

Production Systems and Information Engineering

Volume 10 (2), pp. 99�113
doi: 10.32968/psaie.2022.2.7.

99

ANALYSIS OF THE MAXIMAL PATTERN MINING

METHOD AND ITS VARIANTS

Dávid Gégény

University of Miskolc, Hungary
Institute of Mathematics

matgd@uni-miskolc.hu

Sándor Radeleczki

University of Miskolc, Hungary
Institute of Mathematics

matradi@uni-miskolc.hu

Abstract. In this paper, within the framework of process mining we
examine the Maximal Pattern Mining method introduced by Liesaputra
et al. in [1]. This method constructs a transition graph, i.e. a labelled
directed graph for traces with similar structure. The idea behind the
algorithm is to analyze the traces in the event log, identify loops, parallel
events and optionality between them, in order to determine the maximal
patterns. In [1], the authors provide a pseudo code for the skeleton of
their algorithm and discuss some parts, but other parts are not detailed.
Here, we brie�y discuss the steps of the algorithm and elaborate the
steps that are not explained in [1]. We introduce some new subroutines
to handle the loops, parallel and optional sequences.

Keywords: event log, trace, pattern, work�ow graph, deterministic �nite
automaton

1. Introduction

Automated process mining refers to the analysis and control of internal pro-
cesses within a business or customer service via automated systems. This topic
is closely related to algorithms using arti�cial intelligence. There are several
approaches, including graph based solutions, such as theMaximal Pattern Min-
ing (MPM) method introduced in [1], which is the main topic of our paper.
Another approach uses �nite subsequential transducers to recognize patterns,
see e.g. [2], which provides the basis for the OSTIA (onward subsequential
transducer inference algorithm) method. These methods construct a transi-
tion graph for traces with similar structure, which is a labelled directed graph

http://doi.org/10.32968/psaie.2022.2.7.

100 D. Gégény and S. Radeleczki

called transaction pattern. The α-algorithm [3] and its variants, i.e. the α++-
algorithm [4] also use this approach. The MPM algorithm [1] investigated in
our paper is based on the α-algorithm, as well. There are also methods based
on context-free grammars, where typical process sequences are retrieved from
a tree structure, see e.g. [5], [6]. There are approaches based on recurrent
neural networks, text recognition and text generation, see e.g. [7].

In practice, a customer care system should provide answers (solutions) to
incoming customer requests. These requests generally contain the type of the
request, some identi�er of the person making the request, a timestamp and
other signi�cant data. The response is a sequence of events, a so-called trace,
The event log is a collection of traces containing such responses. Formally, a
trace t is a �nite sequence of events t = (z1, ..., zm) and an event log T is a
non-empty set of traces T = {t1, t2, ..., tn}. A trace t is treated as a sequence
of coherent events ordered by their timestamp. If only the type of events are
considered in a trace, then the trace itself can be treated as a word over a �nite
alphabet, e.g. t = (a, b, b, c, e, d). In this case, the event log can be considered
(a subset of) a language over this alphabet.

The task is to analyze the traces and distinguish real traces from noise that
can be a result of faulty or incomplete recording of events, and to generate
traces automatically that could be real customer service events. The �rst pro-
cess mining approaches were derived from data mining and pattern recognition
methods, see e.g. [4] and [8]. Cook and Wolf [9] proposed a data based sta-
tistical process mining method. Agrawal et al. [10] suggested a graph based
solution to represent work�ow processes. Mannila and Meek [11] proposed a
method based on describing global partial orders on events making up parts of
the event sequence. A signi�cant step forward was the introduction of the α-
algorithm by van der Aalst et al. in [3], later improved by Alves de Medeiros et
al. in [12] named the α+-algorithm. Later, Wen et al. [4] further developed it
into the α++-algorithm. This method is robust enough not to be in�uenced
by small changes in the input, however, it cannot handle loops, alternative
routes and parallel events well. A heuristic variant [13] and a variant using
fuzzy classi�cation [14] were also developed.

Finite transducer automata with output have successfully been applied to
represent work�ow processes even in the '90s. One of the most well-known
algorithms is the OSTIA [2] by Oncina, García and Vidal. Another method
using �nite automata and Petri nets was introduced by van der Aalst et al.
[15]. The internal business event sequences can also be described as the words
of a context free grammar (CFG) [5] [6]. Genetic algorithms can also be used
for this task, for example the DT Genetic Miner [16], but their time complexity
is not favorable (see the analysis in [1]). In the last decade, the analysis and

Analysis of the Maximal Pattern Mining method and its variants 101

generation of business processes were carried out by automatic text recognition
and generation tools using recurrent neural networks, see e.g. [7], [17], [18] and
[19].

Here, we analyze some variants of the maximal pattern mining method,
describing the implementation possibilities of the parts that were not discussed
in detail in the original paper. The structure of the paper is as follows. In
Section 2, we introduce the main idea behind maximal pattern mining based
on [1]. In Section 3, we detail and analyze some implementation possibilities
for speci�c steps of the algorithm. In Section 4 we try to evaluate the obtained
results of our work, presenting some conclusions.

2. Overview of Maximal Pattern Mining

The Maximal Pattern Mining (MPM) method was introduced by Liesaputra
et al. in [1]. The idea behind the algorithm is to analyze the traces in the
event log, identify loops, determine which patterns are maximal, and identify
parallel events and optionality between them. The result of the algorithm is
a set of maximal patterns that are, in essence, regular expressions over the
alphabet of events �tting the traces. A �nite deterministic automaton can be
assigned to these regular expressions. In [1], the authors provide a pseudo code
for the skeleton of the algorithm and discuss some parts, but other parts are
not detailed. Here, we brie�y discuss the steps of the algorithm and elaborate
the steps that are not included in [1].

Let T = {t1, t2, ..., tn} be an event log as the input of the MPM algo-
rithm. First, we identify loops in traces. Loops could contain a single
event type, or they can contain sequences of event types. Since smaller
loops can be a part of larger loops, this step is performed in multiple it-
erations. For example, the trace t = (a, b, b, b, c, b, b, c, d, e) would �rst be
transformed into the pattern p1 = (a, LOOP (b), c, LOOP (b), c, d, e), then into
p2 = (a, LOOP (LOOP (b), c), d, e). The number of traces �tting a given pat-
tern is called the support of the pattern.

The next step in the algorithm is identifying frequent events and frequent
patterns based on the event log. This happens by providing threshold param-
eters. If the number (or percentage) of the traces where an event type occurs
does not reach the prede�ned threshold value, we treat that event type and
the corresponding traces as noise and exclude them from the further steps of
the algorithm. A similar �ltering can be performed on infrequent patterns,
where the support value of the pattern must reach a certain threshold value
(or must reach a threshold percentage of the number of traces). The original
description in [1] builds up the pattern from frequent events until the support
of the pattern does not go under the threshold value. Since the patterns can

102 D. Gégény and S. Radeleczki

be treated as regular expressions, simply counting the matching traces also
works.

Some events in the traces could be treated as parallel events, i.e. their
order does not matter. Therefore, we need to identify these parallel events in
the patterns to get a more accurate representation of the business process.
For example, the two patterns p1 = (a, b, c, d, e) and p2 = (a, b, d, c, e) are
nearly identical, the only di�erence being the order of event types c and
d. Since this similarity indicates that they represent the same process, c
and d can be treated as parallel events. Thus, p1 and p2 can be combined
into a single pattern p = (a, b, AND(c, d), e). This step is performed after
identifying loops, because loops can also be included in parallel elements.
Another important consideration is that we might want to perform another
check for loops, as the parallel events can introduce new repetitions into the
pattern. For example, the patterns p1 = (a, LOOP (b), c, d, LOOP (b), d, c, e)
and p2 = (a, LOOP (b), d, c, LOOP (b), c, d, e) could be combined
into p = (a, LOOP (b), AND(c, d), LOOP (b), AND(c, d), e). Then,
a new loop arises and the pattern can be transformed into p′ =
(a, LOOP (LOOP (b), AND(c, d)), e). However, identifying that p1 and
p2 have parallel events at two separate points at once can make the imple-
mentation more complex. Hence, it may su�ce to treat them as separate
patterns.

In the next step, we determine which patterns are maximal. We say that a
pattern p1 is the subpattern of p2 if for all traces t in the event log T , p1 covers
t implies p2 covers t. We say that p is a maximal pattern in the constructed
set of patterns if and only if it is not a subpattern of any other patterns. Since
the patterns are essentially regular expressions, a �nite automaton can be
constructed to check which set of traces they cover. From there, determining
maximal patterns is as simple as determining maximal sets.

Next, we determine optionality in the patterns. This is somewhat similar to
parallel events as we look for matches at the beginning and end of the patterns
(in some cases, only the beginning or only the end matches). The sequences
between the matching pre�x and su�x are combined into a XOR element.
These matches are examined pairwise between the maximal patterns, making
sure that the patterns with the longest matching parts are combined �rst.
Here, we can also de�ne a lower bound for the length of the matching parts,
so separate processes will have di�erent patterns assigned. If no threshold is
given, all the maximal patterns will be combined into one single pattern. If it
is also known what the request was for a speci�c trace response, it can also be
used to determine whether or not we allow combining relevant patterns with
optionality. Finally, the transition graph (�nite automaton) is constructed

Analysis of the Maximal Pattern Mining method and its variants 103

based on the maximal patterns. If no threshold is given for the matching
length during detecting optionality, then the result will be a single transition
graph.

3. Loops, parallel events, optionality

As mentioned earlier, in [1], some of the steps are not discussed in detail and
pseudo-code is not given for them. The concrete implementation of these steps
may depend on speci�c requirements. In this section, we provide a description
for a possible implementation. The three parts to be discussed are detecting
loops, identifying parallel events and solving for optionality.

3.1. Loops

The �rst step is going through all the traces and identifying loops. In the
pseudo-code found in [1], this step is referred to as the "Solve Loop" subroutine,
however, no detailed description is given. The input of the subroutine is a
trace and its output is a pattern where loops are noted. In the following,
we start indexing at 0 and we will refer to segments of a trace (or pattern)
by giving the start index and end index. For example, consider the trace
t = (a, b, b, c, b, c, d, e), where t[1..5] = (b, b, c, b, c). Our proposed algorithm
handles loops as sets of intervals given by their start and end indices. We
denote the resulting pattern as p and the resulting set of loops as L. For the
previously mentioned example trace, the pattern would be p = (a, b, c, d, e) and
the set of loops would be L = {(1, 1), (1, 2)}. Though these are closed integer
intervals, here we use regular brackets, so it does not get mixed up with the
index notation.

Our proposed algorithm is iterative, incrementing the length of the examined
loops, i.e. �rst we look for loops of length 1, then length 2, etc. Since no loop
can be longer than half the length of the pattern itself, this continues until we
reach that limit. This algorithm uses a "sliding window" that moves from left
to right on the pattern (or trace). Wherever the window is, we check whether
or not the content of the window repeats afterwards. If so, the repeating part
is added (only once) to the result pattern and the start and end indices of the
window are added to the set of loops.

Now, let us consider the example trace t = (a, b, c, b, b, c, d, e). After the
�rst iteration, the resulting pattern would be p1 = (a, b, c, b, c, d, e) and the
set of loops is L = {(3, 3)}. In the next iteration, we �nd that the elements b
and c in the pattern are in a loop with length 2. Therefore the pattern would
become p2 = (a, b, c, d, e) with the looping interval (1, 2) added. However, the
existing (3, 3) interval would be incorrect, because element b repeats there, not
element d. We can see that in some cases, the loops contained in a repeating

104 D. Gégény and S. Radeleczki

part ("subloops") need to be translated into the current window in order to
correctly represent repetitions. Let Iw = (ws, we) denote the interval of the
current window and Ic = (cs, ce) denote the repeating found afterwards. Let
Il = (ls, le) be a loop from the previous iteration such that Il ⊆ Ic. Then the
interval Il will be translated into Iw using the following calculation, giving Ir
as the result interval:

Ir = (ws + ls − cs, we + le − ce). (3.1)

Note that this interval must not overlap with already existing intervals in
the window. The intervals I1, I2 ∈ L are not overlapping (not colliding) if the
following condition holds:

I1 ⊆ I2 or I2 ⊆ I1 or I1 ∩ I2 = ∅. (3.2)

As an example, consider the following result after the second iteration: p =
(a, b, c, d, b, c, d, e) and L = {(1, 2), (5, 6)}. In the next iteration, we consider
loops of length 3. At window (1, 3), we �nd that the sequence (b, c, d) repeats.
However, translating the existing (5, 6) loop into the window, we get (2, 3),
which overlaps with (1, 2), a subloop of the current window. This means that
(b, c, d) cannot be considered a new loop, and the window should slide to the
right as if no loops were found. The pseudo-code of detecting loops is given in
Algorithm 1.

3.2. Parallel events

As a next step the algorithm detects events that can be executed in par-
allel. Here it is important to draw our attention to one of the peculiarities
of the traces: the concept of a series of events or a word on an alphabet
gives only an approximate de�nition of the notion of a trace, because within
a trace (that is created as an imprint of event types in an administrative
work�ow), the order of some events may be irrelevant, i.e. they can be exe-
cuted in any order within a given process. For instance, in case of the traces
(a, b, b, b, c, d, e) and (a, b, b, d, c, e) the order of the events events c and d can
be arbitrary, therefore, both traces can be subordinated to a single pattern,
namely to (a, LOOP (b), {c, d}, e). The set notation {c, d} indicates that the
order of c and d can be chosen arbitrary - another frequently used notation
is (a, LOOP (b), AND(c, d), e). The �nite automaton corresponding to this
pattern can be found on Figure 1.

If there are several events (e.g. b, c, d) to decide whether they are parallel,
it is su�cient to check that the order of any two events can be interchanged.
Thus, the scheme (a, {b, c, d}, e) can only be legitimately created if the traces
(a, b, c, d, e), (a, c, b, d, e), (a, d, c, b, e), (a, b, d, c, e) (or their versions with some

Analysis of the Maximal Pattern Mining method and its variants 105

Algorithm 1 Algorithm solving for loops in a trace or pattern

SolveLoop(input) :
p← input
loops← ∅
for len ∈ {1, ..., |p|} do

newp← ∅, newloops← ∅, i← 0
while i < |p| do

w ← p[i .. i+ len− 1]
cloop← NULL
firstIter ← true
ni← i+ len
while TRUE do

next← p[ni .. ni+ len− 1]
checkInt← (ni, ni+ len− 1)
tloops← ∅
if cloop = NULL then

candidate← (|newp|, |newp|+ len− 1)
else

candidate← cloop

for loop ∈ {x ∈ loops | x ⊆ checkInt} do
tloop← translate loop from checkInt into cloop
if tloop does not overlap with any subloops of cloop then

tloops← tloops ∪ {tloop}
if w = next AND there were no collisions then

if firstIter then
newp.add(w)
cloop← candidate
newloops← newloops ∪ {candidate}
newloops← newloops ∪ {x ∈ loops | x ⊆ candidate}

newloops← newloops ∪ tloops
ni← ni+ len
firstIter ← FALSE

else

if firstIter then
newp.add(w[0])
i← i+ 1

else

i← ni
EXIT while

p← newp
loops← newloops

return p, loops

106 D. Gégény and S. Radeleczki

Figure 1. Example parallel events c and d

loops) all occur in the event log. This is enough because any permutation can
be induced by the transposition of its elements. (The good news, however, is

that in the case of a sequence with k elements we only need to �nd
(
k
2

)
= k(k−1)

2
of the k! possible permutations.) It is also possible that the order of an event
and of a "short" sequence of events can be interchanged. For example, in case
of the traces (a, b, c, f, d, e) and (a, b, c, e, f, d) the pattern (a, b, c, {(f, d), e})
covers both. So we can also talk about the "parallelization" of sequences
(groups) of events, although their length should be kept below a reasonable
threshold. (Because in an administrative process, the order of events within
longer series are usually not incidental!) In Liesaputra et al. paper [1], the
exploration of parallel event groups is performed by an algorithm called Solve
Concurrency. We modi�ed this algorithm allowing parallel sequence with a
length not more than four - in this way we were able to avoid also multi-
composed parallel groups. This modi�cation was also reducing the number of
the errors occurring during the tests: the sample created with a trace generator
gave us quite good running results with a Re value higher than 0.95.

The basic procedure is as follows. The input of the procedure is two samples
of patterns, between which the algorithm identi�es parallelism. If there is no
possibility to indicate parallelism between them, the algorithm returns both
samples. If there is a parallel sequence between the two patterns, it returns
a single merged pattern as the obtained result. The pseudo-code is shown in
Algorithm 2.

Analysis of the Maximal Pattern Mining method and its variants 107

Algorithm 2 Algorithm solving for concurrency between two patterns

SolveConcurrency(p, q, threshold) :
if |p| 6= |q| then

return p, q

start← −1
end← |p|
for i ∈ {0, 1, ..., |p| − 1} do

if p[i] 6= q[i] then
start← i− 1
EXIT for

for i ∈ {|p| − 1, |p| − 2, ..., 0} do
if p[i] 6= q[i] then

end← i+ 1
EXIT for

if start > end then return p, q

for i ∈ {start+ 1, ..., end− 1} do
cp← 0
cq ← 0
for j ∈ {start+ 1, ..., end− 1} do

if p[i] = p[j] then
cp← cp+ 1

if p[i] = q[j] then
cq ← cq + 1

if cp 6= cq then
return p, q

if end− start− 1 < threshold then
return (p[0], ..., p[start], AND(p[start+1], ..., p[end-1]),
p[end], ..., p[|p|-1])

else

return p, q

108 D. Gégény and S. Radeleczki

3.3. Optional sequences of events

Here we would like to recall the fact that a customer service system is built
to respond to certain incoming request. If p1 = us1v, p2 = us2v and p3 = us3v
are traces having the same pre�x u and the same su�x v, which represent
all possible responses to the same request r, then then this means that the
sub-sequences s1, s2 and s3 are interchangeable and the Administrator can
choose any of them to obtain a correct solution for the request. In this case we
say that these sub-sequences are "optional" and the above three traces can be
merged in a scheme p := (u,XOR(s1, s2, s3), v) that covers all three of them.
For instance, the traces (a, i, b, c, d), (a, i, f, d), (a, i, g, d) corresponding to a
request r0 express optional possibilities and they can be merged in the pattern
p = (a, i,XOR(bc, f, g), d). Here we made two changes to the original "Solve
Optionality" method known from [1].

1. We allowed the so-called ε-movement in case of the obtained �nite au-
tomata.

2. Since several optional sections are possible within a pattern, we gave a
lower bound to how similar the pre�x and su�x parts combined must
be - it must exceed one third of the average trace length. Another
restriction is that the length of the optional sections cannot be longer
than 4 (can not contain more than four events).

The justi�cation for these changes is the following.

1. makes possible to merge the traces (b, c, b, b, b, b, c, b, b, c, b, b, b, c, b, c, d, e, f)
and (a, b, c, b, c, b, c, c, d, c, d, e, f) under the common pattern

(XOR(εb, ab), LOOP (LOOP (b), c), XOR(ε, cdc), d, e, f). In addition, the re-
combination of "branches" at the end of optional (or parallel) event sequences
can be handled by adding an ε-movement to the end of each branch into a
single state representing the start of the next sequence. This also solves the
problem of an optional (or parallel) sequence ending in a loop, where gen-
erating an automaton without ε -movement would needlessly complicate the
implementation. Furthermore, it is known that every �nite automaton with
ε-movement is equivalent to a �nite automaton without ε-movement.

2. is motivated by the fact that in everyday practice, event sequences that
di�er too much (e.g. more than the above mentioned) belong in general to
di�erent requests.

Algorithm 3. shows the pseudo-code for handling optional sequences of
events. We tested the modi�ed algorithm with a training set created with a
trace generator by using the Recall (Re) and Precision (P) metrics to evaluate

Analysis of the Maximal Pattern Mining method and its variants 109

the e�ectiveness of the tested subroutines. We obtained results with Re and P
values higher than 0.95.

Algorithm 3 Algorithm solving for optionality in patterns

SolveOptionality(plist, threshold) :
if |plist| = 1 then

return plist

starts← [][]
ends← [][]
for i ∈ {0, 1, ..., |p| − 2} do

for j ∈ {i+ 1, i+ 2, ..., |p| − 1} do
maxindex = min(|plist[i]|, |plist[j]|)
for k ∈ {0, ...,maxindex− 1} do

if plist[i][k] 6= plist[j][k] then
starts[i][j]← k

EXIT for
for k ∈ {maxindex− 1, ..., 0} do

if plist[i][k] 6= plist[j][k] then
ends[i][j]← k

EXIT for
u, v = argmax{starts[u][v] + ends[u][v] | u, v ∈ {0, ..., |plist|}, u < v}
if starts[u][v] + ends[u][v] ≤ threshold then

return plist
else

s← starts[u][v]
e← ends[u][v]
result← take �rst s elements of plist[u]
x← plist[u]
Remove �rst s elements from x
Remove last e elements from x
y ← plist[v]
Remove �rst s elements from y
Remove last e elements from y
Append XOR(x, y) to result
Append last e elements of plist[u] to result
Remove plist[u] and plist[v] from plist
Add result to plist
return SolveOptionality(plist, threshold)

110 D. Gégény and S. Radeleczki

4. Evaluation of the obtained results, conclusions

We implemented our variant of the Maximal Pattern Mining algorithm in
python [20] using the following libraries:

• numpy [21] � used for making mathematical calculations easier;
• itertools [22] � used to generate permutations in order to check parallel
events;
• transitions (also known as pytransitions) [23] � used to handle �nite
state machines and build automata;
• graphviz [24] � used to visualize the transition graphs for automata.

For our tests, we created example event logs manually and used regular
expression based trace generation as well. We found that our implementation
handled loops reliably, could identify parallel events and could also handle
optional events with or without any restriction on the similarity of patterns to
be combined.

In the future, we intend to perform a more thorough benchmark on the
algorithm, where the event logs also include what type of request induced a
given response trace from the system. This way we can test if the algorithm can
be used to generate sample responses for a given request. We would also like to
test the algorithm on a large amount of real-world data, ensuring applicability
in real-world situations. Furthermore, the algorithm should also be able to
classify an unknown trace into request categories based on the sequence of event
types. Another promising related future research is to enhance the algorithm
with neural network based learning as well.

Figure 2. shows the generated �nite automaton for the event log

T = {(a, b, c, b, c, d, c, d, e, f), (a, b, c, b, c, d, c, d, f, e),
(a, b, b, c, b, b, b, c, d, e, f), (a, b, b, c, d, b, c, d, d, e, f)}.

Figure 2. Generated �nite automaton example

Note that the �rst trace has a loop with elements b and c, but no loop
with c and d. Therefore, the corresponding pattern after detecting loops is

Analysis of the Maximal Pattern Mining method and its variants 111

(a, LOOP (b, c), d, c, d, e, f). The sliding window in the algorithm moves from
left to right, meaning that the repeating b and c elements are recognized �rst.
Then, the c and d elements cannot be looping, because the c was used in
constructing LOOP (b, c). If the trace had another c element, i.e. if it was
(a, b, c, b, c, d, c, d, c, e, f), then another loop would be recognized and the pat-
tern would be (a, LOOP (b, c), LOOP (d, c), e, f). The same is true for the
second trace.

Also note that after detecting loops, the algorithm has the
patterns (a, LOOP (b, c), d, c, d, e, f), (a, LOOP (b, c), d, c, d, f, e),
(a, LOOP (LOOP (b), c), d, e, f) and (a, LOOP (LOOP (b), c, LOOP (d)), e, f).
Then, e and f are identi�ed as concurrent elements in the �rst two patterns,
hence they are combined into (a, LOOP (b, c), d, c, d, AND(e, f)). In the
automaton, this yields two branches recombining with ε-movements at the
end (from state 6 to state 11 on the �gure). The other two patterns have
optional sequences at the beginning (from state 1 to state 18 on the �gure),
and the sequence e and f are common between the two. Finally, in order
to get a single maximal pattern, the patterns we got are combined into one
single pattern with XOR, recombining them at the end with ε-movements
(from 11 and 20 to 21). The number of states and transitions of the �nal
automaton could be reduced by adding an additional step to the algorithm
that eliminates some ε-movements. For example, on Figure 2, states 11 and
21 could be removed, and states 8, 10 and 20 could be combined into a single
�nal state.

Acknowledgement. The authors would like to thank László Kovács for
his valuable hints.
The described article was carried out as part of the 2020-1.1.2-PIACI-KFI-
2020-00165 "ERPA - Development of Robotic Process Automation solution
for heavily overloaded customer services" project implemented with the sup-
port provided from the National Research, Development and Innovation Fund
of Hungary, �nanced under the 2020�1.1.2-PIACI KFI funding scheme.

References

[1] Liesaputra, V., Yongchareon, S., and Chaisiri, S.: E�cient process model
discovery using maximal pattern mining. In H. R. Motahari-Nezhad, J. Recker,
and M. Weidlich (eds.), Business Process Management, Springer International
Publishing, Cham, ISBN 978-3-319-23063-4, 2015, pp. 441�456, URL https:

//doi.org/10.1007/978-3-319-23063-4_29.

[2] Oncina, J.,Garcia, P., andVidal, E.: Learning subsequential transducers for
pattern recognition interpretation tasks. IEEE Transactions on Pattern Analysis

https://doi.org/10.1007/978-3-319-23063-4_29
https://doi.org/10.1007/978-3-319-23063-4_29

112 D. Gégény and S. Radeleczki

and Machine Intelligence, 15(5), (1993), 448�458, URL https://doi.org/10.

1109/34.211465.

[3] van der Aalst, W., Weijters, T., and Maruster, L.: Work�ow mining:
discovering process models from event logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9), (2004), 1128�1142, URL https://doi.org/10.

1109/TKDE.2004.47.

[4] Wen, L., Van Der Aalst, W. M., Wang, J., and Sun, J.: Mining process
models with non-free-choice constructs. Data Mining and Knowledge Discovery,
15(2), (2007), 145�180, URL https://doi.org/10.1007/s10618-007-0065-y.

[5] Burattin, A. and Sperduti, A.: PLG: A framework for the generation of
business process models and their execution logs. In M. zur Muehlen and J. Su
(eds.), Business Process Management Workshops, Springer Berlin Heidelberg,
Berlin, Heidelberg, ISBN 978-3-642-20511-8, 2011, pp. 214�219, URL https:

//doi.org/10.1007/978-3-642-20511-8_20.

[6] Hoschele, M. and Zeller, A.: Mining input grammars with autogram. In
2017 IEEE/ACM 39th International Conference on Software Engineering Com-
panion (ICSE-C), IEEE, 2017, pp. 31�34, URL https://doi.org/10.1109/

ICSE-C.2017.14.

[7] Sutskever, I.,Martens, J., and Hinton, G.: Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, ICML'11, Omnipress, Madison, WI,
USA, ISBN 9781450306195, 2011, pp. 1017��1024, URL https://doi.org/10.

5555/3104482.3104610.

[8] van der Aalst, W.: Process mining: Overview and opportunities. ACM
Transactions on Management Information Systems, 3(2), (2012), 1�17, URL
https://doi.org/10.1145/2229156.2229157.

[9] Cook, J. E. and Wolf, A. L.: Discovering models of software processes from
event-based data. ACM Transactions on Software Engineering and Methodology,
7(3), (1998), 215��249, URL https://doi.org/10.1145/287000.287001.

[10] Agrawal, R., Gunopulos, D., and Leymann, F.: Mining process models
from work�ow logs. In Advances in Database Technology � EDBT'98, Springer
Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-69709-1, 1998, pp. 467�
483, URL https://doi.org/10.1007/BFb0101003.

[11] Mannila, H. and Meek, C.: Global partial orders from sequential data. In
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD '00, Association for Computing Machinery,
New York, NY, USA, ISBN 1581132336, 2000, pp. 161��168, URL https://

doi.org/10.1145/347090.347122.

[12] de Medeiros, A. K. A., van Dongen, B. F., van der Aalst, W. M. P.,
and Weijters, A. J. M. M.: Process mining: Extending the α-algorithm to
mine short loops. In Eindhoven University of Technology, Eindhoven, 2004.

https://doi.org/10.1109/34.211465
https://doi.org/10.1109/34.211465
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/978-3-642-20511-8_20
https://doi.org/10.1007/978-3-642-20511-8_20
https://doi.org/10.1109/ICSE-C.2017.14
https://doi.org/10.1109/ICSE-C.2017.14
https://doi.org/10.5555/3104482.3104610
https://doi.org/10.5555/3104482.3104610
https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1145/287000.287001
https://doi.org/10.1007/BFb0101003
https://doi.org/10.1145/347090.347122
https://doi.org/10.1145/347090.347122

Analysis of the Maximal Pattern Mining method and its variants 113

[13] Weijters, A., Aalst, van der, W., and Alves De Medeiros, A.: Pro-
cess mining with the HeuristicsMiner algorithm. A publicatie : working papers,
Technische Universiteit Eindhoven, 2006, ISBN 978-90-386-0813-6.

[14] Günther, C. W. and van der Aalst, W. M. P.: Fuzzy mining � adap-
tive process simpli�cation based on multi-perspective metrics. In G. Alonso,
P. Dadam, and M. Rosemann (eds.), Business Process Management, Springer
Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-75183-0, 2007, pp. 328�
343, URL https://doi.org/10.1007/978-3-540-75183-0_24.

[15] van der Aalst, W. M. P., Rubin, V., Verbeek, H. M. W., van Don-

gen, B. F., Kindler, E., and Günther, C. W.: Process mining: a
two-step approach to balance between under�tting and over�tting. Software
and Systems Modeling, 9(1), (2008), 87, URL https://doi.org/10.1007/

s10270-008-0106-z.

[16] de Medeiros, A. K. A., Weijters, A. J. M., and van der Aalst, W.

M. P.: Genetic process mining: an experimental evaluation. Data Mining and
Knowledge Discovery, 14(2), (2007), 245�304, URL https://doi.org/10.1007/

s10618-006-0061-7.

[17] Graves, A.: Generating sequences with recurrent neural networks, arXiv, pp.
43. 2014.

[18] Kuo, C. and Chien, J.-T.: Markov recurrent neural networks. In N. Pustelnik,
Z.-H. Tan, Z. Ma, and J. Larsen (eds.), 2018 IEEE International Workshop
on Machine Learning for Signal Processing, MLSP 2018 - Proceedings, IEEE
International Workshop on Machine Learning for Signal Processing, MLSP, IEEE
Computer Society, United States, 2018, pp. 1�6, URL https://doi.org/10.

1109/MLSP.2018.8517074.

[19] Hanga, K. M., Kovalchuk, Y., and Gaber, M. M.: A graph-based ap-
proach to interpreting recurrent neural networks in process mining. IEEE Ac-
cess, 8, (2020), 172923�172938, URL https://doi.org/10.1109/ACCESS.2020.

3025999.

[20] Welcome to python.org. https://www.python.org/. Accessed: August 1, 2022.

[21] Numpy. https://numpy.org. Accessed: August 1, 2022.

[22] itertools � functions creating iterators for e�cient looping. https://docs.

python.org/3/library/itertools.html. Accessed: August 1, 2022.

[23] Github � pytransitions/transitions: A lightweight, object-oriented �nite state
machine implementation in python with many extensions. https://github.com/
pytransitions/transitions. Accessed: August 1, 2022.

[24] Graphviz. https://graphviz.org. Accessed: August 1, 2022.

https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/s10618-006-0061-7
https://doi.org/10.1007/s10618-006-0061-7
https://doi.org/10.1109/MLSP.2018.8517074
https://doi.org/10.1109/MLSP.2018.8517074
https://doi.org/10.1109/ACCESS.2020.3025999
https://doi.org/10.1109/ACCESS.2020.3025999
https://www.python.org/
https://numpy.org
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://github.com/pytransitions/transitions
https://github.com/pytransitions/transitions
https://graphviz.org

	References

