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Abstract. This paper summarizes an advanced model and a practice-
oriented approach to solve scheduling problems of discrete manufactur-
ing systems. An advanced scheduling approach is presented which is
able to adapt to the requirements of real-life situations by taking into
consideration the speci�c characteristics of modern manufacturing and
assembly systems. These detailed constraints and capabilities of the ac-
tual resource environment include the alternative technological routes,
the limited available machines, the unrelated processing time, the se-
quence dependent setup time and the jobs with due dates. An extended
�exible job shop scheduling model is de�ned to solve the resource allo-
cation problems and to create the �ne schedule of the execution of jobs,
tasks and operations. The paper describes the most important charac-
teristics of the analyzed problem class and shows the main approach of
the developed heuristic solving method. Our approach combines a spe-
cial searching technique based on fast execution-driven simulation with
a multi-objective optimization model.
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1. Introduction

In modern manufacturing and assembly environments, many scheduling
problems occur. Production scheduling can be de�ned as the allocation of
available production resources over time to perform a collection of tasks [1] .
Most of the scheduling problems are highly complicated to solve. The back-
ground is that scheduling problems lead to combinatorial optimization tasks.
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This entanglement stems from their nature. Nowadays, the production plan-
ners, engineers and managers utilize computer integrated application systems
to support decision making [2]. They can use a generic spreadsheet applica-
tions, ERP-integrated services, external APSs, or other software solutions to
solve scheduling problems.

This paper is primarily concerned with industrial scheduling problems, where
it is required that advanced scheduler software has to assign limited available
resources to the operations of jobs and to sequence the assigned operations on
each resource over time. It is mainly concerned with discrete manufacturing,
in which typically series of items are produced. A series can include one or
more pieces. The discrete manufacturing operations are executed on discrete,
separated machines and workplaces. A wide variety of discrete manufacturing
systems can be developed depending on the arrangement of the system com-
ponents (for example machines, workstations, robots, bu�ers, material han-
dling devices and so on), Based on the logical structures, technological rules
and alternatives for performing operations, the manufacturing systems can be
characterized by di�erent resource environments (i.e.: single machine, parallel
machines, �ow shop, �exible �ow shop, job shop, �exible job shop and so on).
In this paper we are dealing with the scheduling problems in which the exe-
cution of the operations requires the exact prede�nition of the feasible routing
alternatives.

The focus of this paper is set to the �ne (detailed) scheduling function of the
shop �oor control systems. The main purpose of the �ne scheduler software is
to create a detailed and near-optimal schedule to meet the master plan de�ned
at the Enterprise Resource Planning (ERP) level. The scheduler collects and
reads the actual input data of dependent (internal) production orders, product
types, available resource environment, technological process plans and addi-
tional constraints and restrictions. The shop �oor management con�gures the
actual production goals and their priorities. Obviously, management may de-
clare various goals time by time. The scheduler software must create a feasible
schedule which meets the management's goals. The result of scheduling is a
�ne schedule which provides the releasing sequence, starting, processing, and
�nishing time data of the jobs and their operations. The schedule assigns the
concrete resources to each activity. The execution of the �ne schedule must
meet the pre-de�ned goals without breaking any of the hard constraints. In
addition to the e�ciency of the result schedule, the running time of the sched-
uling process is also an important issue especially with large number of internal
orders, jobs, operations, resources, technological variants and constraints.
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2. Literature Review

In the literature, di�erent �exible scheduling model variants can be found.
One of the main groups of these models is the �exible �ow shop (FFS) scheme.
A detailed survey for the FFS problem is given by Quadt and Kuhn [3]. FFS
environment consists of stages that represent the fundamental (operation-type)
units of the system. At each stage one or more identical machines work in
parallel. Each job has to be processed at each stage on any of the parallel
machines. The sequence of the visited stages is given.

Another class of �exible scheduling models is the �exible job shop (FJS).
This problem type is an extension of the classical job shop scheduling problem.
In FJS an operation can be assigned to any member of the given set of eligible
machines during scheduling [4]. The problem is to assign each operation to a
chosen suitable machine and to create the execution sequence of the operations
on each machine such that the objective function will be optimized or near-
optimal. The �exible �ow shop problem is a special case of the �exible job
shop problem.

The allocation of machines and the sequence of jobs strongly in�uence the
quality of the schedule. The production performance depends on both factors.
Many shop scheduling models can be found in the literature, but most of them
use only one performance measure. Usually the makespan (latest �nishing time
of the released jobs) appears as objective function of optimization for Make to
Stock (MTS) manufacturing. Objective functions related to due date play the
main role in scheduling for supporting make to order (MTO) manufacturing.
In such cases, for example, the maximum tardiness, the sum of tardiness and
the number of tardy jobs are frequently used as objective functions.

The number of single-objective scheduling models is much larger than the
number of multi-objective scheduling models which are more important in
�exible and agile manufacturing. For example, references [5] and [6] show
two di�erent approaches. Moreover, the existing models often disregard the
machine processing abilities, alternative process plans, limited machine avail-
ability time frames, job travelling times, and machine eligibility. Although
scheduling models are rapidly expanding and evolving, industrial production
systems are generating more and more problems, then the improvement and
extension of �exible shop �oor scheduling models are required.
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3. An Advanced Scheduling Model and new Algorithms

3.1. The Goal of the Research

The starting basis of our research was the Extended Flexible Flow Shop
model (EFFS) [7]. Developing a new model for �exible manufacturing systems
was the main goal of our research. We have de�ned a new model, namely the
Extended Flexible Job Shop (EFJS), in order to extend the set of manageable
operation execution characteristics and alternative technological process plans.

3.2. An Extended Flexible Job Shop Model

From the operation execution point of view, in the job shop (JS) resource
environment, there exists only one available machine for each operation and
one feasible process plan for each job. In the �exible job shop (FJS) model,
there are choices to be made in solving the scheduling problem from among
alternative parallel machines (set of suitable machines) on which an operation
can be performed. In our new EFJS model, we assume that alternative tech-
nological process plans can be assigned to each job. The process plan speci�es
the number and sequence of operations to be performed. The EFJS scheduling
problems is more complicated decision (optimization) problem than FJS prob-
lem. As the well-known JS and FJS are NP-hard combinatorial optimization
problems, therefore our EFJS scheduling problem is also NP-hard.

In the EFJS model, the discrete manufacturing system produces various
products. By means of forecasting tools which consider external orders, mar-
ket trends, seasonal characteristics, an actual set of internal production orders
has been created by the production planners. Each production order de�nes
the required number of identical products of certain product type, which should
be manufactured by the pre-de�ned due date. The logistical unit is the palette
at the shop �oor level, which can take one or more products. An internal
production order consists of one or more palettes. Depending on the prod-
uct type, palettes carry pre-de�ned number of identical products. A given
production order (PO) can be considered as the set of palettes to be exe-
cuted, where the number of palettes depends on the ordered product quantity
and the capacity of the palettes. Our model applies manufacturing/assembly
machine/workstation objects (individual machines, �exible machine/assembly
lines, and �exible manufacturing cells). Machine/assembly lines and manu-
facturing cells can perform more than one technological steps (TS). Each TS
means a sequence of operations and cannot be interrupted. Consequently, TS
is the smallest allocation unit of the scheduling problem. A job means one
or more palette of an internal production order with technological steps to be



80 Gyula Kulcsár and Mónika Kulcsárné Forrai

executed in a pre-de�ned sequence. The nature of the extended �exible manu-
facturing system is that the given product type can be manufactured by using
alternative materials, components, machines and technological routes (process
plans). We assume that the capacity of the bu�ers placed among machines is
not limited.

In the EFJS model, every machine object can be characterized by product
sequence dependent setup times, availability time frames (calendar elements),
various production rates depending on product types, and capability for per-
forming a single TS or a sequence of TSs for certain products. The machines
can be arranged into machine groups (stages) according to the processing abil-
ity. A machine group is a set of machines that can execute the same execu-
tion step (sequence of TSs). This point of view, a given �nal product or a
given semi-�nished product can be produced di�erently using di�erent chains
of machine groups on which the required components are taken through. The
machine groups traversed by the workpiece form the technological path (route).

In order to formulate the new class of scheduling problems described above,
the well-known classi�cation scheme α|β|γ is used, where α denotes machine
environment, β denotes processing characteristics and constraints, and γ de-
notes the list of objective functions. We de�ne the Extended Flexible Job Shop
(EFFS) scheduling model as follows:

EFJS,Mg, Qi,m , Seti,j ,m , Calm|ri, di, Exei, Ai,g |f1, f2, . . . , fK (3.1)

where the symbols are as follows:

EFJS � extended �exible job shop,

Mg � group of multi-purpose parallel machines,

Qi,m � unrelated parallel machines with job dependent production rates,

Seti,j ,m � job sequence and machine dependent setup times,

Calm � machine dependent availability time intervals,

ri � job dependent release time,

di � job dependent due date,

Exei � required type and sequence of technology steps for jobs,

Ai,g � available set of suitable machines in groups for jobs,

f1, f2, . . . , fK � objective functions to be minimized (components of multi-
objective optimization).

The numerical result of the objective function expresses the quality of the
generated solutions (�ne schedules). Some examples of typical objective func-
tions are given in Table 1.
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In real manufacturing environments, the production management may re-
quire various objective functions, therefore we focus on general multi-objective
scheduling approaches in order to obtain �exible and adaptive methods for
supporting shop �oor scheduling in practice.

Table 1. Typical objective functions for multi-objective scheduling

Symbol Meaning

Cmax Completion time of last job (makespan) to be min.
Lmax Max lateness to be min.
Tmax Max tardiness to be min.
Smax Max square distance of di�erences to due dates to be min.∑

(Ci − ri) Sum of throughput times to be min.∑
Li Sum of lateness times to be min.∑
Ti Sum of tardiness times to be min.∑
Ui Number of tardiness to be min.∑
Wm Sum of machine blocking time to be min. (Utilization to be max.)∑
vi(Ci − ri) Weighted sum of �ow times to be min.∑
viLi Weighted sum of lateness times to be min.∑
viTi Weighted sum of tardiness times to be min.

NWIP Average number of works in progress to be min.
NSET Number of setups to be min.∑
TSET Sum of setup times to be min.

3.3. A new Multi-Objective Scheduling Method

The EFJS problem is di�cult to solve. This model inherits the di�culties
of the classical job shop and the �exible job shop models. Additionally, nu-
merous strange features appear because of our special extensions. To solve the
scheduling problems, we developed a new approach and implemented advanced
algorithms.

The solution of a general, production scheduling problem includes batching
(lot-sizeing), machine selection (assigning), job sequencing and operation tim-
ing decision-making sub-problems because of complexity of the entire prob-
lem. In this paper, we propose an integrated approach to solve all these
sub-problems as a whole without decomposition. In this approach, all the
decision-making aspects are handled simultaneously.

For solving production scheduling problems in practice, an advanced multi-
objective scheduling approach has been developed based on fast production
simulation [8]. After developing scheduler software, the concept is successfully



82 Gyula Kulcsár and Mónika Kulcsárné Forrai

tested on extended �exible �ow shop problems considering multiple objectives
and constraints originating from an industrial environment [9], [10]. Schedul-
ing based on simulation can consider exactly what the actual manufacturing
system should perform in the planned time horizon. In this approach, we are
searching in the space of the feasible schedules such a way that each candi-
date schedule, which are created iteratively for the shop, meets all the hard
constraints.

We overdeveloped our previous approach, which are developed for solving the
EFJS problems. In the advanced approach the job plays the role of the basic
scheduling unit. Each internal production order consists of jobs that mean
individual unit. The unit includes (one or more workpieces with the required
execution steps). To create a detailed schedule for the EFJS production system,
it is necessary for each job: (1) to assign it to one of the suitable routes
(technological process plans), (2) to assign it to one of the suitable concrete
machines at each possible machine group according to the chosen route, (3)
to �x its position in the queue of each chosen concrete machine, (4) and to
determine its starting time on each chosen machine.

To make decisions in the last issue (4) is very complicated. The main idea
of our approach is a problem space transformation based on a fast production
simulation algorithm. We use the sequence of job-machine assignments on each
machine to represent a candidate schedule as a solution. The decision variables
of this reduced problem space form a simple schedule which will be extended
to a �ne schedule by using simulation. The simulation answers the remain-
ing questions concerning the starting times of the execution steps (activities).
Consequently, the simple schedule determines exactly the �ne schedule. The
simulation is implemented as an execution-driven process, in which the jobs
move alone on the shop environment and have got owner time data. The sizes
of the actual series (production batches) are formed dynamically by schedul-
ing and executing the jobs on machines. Before scheduling a builder method
creates the full indexed data model which provides the valid technological and
resource constraints and possible alternatives.

Our execution-driven simulation method can be realized with rule-based nu-
merical simulation of the production to calculate the time data of the execution
steps. Input data determine the production order, the jobs, the machines and
the schedule to be executed. The schedule speci�es the assignment of jobs
and machines, and the schedule also de�nes the execution sequences of jobs on
machines.

Each job is represented by an individual moving object (Ji) in the simulation.
The route and the machines are chosen by the scheduler and de�ned in the
schedule to be executed. An execution step of a given Ji on a machine means
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a processing task. The main steps of the simulation are as follows: (1) Build
and initialize the model objects. (2) Choose the next execution step (task)
to be performed. (3) Simulate the execution of the active job on the active
machine. The execution-driven method calculates and stores the time data of
the execution steps. On each machine the execution sequence of the assigned
jobs is pre-de�ned. The main issue is how the limited resources in�uence
the execution. To answer these questions the simulation must play all of the
activities in a suitable sequence. This sequence cannot be pre-de�ned, but it
is part of the simulation. In an intermediate situation, the next execution step
must be chosen from the set of candidate jobs. Each machine has a loading list
and a pointer that shows the next job to be processed according to the schedule.
The pair of a machine and its pointed job means a candidate execution step for
processing if all the starting requirements are satis�ed. These are as follows:
(1) the machine has �nished its previous job; (2) the job execution has been
completed successfully on its previous machine.

The method chooses the candidate execution step which can be started
earliest. The machine and the job associated with the chosen execution step
become active entities. The method calculates the time data (start time STmi,
setup time SetTmi, processing time ProcTmi, and completion time CTmi) of the
active job on the active machine. The processing time (ProcTmi) is determined
by the work-piece quantity (qi) of the job, the job (product type) dependent
production rate (prmi) of the machine. The start time STmi of a given job
Ji on an assigned machine Mm is determined by the following values: (1) the
earliest release time of the job (ri), (2) the completion time of the job on
the previous machine (ctpi), (3) the moving time of the job from the previous
machine (mtipm), (4) the completion time of the previous job on the machine
(ctmh), (5) the job-sequence dependent setup time on the machine (settmhi),
(6) the availability time frames of the machine (CALm). Focusing on the
simulation of the execution step of job Ji on the assigned machine Mm, the
simpli�ed description of the calculation can be seen in Figure 1 assuming that
the setup activity can be started on the machine before the job arrives (ami).

The function Calibrate_ST loads the time frame required by Ji job on Mm

machine. This allocation method inserts the planned time window [STmi, CTmi]
into the �rst suitable time frame of machine Mm. While the full size of the
required time window does not �t into the candidate available time interval,
the time window is moved right to the next candidate time interval. This ver-
sion of the load function represents that the execution step of the unit is not
pre-empted in time.

The simulation extends the pre-de�ned input schedule to a �ne schedule
by calculating and assigning the time data of the production activities. The
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Figure 1. A simpli�ed calculation of the time data of a given exe-
cution step

performance of the �ne schedule can be measured by calculating objective
functions based on the data of tasks, jobs, production orders and machines
provided by the simulation. In this way the simulation transforms the original
searching space of the scheduling problem to a reduced space.

The core of our scheduler software uses an advanced multi-objective and
multi-operator searching algorithm (AMOMOSA). The main frame of this
searching algorithm is show in Figure 2. AMOMOSA moves iteratively in
the virtual space of the feasible solutions from an actual base schedule s0 to
a candidate neighbour schedule s in the neighbourhood of s0 until the stop
criterion is satis�ed. To reach and examine the unexplored regions of the
searching space the AMOMOSA modi�es the neighbourhood structure of each
base schedule as the searching progresses. To escape local optimum the AMO-
MOSA stores the schedules that have been visited in the recent past in a tabu
list. The maximum number of elements stored in the list is pre-de�ned by a
parameter. The schedules, which are stored in the tabu list, are excluded from
the actual neighbourhood of the actual base schedule. New neighbours of the
current base schedule are created randomly by neighbouring operators. These
operators generate candidate schedules by modifying the resource allocations,
the job sequences according to the problem space characteristics. These are
the primary decision variables of the scheduling problem.

The proposed neighbouring operators are as follows: N1 operator removes
a production order randomly chosen from the schedule then inserts all the
jobs of the production order as a matching series. These jobs travel the same
route and visit the same machines. On the selected machines, these jobs are
performed in a given sequence. N2 operator removes a late production order
randomly chosen from the schedule then inserts all the jobs of the production
order Inserts jobs just like the N1 operator. N3 operator modi�es the sequence
of jobs on a randomly chosen machine by using random length permutation-
cycle. N4 operator removes a late job randomly chosen from the schedule then
rede�ned the manufacturing tasks of the job by assigning resources and �nally
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Figure 2. An Advanced Multi-Objective and Multi-Operator
Search Algorithm (AMOMOSA)

inserts the job into random position on each related machine. N5 operator
works similarly to the N4 operator, but the target job is chosen from the set
of all jobs.

These neighbouring operators create new candidate schedules by modifying
the values of the primary decision variables of the base schedule. Our searching
algorithm synthesizes the advantages of the variable neighbourhood structure
and the tabu search.

The return values at the objective functions concerning candidate schedules
are evaluated by the execution-driven simulation. The overloaded relational
operator < is used to compare the generated schedules according to multiple
objective functions. The precise de�nition of the comparing operator is given
in [7], [8] and [9].

For managing e�ectively all the objective functions of the multi-objective
optimization, we used our own previously elaborated method. Our model is
based on the calculation of the relative quality of a given solution by comparing
it to another solution, considering multiple objective functions simultaneously.
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The formal description of the relative quali�cation model is as follows:

fk : S → R+ ∪ {0},∀k ∈ {1, 2, . . .K}, fk → min (3.2)

D : R2 → R, D(a, b) =

{
0 , if max(a,b)=0,

b−a
max(a,b) , otherwise.

(3.3)

F : S2 → R, F (sx, sy) =
K∑
k=1

(wkD(fk(sx), fk(sy))), (3.4)

where

S− the set of the feasible solutions;

fk− the kth objective function to be minimized;

K− the number of objective functions;

sx, sy− two given solutions;

wk− the priority of the kth objective function;

F (sx, sy)− the relative quality of the solution sy compared to the solution
sx.

Using the signed return value of the function F (sx, sy) we extend the inter-
pretation of the relational operators to the solutions sx and sy in the S. The
de�nition of this operator overloading is the following:

(sy?sx) := (F (sx, sy)?0) (3.5)

where the question mark ? indicates any of the relational operators (<,≤, >
,≥,=, 6=).

The relationship between F (sx, sy) and zero expresses the relationship be-
tween solution sy and solutions sx. For example, sy is a better solution than
sx (sy < sx is true) if F (sx, sy) is less than zero.

This relative quali�cation model can e�ectively solve the comparison of the
candidate solutions in the searching algorithm, so the proposed AMOMOSA
method is able to realize multi-objective optimization by taking into account
the actual requirements of the production management.

4. Conclusion

In this paper, we focused on modelling of multi-objective scheduling prob-
lems originated from discrete production systems, and we presented new meth-
ods to create near-optimal feasible schedules considering detailed constraints
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and capabilities of the extended �exible job shop. It is a very important and
complicated task to make e�cient schedules for the shop �oor to manage dif-
ferent types of resources and many operations.

The proposed model supports the �exible and e�ective usage of production
management goals and requirements simultaneously. We presented the in-
tegrated �ne scheduling approach that supports the optimization of planning
the internal production orders; the calculation of the manufacturing batch sizes
dynamically; the loading of the alternative technological routes; the allocation
of machines, workstations and other resources; the de�nition of manufactur-
ing tasks and the scheduling of the execution processes and activities. The
proposed method uses an advanced multi-objective multi-operator searching
techniques and problem space transformation based on a discrete execution-
driven simulation. The proposed simulation provides the concrete time data
for the manufacturing processes and activities. The simulation extends the
candidate schedule to a �ne schedule by calculating the starting and �nishing
time data of all activities. Consequently, the simulation is able to transform the
original searching space to a reduced space by solving the timing sub-problem
of the entire scheduling problem. This feature of our approach encapsulates
the dependency of industrial scheduling problems. Therefore, the proposed
model and method are widely applicable in the industry.
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