
 


Production Systems and Information Engineering

Volume 10 (1), pp. 89�99
doi: 10.32968/psaie.2022.1.8.

89

MULTI-OBJECTIVE, MULTI-PROJECT SCHEDULING

SOLVER IMPLEMENTATION USING SAP ABAP

LANGUAGE

Krisztián Mihály

University of Miskolc, Hungary
Department of Information Engineering,

altmihaly@iit.uni-miskolc.hu

Mónika Kulcsárné Forrai

University of Miskolc, Hungary
Department of Information Engineering,

aitkfm@uni-miskolc.hu

Gyula Kulcsár

University of Miskolc, Hungary
Department of Information Engineering,

iitkgy@uni-miskolc.hu

Abstract. Projects became part of the daily business in many func-
tional areas, across many industries and services. Despite of the variety
of project execution implementation of the di�erent domains it is visible
that projects are sharing fundamental similiarities. Based on experiment
the success of a project exuecution depends � next to maintained data
quality and execution follow-up � on the ability to schedule the activities
in an optimized way. Scheduling of the activities is even more compli-
cated if an organization is executing more than one project at the same
time. This paper presents our conceptual and implementation work in
area of multi-project scheduling.

Keywords: Multi-project, multi-objective, project scheduling

1. Introduction

Project-based execution of product design, manufacturing, transportation, event
organization or other main functionality of di�erent line of businesses is com-
mon nowadays. The research domain of project scheduling has a solid and ex-
tensive background. The project scheduling topic has a well-known formalized
problem that covers the two main interdependencies of the basic entities. This
problem type is the resource-constrained project scheduling problem (RCPSP)

http://doi.org/10.32968/psaie.2022.1.8.


90 Krisztián Mihály, Mónika Kulcsárné Forrai, Gyula Kulcsár

which means one of the most important fundamental problems for project
scheduling in the literature. Pritsker et al. (1969) developed a mathematical
model for representing the RCPSP [1]. Blazewicz et al. (1983) have proved
that the RCPSP is a strongly NP-hard problem [2]. RCPSP is used as a basic
model, because it is a powerful model, but it cannot include all features of the
situations that occur in practice. Therefore, many researchers have developed
more general models for project scheduling problems. The classical RCPSP
often are used as a starting model. In the literature, several survey papers on
project scheduling have been published. Most of them focus on methods of
the RCPSP model, for example [3], [4], [5], [6]. Many papers have summarized
the main variants of the project scheduling problems, for example [7], [8], [9].
Schwindt and Zimmermann (2015) edited a handbook with two volumes [10],
[10] that contain papers covering many important models and methods for
project scheduling. In the literature, many other researchers have also pub-
lished new extensions of RCPSP. For example, important overviews can be
found in [11] and [12].

De�nition of a project. A project can be de�ned from many di�erent aspects.
A widely used de�nition is provided by ISO Standard 8402, 1994 [13]. This
de�nition states that a project is an indivudual setup of coordinated and con-
trolled system of processes, which has a de�ned start and end date, has a
de�ned goal to achieve by using speci�ed enviroment parameters, like cost,
resource or deadlines. The resources often has certain limits to respect; a ma-
chine has a prede�ned maximum production capacity, a transportation has
limits in speed and cargo size, a human can work up to 8 hours in a work day
and so on.

Project scheduling. Project scheduling is required to create an execution plan
based on known tasks and available environment parameters. The schedule is
the created plan to achieve the prede�ned goals. Constructing a schedule is a
complex task and it has a signi�cant literature. Detailed reviews of the project
scheduling topic can be found in [14].

Multi-objective, multi-project aspects. It is a common pattern in the pratice,
that an organization is executing more than one project at the same time.
The multi-project aspect was considered by other researches as well [15]. Each
project has its own, individial setup regarding goals to achieve and resources to
consume. Until resources or activities are not shared accross the projects, than
each project can be scheduled and executed individually and independently.
Once the projects are sharing resources or activities than the one project ap-
proach is hardly applicable. Mathematically a common start and end activity
can be introduced to connect the projects to a "super-project". The challenge



Multi-objective, multi-project scheduling solver implementation 91

of the super-project approach is to form a combined optimization function,
which lead to an optimized solution on individual project level.

2. Modelling the problem

De�nition of RCPSP. In the literature the RCPSP � Resource Constrained
Project Scheduling Problems model is commonly used to describe one project
with the constrainted scheduling environment. RCPSP model works with
terms of task, resource types and constraints.

The set of tasks to be executed represents the activities to be completed in
the project, for example an operation on a machine, an implementation task
of a developer in a software engineering project and so on.

T = 1, 2, 3, ..., n (2.1)

The set of resource types represents executor of the tasks, required to com-
plete it. For example a resource type can be a group of machines or software
developers of a company.

K = 1, 2, 3, ...,m (2.2)

Capacity constraints for resource types, represent the individual limit of an
available resource type. This value de�nes the quantity that can be allocated
at the same time.

Rk, k ∈ K (2.3)

Predecessor tasks represents the activities to be completed before a task
can be started. For example quality check of a semi-�nished product before
painting can be started or review of software requirements before designing of
a software can be started.

Pj , j ∈ T (2.4)

Resource requirement represents per task the required resource types and
the required capacity. For example one quality engineer and two inspector
machines and is required execute a quality check.

(rj , k) (2.5)

Objective function(s) is (are) needed to evaulate the goodness of a feasi-
ble solution. A feasible solution is a schedule where all the given constraints
are met. Two feasible solutions can be compared with evaulation of de�ned
objective funtion(s).



92 Krisztián Mihály, Mónika Kulcsárné Forrai, Gyula Kulcsár

Extended mathematical model. Based on RCPSP model an enhanced model
has been developed. The model inherits the terminologies of the RCPSP model,
such as task, resource types and constraints. As an enhancement more than
one project can be de�ned at the same time and the individual tasks can be
assigned to one or more projects. Each individual project has own assigned
objective functions. Additionally further scheduling constraints on task or
project level can be de�ned, for example de�nition of earliest start time for a
task or a project.

3. Solving concept

The RCPSP problem belongs to NP hard problem [16]. Characteristic of NP
hard problem has e�ect on applicable solver concept. For small problem size
brute-force based implementations may work, but for pratical problem size it is
not applicable. To deal with the problem in the literature di�erent approaches
are used.

3.1. Approaches

In this sub-section two mainly used approaches are brie�y summarized.

Generation scheme solvers. The main principle of the generation scheme-based
scheduling is to start from an empty schedule and in each iteration one egilible
task is selected from the set of non-scheduled tasks. In the iteration step when
the next task is selected all the given constraint is taken into consideration;
all prerequisite task was scheduled and all resource requests can be completed
simultaneously. The selected task is added to the schedule considering all re-
source constraints. The construction is �nished when all tasks are scheduled.
Generation scheme solvers has two main variants: serial- and parallell genera-
tion scheme.

Search-based solvers. Search-based solvers are working with a set of prede�ned
rules to create new solution candidates. The candidate generation is followed
by a simulation step. During the simulation the candidate is used to calculate
the objective function values and calculate the key performance indicator val-
ues. If the generation rules can generate candidates which are not by-design
feasible, then simulation can be terminated and the candidate is rejected. After
the simulation the candidates are compared and based on the solver algorithm
new candidates are generated. The generation and simulation steps are con-
tinued until a certain exit criteria is met and the best candidate is returned as
solution.



Multi-objective, multi-project scheduling solver implementation 93

3.2. A new combined approach

Our approach combines the generation scheme solvers and the search-based
solvers. A generation scheme solver is used as simulator by a search-based
solver. The search-based solver is injecting generated search parameters for
the generation scheme, to in�uence the behavior of the task selection step
externally. This approach ensures that generation scheme always creates a
feasible schedule. The search-based solver can combine di�erent candidates
based on generated, feasible solutions.

Figure 1. Combined approach overview

4. Implementation concept

4.1. Main design goals

The main desing goals on implementation level were to enable the extensibility,
the maintaineability, the testability and the combination of modules. ABAP
programming language was used in the implementation and in the design phase
the following design driving factors were identi�ed:

� use object-oriented modelling,
� clear separation of concerns,
� injection or changeability of dependencies,
� by design supported unit testing and integration testing,
� enable proof of concept work.



94 Krisztián Mihály, Mónika Kulcsárné Forrai, Gyula Kulcsár

4.2. Compositional structure

The high-level overview depicted in Figure 1 and it is re�ned in Figure 2.

Figure 2. Implementation main building block detailed view

The search-based solver uses a generation scheme as dependency to be used
as a simulator. The implementation alternative of concrete generation scheme
variant is hidden for the search. The multi-proect scheduling project de�nition
is modelled as an own object and it can be accessed as a dependency.

Modelling of generation scheme. The generation solver is accessible for con-
sumers as an ABAP interface. The interface de�nes the generation scheme
contract and it is containing the accessible services, for example request for
a solution for a problem and injection of search controlling dependencies, like
realization of task selection logic. The generation solver can have multiple im-
plementations. The serial and parallell generation solver has signi�cant overlap
in their algorithm, the common code is implemented in an abstract class. The
variant speci�c implementation is implemented by dedicated realization classes,
where specialities is implemented with modelled delegation pattern. The task
selection logic is modelled as an individual object and contract, enabling the
changeability of di�erent heuristics or algorithms. As an example the Mini-
mal Slack or Latest Finish Time heuristics are implemented. To o�er control
via externally de�ned heuristic parameters for search solvers the Search Solver
De�ned selection class is implemented.

Modelling of search-based solver. Search-based solvers are accessible for con-
sumers as an ABAP interface. The interface de�nes the contract for search-
based solvers. The interfaces contains the signature of solving an RCPSP
problem and the signature is de�ning the dependencies as well. Di�erent kind
of search-based solvers are grouped into main types in the Figure 4. The com-
mon algorithm code can be implemented in abstract classes; for example the



Multi-objective, multi-project scheduling solver implementation 95

Figure 3. Generation Scheme Implementation Level

heuristic search based implementations have a main frame and each implemen-
tation has its own, speci�c implementation of applied modi�cation operations.
The specialization is implemented usually via delegation pattern.

Figure 4. Search-based Solver Implementation Details

4.3. Advantage of modularity

The design of the solver is based on ABAP interfaces with well de�ned contract
and separation of responsibilty. The dependencies are modelled always as an
interface. The concrete implementation of the dependency can be injected in
the instantation of an implementation (constructor inject) or the dependency
is part of request signature itself. With this approach the implementation is

� enabled for unit testing on �ne granular unit level,
� interchangeable without major refactor of the implementation,
� open for new implementation alternatives,
� capable to de�ne combination of algorithms,
� prepared for teaching purposes, where students can try out implemen-
tations.

The dependency injection pattern makes it possible to try out search-based
implementations with di�erent task selection options and generation scheme
alternatives.



96 Krisztián Mihály, Mónika Kulcsárné Forrai, Gyula Kulcsár

Table 1. Combination of modules

Module Implemented alternatives

Generation scheme solver Serial, Parallell
Task selection heuristic Minimal Slack, Latest Finish Time
Heuristic Search Neighourhood, Random swap, Critical

path swap
Genetic Search Population-based search without recombi-

nation, Random cross-over

5. Implementation results

The concept has been implemented in ABAP language using the ABAP object-
oriented language elements. The scheduler has a well de�ned application pro-
gramming interface (API) and it is accessible via ABAP objects. For testing
purpose an ABAP GUI based administrator user interface has been developed.
In the Figure 5 a testing application UI is depicted. The user can

� select wich problem set to be used,
� generate random problems,
� calibrate the search modules (number of iteration, size of population,
etc.),

� combine search-modules and generation scheme alterantives,
� combine task selection alternatives.

5.1. Functional correctness

Functional correctness of the implementation was tested with usage of unit
tests, mapping of known optimal algorithm to RCPSP problem and solving
RCPSP benchmark problems with known optimum solution.

Unit tests are implemented as ABAP unit tests to ensure functional correctness
of a module [17]. The unit test is useful to try out the module with di�erent
known request � response combinations. Unit tests were used for internal mod-
ules like critical path searching, correctness of task selection, resource booking
management and so on. ABAP unit test can be executed in each source code
change and it helps to prevent regression if any correction is required in a
module.

Mapping of less complex problems to RCPSP was used to do integration test.
Well known permutation �ow shop problems with 2 machines (F2||Cmax) were
mapped to RCPSP. The result of the scheduler was compared with the result
of the Johnson-algorithm [18].



Multi-objective, multi-project scheduling solver implementation 97

Figure 5. Selection screen of solver

RCPSP benchmark problems were mapped to our model and the results were
compared with the known and published benchmark results [4], [19], [20].

6. Conclusion and future work

In this paper, we summarized the results of our research focused on modelling
and solving of multi-project scheduling problem taking into account extended
constraints and multiple objective functions. The detailed characteristics of
the problem were presented. A new model was proposed that includes the
set of projects to be scheduled, the resource-constraints, the advanced features
of the activities and the characteristics of the execution environment. The
proposed model supports the �exible usage of many objective functions based
on project-dependent arguments.

We introduced a new combined scheduling approach to solve the problems
�exibly while all the constraints were met. The proposed solving method uses
a predictive searching algorithm and an advanced simulation algorithm. The
simulation uses di�erent constructive generation schemes based on priority
rules. The most e�cient and �exible version of the solving algorithm variants



98 Krisztián Mihály, Mónika Kulcsárné Forrai, Gyula Kulcsár

was the combined method in which the population-based search algorithm
de�nes the control priorities of the generation scheme based simulation.

The framework of the solver engine was developed with object-oriented method-
ology and implemented by using ABAP language. The implementation sup-
ports the usage of di�erent concrete algorithms variants and testing the algo-
rithms on di�erent type of benchmark instances. Based on the running results
of the benchmark tests, we concluded that the proposed solution concept is
su�ciently e�cient and �exible to apply even to medium and large size prob-
lems. The best results are generated an advanced population based genetic
algorithm in which random mutation operator was used and the crossover op-
erator was not applied. This algorithm calibrates the control priority of each
activity of the projects and the modi�ed serial generation scheme created the
complete solution based on the control priorities of the activities.

The proposed model and methods can support the consideration of individual
requirements of activities and projects in practice. Our approach is indepen-
dent from the optimization goals. Consequently, many objective functions can
be taken into account simultaneously. The results of the research allow a wide
range of project scheduling problems to be solved in practice. Next step is to
implement additional data model transformation modules to enable the solver
to work with di�erent project management systems. The implemented mod-
ularized architecture enables the solution to be used as training environment
for students learning programming and project or manufacturing scheduling.

References

[1] Pritsker, A. A. B.,Waiters, L. J., andWolfe, P. M.: Multiproject sched-
uling with limited resources: A zero-one programming approach. Management

science, 16(1), (1969), 93�108.

[2] Blazewicz, J., Lenstra, J. K., and Kan, A. R.: Scheduling subject to
resource constraints: classi�cation and complexity. Discrete applied mathematics,
5(1), (1983), 11�24.

[3] Hartmann, S. and Kolisch, R.: Experimental evaluation of state-of-the-
art heuristics for the resource-constrained project scheduling problem. European
journal of operational research, 127(2), (2000), 394�407.

[4] Kolisch, R., Schwindt, C., and Sprecher, A.: Benchmark instances
for project scheduling problems. Project scheduling: recent models, al-

gorithms and applications, pp. 197�212, URL https://doi.org/10.1007/

978-1-4615-5533-9_9.

[5] Kolisch, R. and Hartmann, S.: Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European journal of opera-

tional research, 174(1), (2006), 23�37.

https://doi.org/10.1007/978-1-4615-5533-9_9
https://doi.org/10.1007/978-1-4615-5533-9_9


Multi-objective, multi-project scheduling solver implementation 99

[6] Pellerin, R., Perrier, N., and Berthaut, F.: A survey of hybrid meta-
heuristics for the resource-constrained project scheduling problem. European

Journal of Operational Research, 280(2), (2020), 395�416.

[7] Brucker, P.: Scheduling and constraint propagation. Discrete applied mathe-

matics, 123(1-3), (2002), 227�256.

[8] Brucker, P., Drexl, A., Möhring, R., Neumann, K., and Pesch, E.:
Resource-constrained project scheduling: Notation, classi�cation, models, and
methods. European journal of operational research, 112(1), (1999), 3�41.

[9] Tavares, L. V.: A review of the contribution of operational research to project
management. European Journal of Operational Research, 136(1), (2002), 1�18.

[10] Schwindt, C., Zimmermann, J., et al.: Handbook on project management

and scheduling vol. 1. Springer, 2015.

[11] Hartman, S. and Briskorn, D.: A survey of variants and extensions of the
resource-constrained project scheduling problem cc: 000. Operations Research

Management Science, 51(1), (2011), 67.

[12] Hartmann, S. and Briskorn, D.: An updated survey of variants and exten-
sions of the resource-constrained project scheduling problem. European Journal

of operational research, 297(1), (2022), 1�14.

[13] Iso 21500:2021(en): Project, programme and portfolio management � context
and concepts. URL https://www.iso.org/standard/75704.html. Accessed:
2022-06-06.

[14] Mohanty, R. u. and Siddiq, M.: Multiple projects-multiple resources-
constrained scheduling: some studies. The International Journal of Pro-

duction Research, 27(2), (1989), 261�280, URL https://doi.org/10.1080/

00207548908942546.

[15] Kumanan, S., Jegan Jose, G., and Raja, K.: Multi-project scheduling using
an heuristic and a genetic algorithm. The International Journal of Advanced

Manufacturing Technology, 31, (2006), 360�366.

[16] Garey, M. R. and Johnson, D. S.: Computers and intractability a guide

to the theory of NP completeness. Springer, 1979, URL https://doi.org/10.

1137/1024022.

[17] McDonough, J. E. and McDonough, J. E.: Automated Unit Testing with

ABAP. Springer, 2021, URL https://doi.org/10.1007/978-1-4842-6951-0_

5.

[18] Johnson, S. M.: Optimal two-and three-stage production schedules with setup
times included. Naval research logistics quarterly, 1(1), (1954), 61�68, URL
https://doi.org/10.1002/nav.3800010110.

[19] Sprecher, A. and Kolisch, R.: Psplib�a project scheduling problem library.
Eur. J. Oper. Res, 96, (1996), 205�216.

[20] Sprecher, A.: Project scheduling problem library. URL http://www.om-db.

wi.tum.de/psplib/library.html. Accessed: 2022-06-06.

https://www.iso.org/standard/75704.html
https://doi.org/10.1080/00207548908942546
https://doi.org/10.1080/00207548908942546
https://doi.org/10.1137/1024022
https://doi.org/10.1137/1024022
https://doi.org/10.1007/978-1-4842-6951-0_5
https://doi.org/10.1007/978-1-4842-6951-0_5
https://doi.org/10.1002/nav.3800010110
http://www.om-db.wi.tum.de/psplib/library.html
http://www.om-db.wi.tum.de/psplib/library.html

	1. Introduction
	2. Modelling the problem
	3. Solving concept
	3.1. Approaches
	3.2. A new combined approach

	4. Implementation concept
	4.1. Main design goals
	4.2. Compositional structure
	4.3. Advantage of modularity

	5. Implementation results
	5.1. Functional correctness

	6. Conclusion and future work
	References

