
 


Production Systems and Information Engineering

Volume 10 (2), pp. 27�36
doi: 10.32968/psaie.2022.2.3.

27

PERFORMANCE ANALYSIS OF LOW DIMENSIONAL

WORD EMBEDDINGS TO SUPPORT GREEN

COMPUTING

László Csépányi-Fürjes

University of Miskolc, Hungary
Department of Information Engineering

laszlo.csepanyi-furjes@uni-miskolc.hu

Abstract. It has become increasingly important to pay attention how
much energy we use to operate various Arti�cial Intelligence (AI) and
Machine Learning (ML) systems. In order to implement environmentally
responsible solutions we need to reconsider our used storage resources
and computational power. Training a natural language model is a time
and energy demanding process. In recent years the language models
are becoming extremely large and the trend is growing. The building
process of these models are consuming an extremely large amount of
computational power hence these demands huge amounts of energy. In
our research we trained and evaluated low dimensional word2vec em-
bedding models and analyzed their performance on building transition
based dependency parsers to show that low dimensional models are still
competitive and in many use cases may be su�cient.

Keywords: green computing, word2vec, transition based dependency
parsing

1. Introduction

In recent years, there has been a growing need to provide more energy-e�cient
solutions to humanity in all di�erent areas, computer science included. Green
computing is aiming to examine the possibilities of reducing the environmen-
tal impact of computer technology [1]. In human-machine interaction the so
called Natural Language Understanding (NLU) process plays a key role. To
be able to implement AI based information systems we need to provide a solu-
tion that supports free communication with the human agent, using the least
possible formalism. NLU methods among others are helping the AI agent to
identify the intent of the human. Identifying the intent of a customer is crucial
when implementing Robotic Process Automation (RPA) systems for heavily
loaded customer services. Dependency parsing is a dependency grammar based

http://doi.org/10.32968/psaie.2022.2.3.


28 L. Csépányi-Fürjes

method that discovers grammatical relations between words of a sentence. By
recognizing these grammatical relations better NLU modules can be built. In
this paper we analyze two groups of transition based dependency parsing al-
gorithms namely stack based and list based [2]. According to the latest trends
these algorithms are using high dimensional word embedding to train ML clas-
si�ers. This process demands extremely high computational power with a huge
energy footprint. In our study we built low dimensional embeddings and ex-
amined the impact of the dimension on the dependency parsing Accuracy and
Unlabelled Attachment Score (UAS).

2. Related work

Transition based dependency parsing algorithms are widely used and exten-
sively explored in the �eld of Natural Language Processing (NLP) [3, 4, 5].
The majority of the research activities has been aiming to increase the ac-
curacy of the algorithms and much less research was done with the aim of
providing less energy consuming variants. Dependency parsing algorithms are
highly dependent on word embedding and language models that are replacing
the previously used techniques in recent years. The state-of-the-art language
models are based on more sophisticated variants of word embeddings, that are
using contextualization, like the most advance transformer models [6].

Zadeh et al. present a quantization technique that compresses the 32-bit
parameters of BERT models to 3-bit. Their solution promises to keep the Ac-
curacy the same level as before the compression [7]. Maronikolakis & Schütze
suggest training the language model on a multiple domain setup to be able to
save the time and energy spent on training di�erent models in di�erent do-
mains [8]. Smalheiser et al. suggest using low dimensional near-comprehensive
vector representation of words. They have used this approach to create word-
word and text-text similarity metrics [9]. Schick & Schütze present a method
that produces the same performance as GPT-3 using a signi�cantly smaller
parameter count model. Their solution emphasizes the task preparation phase
where they are converting textual inputs into "cloze questions" [10].

3. The experiment

We �rst present the implemented transition based dependency parsing system
and the algorithm variants. Then we describe the training and evaluation pro-
cesses with the used parameters. Finally we show the results of the experiment.



LOW DIMENSIONAL WORD EMBEDDINGS - GREEN COMPUTING 29

3.1. The implemented system

At the beginning of the experiment we generated word2vec embedding models
according to the dimension con�gurations:[

5, 10, 20, 30, 40, 50
]

We used the org.deeplearning4j.models.word2vec.Word2Vec class from the
Deeplearning4J library to generate the models. Fig. 1 shows the con�guration
of the Word2Vec class.

Word2Vec word2Vec = new Word2Vec.Builder()

.minWordFrequency(minWordFrequency)

.epochs(epochs)

.layerSize(layerSize)

.seed(42)

.windowSize(windowSize)

.iterate(iterator)

.tokenizerFactory(tokenizerFactory)

.build();

Figure 1. Word2Vec model con�guration

In order to examine the performance of the trained word2vec models we im-
plemented four transition based dependency parser algorithms in Java. These
algorithms are the following: Arc-Standard Stack Based (ASSB), Arc-Eager
Stack Based (AESB), Non-Projective List Based (NPLB) and Projective List
Based (PLB). We trained an LSTM neural network model from the Deeplearn-
ing4J Java library to predict the transitions of the mentioned dependency
parser algorithms. The con�guration of the LSTM neural network can be
studied in Fig. 2.

The training process in our implementation consists of two main phases. The
�rst one is the pre-training phase when the needed training and evaluation �les
are getting produced and the training phase when the neural network is being
trained.

The pre-training phase is an iterative process in which the system is in dif-
ferent transition states. All information about the actual state is stored in
the state object which serves as input for the oracle. Using the state object
the oracle produces the gold transition and inserts the transition information
into the training-transition �le. Also all the features of the actual state are
translated into embedded format and the embedded features are getting con-
catenated and inserted into the training-feature �le. Once the training �les are
ready, the pre-training phase is done.



30 L. Csépányi-Fürjes

MultiLayerConfiguration lstm = new NeuralNetConfiguration

.Builder()

.seed(123)

.optimizationAlgo(OptimizationAlgorithm

.STOCHASTIC_GRADIENT_DESCENT)

.weightInit(WeightInit.XAVIER)

.updater(new AdaGrad.Builder().learningRate(0.01D).build())

.gradientNormalization(GradientNormalization

.ClipElementWiseAbsoluteValue)

.gradientNormalizationThreshold(0.5)

.dropOut(0.5D)

.list()

.layer(0, new LSTM.Builder()

.activation(Activation.TANH)

.nIn(numInputs)

.nOut(numHiddenNodes)

.build())

.layer(1, new RnnOutputLayer.Builder(LossFunctions

.LossFunction.MCXENT)

.activation(Activation.SOFTMAX)

.nIn(numHiddenNodes)

.nOut(numOutputs)

.build())

.backpropType(BackpropType.TruncatedBPTT)

.tBPTTLength(30)

.build();

Figure 2. LSTM model con�guration

In the training phase the aforementioned training �les are used to train
the LSTM neural network model. The training-features are the input and
the training-transition is the expected output of the neural network. Since
the process is sequential the actual transition depends highly on the previous
state's transition. This is why a recurrent neural network can be considered
e�ective in this situation.

In the stack-based algorithm variants (ArcStandard, ArcEager) the state
object contains a stack σ and an input bu�er β that holds the appropriate
tokens wi. A token object includes a word of the sentence and its properties.
The state object also contains the set of already calculated dependency edges,
the list of transitions and the state-characteristic vector Fig. 3.



LOW DIMENSIONAL WORD EMBEDDINGS - GREEN COMPUTING 31

Figure 3. Stack based state object

The status object in the list-based variants (NonProjectiveList, ProjectiveList)
is slightly di�erent. In these variants, we store the token objects that have not
yet been fully processed by the algorithm in two lists. The right headed list is
the so called main list λ1, while the left headed list is a temporary list λ2. This
state object also contains a bu�er β, a set of already calculated dependency
edges, a list of transitions, and also contains the state-characteristic vector Fig
4.

Figure 4. List based state object

In each iteration we create a new state object from the previous state and
archive the previous ones. This process continues until the end state is reached,
which means that the input bu�er β is empty and there is no token waiting to
be processed.

One of the key components of the training system is the oracle that produces
the gold transition from the annotated text corpus Fig. 5.

3.2. Experiments and analysis

For the experiments we used an excerpt from the Hungarian Szeged Depen-
dency Treebank (SZDT) corpus, which is the most signi�cant Hungarian text



32 L. Csépányi-Fürjes

protected Transition getGoldTransition(final State state) {

final Token stackTopToken =

state.getTokenStack().getStackTopToken();

final Token bufferHeadToken =

state.getTokenBuffer().getBufferHeadToken();

if (!stackTopToken.isRoot() &&

stackTopToken.isDependantOf(bufferHeadToken)) {

return ArcStandardTransition

.LEFT(stackTopToken.getDeprel());

}

else if (bufferHeadToken.isDependantOf(stackTopToken) &&

!state

.getTokenBuffer()

.bufferHeadHasUnprocessedDependants()) {

return ArcStandardTransition

.RIGHT(bufferHeadToken.getDeprel());

}

return ArcStandardTransition.SHIFT();

}

Figure 5. ArcStandard oracle

corpus [11]. This corpus is a large annotated dataset that contains examples
of a number of linguistic phenomena, dependency relations included. We used
6817 training and 758 test sentences from the SZDT corpus.

Table 1. NN input vector size

Dimension Stack based variants List based variants

5 180 230
10 360 460
20 720 920
30 1080 1380
40 1440 1840
50 1800 2300

In our experiment we used the standard feature set that altogether consists
of 36 prede�ned features in the stack based variants and 46 features in the list
based variants. These features include words (FORM) and Part of Speech tags
(POS) in combinations that are described in Nivre's paper [2]. The experiment
focuses on the dimension of the embedding vectors, Fig. 6. We started with



LOW DIMENSIONAL WORD EMBEDDINGS - GREEN COMPUTING 33

dimension 5 and trained our models in 6 steps until we reached dimension 50
(Table 1).

formEmbedding = Embedding{

embeddingType = WORD2VEC,

id = 'form_hu_szeged_7000_5_1',

dimension = 5,

minWordFrequency = 1,

epochs = 1,

windowSize = 10

}

posEmbedding = Embedding{

embeddingType = WORD2VEC,

id = 'pos_hu_szeged_7000_5_1',

dimension = 5,

minWordFrequency = 1,

epochs = 1,

windowSize = 10

}

Figure 6. Embedding con�gurations

3.3. Results

It is observable in Fig. 7 that the Accuracy starts increasing when we calcu-
late higher dimension embedding vectors. At a certain level, around 30 the
Accuracy value is stabilizing and stops raising any further signi�cantly, Table
2. This phenomenon is observable for all studied algorithm variants.

Table 2. Accuracy

DIM 5 DIM 10 DIM 20 DIM 30 DIM 40 DIM 50

ASSB 0.9257 0.9399 0.9470 0.9487 0.9505 0.9505
AESB 0.9227 0.9392 0.9455 0.9487 0.9487 0.9497
NPLB 0.9485 0.9590 0.9649 0.9670 0.9666 0.9666
PLB 0.9255 0.9399 0.9466 0.9490 0.9496 0.9509

A similar situation can be seen in the value of UAS as well, Table 3. Even
though the UAS value is changing a bit more hectically, Fig. 8 suggests a
similar conclusion as the Accuracy chart.

Reaching dimension 30 the LSTM classi�er seems to be stabilizing and the
success rate is not growing any further. Therefore it seems to be useless to



34 L. Csépányi-Fürjes

0.9200

0.9300

0.9400

0.9500

0.9600

0.9700

DIM 5 DIM 10 DIM 20 DIM 30 DIM 40 DIM 50

ASSB AESB NPLB PLB

Figure 7. Accuracy

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

DIM 5 DIM 10 DIM 20 DIM 30 DIM 40 DIM 50

ASSB AESB NPLB PLB

Figure 8. UAS

invest more computational power into the training process over this level of
dimension.

Table 3. UAS

DIM 5 DIM 10 DIM 20 DIM 30 DIM 40 DIM 50

ASSB 0.796 0.828 0.839 0.842 0.842 0.838
AESB 0.799 0.834 0.848 0.861 0.857 0.863
NPLB 0.799 0.830 0.850 0.862 0.863 0.861
PLB 0.801 0.830 0.851 0.859 0.865 0.864

Of course increasing the input dimension of the neural network increases the
training time and energy as well. This can be observed in Fig 9.

0:00:00

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

7:12:00

8:24:00

dim 5 dim 10 dim 20 dim 30 dim 40 dim 50

ASSB AESB NPLB PLB

Figure 9. Training time

4. Conclusion and future work

We implemented a transition based dependency parser system that uses
word2vec embeddings and an LSTM neural network classi�er. The system in-
cludes four algorithm variants, two stack based and two list based ones. The



LOW DIMENSIONAL WORD EMBEDDINGS - GREEN COMPUTING 35

aim of this study was to observe the e�ect of the embedding dimension change
on the accuracy and UAS of the dependency parser. In order to save energy
and to provide a "green" solution we wanted to identify an optimal embedding
dimension size. This paper concludes that raising the embedding dimension
over 30 produces very low increase in accuracy and UAS. At the same time the
energy and time consumption of the training process raise dramatically. Keep-
ing the dimension of the word embedding around 30 seems to be an optimal
solution.

In the future it would be interesting to examine how the size of the training
corpus a�ects the Accuracy and energy consumption. Is the embedding size
or the NN input vector size causing the found e�ect of our experiment? What
is the e�ect of the hidden layer size on the presented result? Also the quality
of the input may a�ect the results which suggests to study the pre-processing
phase of the NLP tasks further.

Acknowledgement. The described article was carried out as part of
the 2020-1.1.2-PIACI-KFI-2020-00165 "ERPA - Development of Robotic
Process Automation solution for heavily overloaded customer services"
project implemented with the support provided from the National Re-
search, Development and Innovation Fund of Hungary, �nanced under the
2020�1.1.2-PIACI KFI funding scheme.

Furthermore, the GITDA (Governmental Information-Technology De-
velopment Agency, Hungary) is gratefully acknowledged for allocating
computing resources used in this work.

References

[1] Amritpal, M., Ms, K., and Kaur, S.: Green computing: Emerging issues
in it. International Journal of Trend in Scienti�c Research and Development
(IJTSRD), 3, URL https://doi.org/10.31142/ijtsrd25311.

[2] Nivre, J.: Algorithms for deterministic incremental dependency pars-
ing. Computational Linguistics, URL https://doi.org/10.1162/coli.

07-056-R1-07-027.

[3] Chen, D. and Manning, C. D.: A fast and accurate dependency parser using
neural networks. pp. 740�750, URL https://doi.org/10.3115/v1/D14-1082.

[4] Choi, J. D. and Palmer, M.: Getting the most out of transition-based de-
pendency parsing. Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics (ACL '11): shortpapers, 2, (2011), 687�692, URL
https://doi.org/10.5555/2002736.2002869.

https://doi.org/10.31142/ijtsrd25311
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.5555/2002736.2002869


36 L. Csépányi-Fürjes

[5] Gómez-Rodríguez, C., Shi, T., and Lee, L.: Global transition-based non-
projective dependency parsing. ACL 2018 - 56th Annual Meeting of the Associa-
tion for Computational Linguistics, Proceedings of the Conference (Long Papers),
1, (2018), 2664�2675, URL https://doi.org/10.18653/v1/p18-1248.

[6] Devlin, J., Chang, M. W., Lee, K., and Toutanova, K.: Bert: Pre-training
of deep bidirectional transformers for language understanding. NAACL HLT
2019 - 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies - Proceedings of the
Conference, URL https://doi.org/10.48550/arXiv.1810.04805.

[7] Zadeh, A. H., Edo, I., Awad, O. M., and Moshovos, A.: Gobo: Quan-
tizing attention-based nlp models for low latency and energy e�cient infer-
ence. Proceedings of the Annual International Symposium on Microarchitecture,
MICRO, 2020-October, (2020), 811�824, URL https://doi.org/10.1109/

MICRO50266.2020.00071.

[8] Maronikolakis, A. and Schütze, H.: Multidomain pretrained language mod-
els for green nlp. Adapt-NLP 2021 - 2nd Workshop on Domain Adaptation for
NLP, Proceedings.

[9] Smalheiser, N. R., Cohen, A. M., and Bonifield, G.: Unsupervised
low-dimensional vector representations for words, phrases and text that are
transparent, scalable, and produce similarity metrics that are not redundant
with neural embeddings. Journal of Biomedical Informatics, 90, URL https:

//doi.org/10.1016/j.jbi.2019.103096.

[10] Schick, T. and Schütze, H.: It's not just size that matters: Small language
models are also few-shot learners. Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 2339�2352, URL https://doi.org/10.18653/v1/

2021.naacl-main.185.

[11] Vincze, V., Szauter, D., Almási, A., Móra, G., Alexin, Z., and Csirik,
J.: Hungarian dependency treebank. Development, pp. 1855�1862, URL https:

//doi.org/10.1.1.890.1115.

https://doi.org/10.18653/v1/p18-1248
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1016/j.jbi.2019.103096
https://doi.org/10.1016/j.jbi.2019.103096
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.1.1.890.1115
https://doi.org/10.1.1.890.1115

	1. Introduction
	2. Related work
	3. The experiment
	3.1. The implemented system
	3.2. Experiments and analysis
	3.3. Results

	4. Conclusion and future work
	References

