuffer [o f f s e t + 3] = a ;

}

}

Because these types of images also contain an alpha channel, they are drawn
pixel by pixel. If there are several larger objects on the screen, refreshing the
screen 50-60 times per second will require signi�cant performance. Of course,
the above sample code already includes one or two optimizations (wHelp, iHelp)
that will help, but unfortunately they won't be enough either. It is important
to note that the above example does not deal with the case, when writing a
given pixel, it should be mixed with the color of the pixel below it.

Storing pixel components separately is not only ine�ective for drawing. Any
other operation required to perform on the image (rotate, �ip, stretch, etc.)
will never be satisfactory.

4.1.2. Advanced pixel representation

A more e�cient approach is to somehow handle the components of the pixels
together. In the case of RGBA, each component requires 1 byte, so 4 bytes =
32 bits to store one pixel. And this size practically corresponds to an integer
value. So the components of a pixel can be �wrapped� into an integer variable
with the following bit positions: blue component: 7-0, green component: 15-8,
red component: 23-16, alpha component: 31-24.

To take advantage of this new form of storage, existing pixels in main memory
must be converted to this form. It is best to do this immediately after loading
the images from the �le system. The following sample code illustrates this
conversion:

int texe l_length = mTexture . width∗mTexture . he ight ;

Effective Pixel rendering in Practice 11

Figure 4. Pixel component in an 32 bit integer

mTexture . i n t_texe l s = (uint32_t ∗) mal loc (s izeof (uint32_t)∗ texe l_length) ;

for (unsigned int i =0; i < mTexture . width ; i++){

for (unsigned int j =0; j < mTexture . he ight ; j++){

unsigned char r = ∗(mTexture . t e x e l s+j ∗mTexture . width ∗4 + (i ∗4) + 2) ;

unsigned char g = ∗(mTexture . t e x e l s+j ∗mTexture . width ∗4 + (i ∗4) + 1) ;

unsigned char b = ∗(mTexture . t e x e l s+j ∗mTexture . width ∗4 + (i ∗ 4)) ;

uint32_t r r = (uint32_t) (r) ;

uint32_t gg = (uint32_t) (g) ;

uint32_t bb = (uint32_t) (b) ;

uint32_t aa ;

unsigned char a = ∗(mTexture . t e x e l s+j ∗mTexture . width ∗4 + (i ∗4) + 3) ;

aa = (uint32_t) (a) ;

uint32_t c o l o r = (aa << 24) | (r r << 16) | (gg << 8) | bb ;

mTexture . i n t_texe l s [j ∗ mTexture . width + i] = co l o r ;

}

}

Although it is not speci�cally highlighted in the sample code, the mTexure
structure includes a uint32_t *int_texels; this variable has also been added
to store an array of integer-based pixels. The process goes through each pixel
and creates its 32-bit integer equivalent with the required bit operation:

uint32_t c o l o r = (aa << 24) | (r r << 16) | (gg << 8) | bb ;

The �nal result is that each pixel is represented by a single integer value, which
will provide signi�cant bene�ts in further operations.

4.1.3. Working with integer pixels

One of the e�ective way of increasing the performance of computer programs
from any �eld is to be able to process a set of data in larger units or blocks.

12 P. Mileff and J. Dudra

The above integer-based pixel storage conforms to this principle. Whatever
operation is performed, it is expected that fewer operations or iterations will
be required to process the pixel set. In the following, we present two main
operations.

Drawing the pixel bu�er:

Of course, the most important operation is drawing, but virtually any operation
we take will be very similar in nature to the code shown below:

CFrameBuffer f b u f f e r = gGraphics . GetFrameBuffer () ;

for (unsigned int i =0; i < mTexture . width ; ++i) {

for (unsigned int j =0; j < mTexture . he ight ; j++) {

uint32_t w = j ∗ mpTexture . width + i ;

uint32_t c o l o r = ∗(m_pTexture−>int_texe l s + w) ;

unsigned int o f f s e t = (po s i t i o n . y+j)∗ f b u f f e r . width + (po s i t i o n . x + i) ;

i f (o f f s e t < sc reen_buf f e r_s i z e)

f b u f f e r . mFrameBuffer [o f f s e t] = co l o r ;

}

}

It is clear that the drawing operation has been signi�cantly simpli�ed, we get
a much more transparent solution with this new structure. In addition, of
course, we hope a signi�cant improvement in the speed of drawing.

Vertical mirroring:

Another interesting operation is to mirror the set of pixels which is often re-
quired for graphics applications. This example shows vertical mirroring. The
integer pixel structure is also a big advantage in the operation.

void CTexture : : F l i pVe r t i c a l ()

{

uint32_t ∗ t e x e l s = new uint32_t [mTexture . he ight ∗ mTexture . width ∗ 4] ;

for (unsigned int i =0; i < mTexture . he ight ; i++){

mempy(t e x e l s +(((mTexture . height−1)− i)∗mTexture . width) ,

mTexture . i n t_texe l s+i ∗mTexture . width , mTexture . width ∗4) ;
}

delete [] m_pTexture . i n t_texe l s ;

mTexture . i n t_texe l s = t e x e l s ;

}

Effective Pixel rendering in Practice 13

5. Test Results

Di�erent rasterization techniques have di�erent performances. In the following,
we demonstrate the performance (Frame-Per-Second) of the two described pixel
drawing methods using several test cases. The test programs were implemented
using the C++ language and the GCC 11.2 compiler, and the measurements
were performed on a Core i7-9700 3 GHz CPU on a Linux operating system.
An Intel UHD Graphics 630 integrated video display was used for the tests.
To display the software framebu�er, we used the OpenGL framework, where
we chose a full-screen texture solution created in the GPU memory. We did
not use CPU side parallelization in the rasterization of the pixels, the results
re�ect the performance of only one processor core.

The tests can be divided into three groups based on the image size used. The
largest image is 1024 × 1024, then 256 × 256 is �nally 64 × 64. Every image
has a RGBA type. In order to show the e�ciency of the algorithms, we drew
from the same type of image in both small and large volumes.

Figure 5. Benchmark results

The results show well that integer-based pixel storage and drawing performed
with the best results in all cases which meets the expectations. It is clear
that a computer game, which needs high performance cannot be built upon
the classic byte drawing technique using a single CPU core, while an integer-
based solution would already be suitable for this task. In addition, it should
not be forgotten that only one CPU core is involved here. With the help of
multithreaded drawing, the above results can be far surpassed.

14 P. Mileff and J. Dudra

6. Conclusion

In modern computer visualization, today we can only encounter GPU-oriented
approaches. The area has developed a lot in recent years and today has a
huge market to o�er. As development progressed, although better and better
tools came into the hands of the programmer, the developer lost �exibility
in graphics programming. Today, everything is made on a triangular basis,
the pixel-level image manipulations and the inclusion of a CPU side in the
rendering process has disappeared. This paper presented a technique that,
although it is cumbersome, still allows the use of software solutions. It is
clear from the performance data that high-level solutions could be developed
that are not based solely on the GPU. The resulting applications are less
dependent on the GPU, increasing cross-platform interoperability, and pixel-
level accessibility would give new creative possibilities to developers.

References

[1] Mileff, P., Nehéz, K., and Dudra, J.: Accelerated half-space triangle raster-
ization. Acta Polytechnica Hungarica, 12(7), (2015), 217�236.

[2] Video electronics standards association, vesa bios extension � core functions stan-
dard. version 3.0, 1998.

[3] Mileff, P. and Dudra, J.: Advanced 2d rasterization on modern cpus. Applied
Information Science, Engineering and Technology: Selected Topics from the Field

of Production Information Engineering and IT for Manufacturing: Theory and

Practice, pp. 63�79, URL https://doi.org/10.1007/978-3-319-01919-2_5.

https://doi.org/10.1007/978-3-319-01919-2_5

	1. Introduction
	2. General steps of GPU rendering
	3. Pixel level software rasterization
	3.1. Pixel based rendering on modern GPU-s

	4. Software rendering in practice
	4.1. Storing the image data

	5. Test Results
	6. Conclusion
	References

