
Production Systems and Information Engineering
Volume 10 (3), pp. 1–18.

http://doi.org/10.32968/psaie.2022.3.1

A NEW APPROACH TO SOFTWARE DEFECT PREDICTION BASED

ON CONVOLUTIONAL NEURAL NETWORK AND

BIDIRECTIONAL LONG SHORT-TERM MEMORY

NASRALDEEN ALNOR ADAM KHLEEL

University of Miskolc

Hungary Institute of Information Technology

nasr.alnor@uni-miskolc.hu

KÁROLY NEHÉZ
University of Miskolc

Hungary Institute of Information Technology

aitnehez@uni-miskolc.hu

Abstract. Software defect prediction (SDP) plays an important role in improving

software quality and reliability while reducing software maintenance cost. The

problem in the field of SDP is how to determine the defective source code with

high accuracy. To build more accurate predictor models, a lot of features are
presented, e.g., static code features, social network features, and process features,

etc. Several machine learning (ML) and deep learning (DL) algorithms have

been developed and adopted to identify and remove defects from the source code,

where previous studies have proved that DL algorithms are promising techniques

for predicting software defects. The aim of this study is to investigate the

prediction performance of two DL algorithms namely, Convolutional Neural

Network (CNN) and Bidirectional Long short-term memory (BI-LSTM) in the

domain of SDP. To establish the effectiveness of the proposed approach, the

experiments were conducted on the available benchmark datasets which

obtained from open-source java projects GitHub repository and the models were

evaluated by applying seven evaluation metrics which are accuracy, precision,
recall, f-measure, matthews correlation coefficient (MCC), area under the ROC

curve (AUC), mean square error (MSE). We found out that the best accuracy

obtained on training dataset is 81% by using CNN model, while the best accuracy

obtained on validation dataset is 80% by using BI-LSTM model. The best AUC

obtained on training dataset is 88% by using CNN model, while the best AUC

obtained on validation dataset is 83% by using the both models. It is nearly

impossible to rule which model is better than the other so every model can be

analyzed separately and the best model according to the problem at hand can be

used, therefore, based on the problem of this study, The evaluation results show

the effectiveness of our proposed models based on standard performance

evaluation criteria.

Keywords: Software defect prediction, Software metrics, Deep learning,

Convolutional neural network, Bidirectional Long short-term memory

http://doi.org/10.32968/psaie.2022.3.1

2 N. A. A. Khleel – K. Nehéz

1. Introduction

These days, software quality assurance is overall the most necessary activity for

software developing organizations. A software defect can be defined as errors in the
software development process which may cause many problems for users and

developers aside and may lead to the failure of the program to meet the desired

expectations, which lead to raised development and maintenance costs and reduced
customer satisfaction. Where the cost of finding and repairing defects represents one

of the costliest software development activities. Early detection of defects helps

practitioners allocate additional resources [1, 2]. There are many activities during the
software life cycle to identify source code defects such as design review, code

inspection, integration testing, functions and units testing, etc. Various research

studies have analysed and applied SDP approaches to help prioritize software testing

and correction. SDP refers to the techniques that use the historical defect data to
build the relationship between software metrics and software defects. Earlier work

in domain of SDP concentrated on static source code metrics e.g., size, complexity,

and object-oriented metrics etc. as the main predictors of software defects [2, 3].
SDP is a process depends on three main components: dependent variables,

independent variables and a model. Dependent variables are the defect data for the

particular piece of code (defective or non-defective), which can be binary or ordinal

variables. Independent variables are the metrics (inputs) that scores the software
code. The model contains the rules or algorithms which predict the dependent

variable from the independent variables. To determine the effectiveness of the

classifier, the inputs (variables) are split into test and training data sets. Where the
training data set is used to create the classifier and then this classifier is used to

predict potential defects in the test data set and evaluate these predictions using

different performance measures to determine if they are correct or not [4]. DL is a
new and very successful area in artificial intelligence, it applies deep neural

networks. Recently, DL algorithms have been adopted to improve research tasks in

software engineering, especially in the field of SDP [5]. DL is a type of ML that

allows computational models consisting of multiple processing layers to learn data
representations with multiple levels of abstraction [6]. DL architecture has been

widely applied in many fields and used to solve many detections, classification, and

prediction problems. DL has drawn more and more attention, because of its powerful
feature learning capability, and has been successfully used in many domains, such

as speech recognition, image classification, etc. [7, 8] This study selects dataset from

the GitHub repository for experimental purposes. Although some experiments in the
previous studies [9] are conducted based on this dataset using ML techniques, very

few of them are based on DL. Even there is no experiment using CNN and BI-LSTM

in the literature. To bridge these gaps, the novelty and main contributions of our

work are summarized as follows:
1. In this study, we propose a novel approach based on CNN and BI-LSTM to

predict software defects.

 A new approach to software defect prediction based on convolutional neural network… 3

2. This study evaluates the effectiveness and efficiency of the proposed approach

based on different performance measures.

The structure of this paper is organized as follows. Section 2 presents a discussion

on related work. Section 3 presents background on the topics of DL algorithms,

CNN, Long-Short Term Memory (LSTM) Networks and BI-LSTM Networks. After

that, our research methodology is presented in Section 4. Section 5 presents the
experimental results and discussion followed by conclusions in the last section.

2. Related work

The efforts of previous studies toward building accurate prediction models can be

categorized into the two following approaches: The first approach is manually

designing new features or new combinations of features to represent defects more
effectively, and the second approach involves the application of new and improved

ML based classifiers. Many research studies in literature apply ML techniques to

predict software’s defects [4, 9, 10]. Hoa Khanh Dam et al. [3] presented a novel
approach based on LSTM architecture to predict source code defects. Abstract

syntax tree which representing a source code was used as input for the proposed

prediction model to predict if the source code is defective or non-defective. The

experiments were evaluated based on two different datasets presented by Samsung
and the PROMISE repository. The results showed that the approach was accurate

and significant enough to predict source code defects. Rudolf Ferenc et al. [5]

proposed a methodology of how to adapt DNNs s for bug prediction. The
methodology was applied on a large bug dataset (containing 8780 bugged and 38,838

not bugged Java classes). The results demonstrate that DL with static metrics can

indeed boost prediction accuracies. Amirabbas Majd et al. [7] proposed SLDeep
using LSTM as learning model, a technique for statement-level SDP based on more

than 100,000 C/C ++ programs. The evaluation results show that the proposed model

seems to be effective at statement-level SDP and can be adopted. Mohamed Samir

et al. [8] proposed a new method using DNN to predict software defects. The method
has been compared with some ML algorithms. The results of the experiment showed

that the proposed method has a slight improvement over the other methods. Sonali

Agarwal and Divya Tomar [11] proposed a new method called the feature selection
based Linear Twin Support Vector Machine (LSTSVM) model to predict software

defects. The experiment was performed on four PROMISE datasets. The method was

evaluated and compared with other existing ML models. The experimental results
showed the effectiveness of the proposed method. Jiehan Deng et al. [12] proposed

a novel LSTM method to perform SDP, their method can automatically learn

semantic and contextual information from the program’s ASTs. The experiment was

performed on several open-source projects, the results showed that the proposed
LSTM method is superior to the state-of-the-art methods. Xin Ye et al. [13] proposed

a classification model using a LSTM-network to classify bugs based on 9,000 bug

reports from three software projects. The results of the evaluation and comparison

4 N. A. A. Khleel – K. Nehéz

show that the proposed model achieves the best results. Hani Bani-Salameh et al.

[14] proposed a framework using LSTM for automatically assigning bugs. The

proposed model has been validated on five real projects. The performance of the
model was compared with two ML algorithms. The results show that LSTM predicts

and assigns the priority of the bug more accurately and effectively. HONGLIANG

LIANG et al. [15] proposed Seml, a novel framework for defect prediction using

LSTM network based on eight open-source projects. The evaluation results show
that the proposed model outperforms three state-of-the-art defect prediction

approaches on most of the datasets. Ahmed Bahaa Farid et al. [16] proposed a hybrid

model using BI-LSTM and a CNN to predict software defects. The proposed model
was evaluated using seven open-source Java projects from the PROMISE dataset.

The results show that the proposed model is accurate for predicting software defects.

Xuan Zhou and Lu Lu [17] developed a LSTM network based on bidirectional and

tree structure (LSTM-BT) to predict software defects based on 8 pairs of Java open-
source projects. The evaluation results show that the proposed model performs better

compared to several state-of-the-art defect prediction models. Cong Pan et al. [18]

proposed an improved CNN model for within project defect prediction (WPDP) and
compare the results of the experiment with those of existing CNN studies. The

experiment was performed based on a 30-repetition holdout validation and a 10 * 10

cross-validation. The results showed that the CNN model outperformed the state-of-
the-art ML models significantly for WPDP. JIEHAN. Kun Zhu et al. [19] proposed

a novel just-in-time defect prediction model named DAECNN-JDP based on

denoising autoencoder and CNN. The model was evaluated based on six large open-

source projects and compared with 11 baseline models. The experimental results
show that the DAECNN-JDP model outperforms these baseline models. Jian Li et

al. [20] proposed a framework based on the programs' Abstract Syntax Trees called

Defect Prediction via CNN (DP-CNN). the model was evaluated based on seven
open-source projects in terms of F-measure. The experimental results show that on

average, the DP-CNN model improves the state-of-the-art method by 12%. Ashima

Kukkar et al. [21] proposed a novel DL model for multiclass severity classification
called Bug Severity classification using a CNN and Random Forest with Boosting

based on five open-source projects. The results prove that the proposed model

enhances the performance of bug severity classification over state-of-the-art

techniques.

3. Background

In this section, we present the background about the topics of DL algorithms, CNN,

Long-Short Term Memory (LSTM) Networks and BI-LSTM Networks.

3.1. Deep learning algorithms in software defect prediction

Deep learning (DL) algorithms have received extensive attention in the field of

software engineering for a considerable period. Therefore, recently DL algorithms

 A new approach to software defect prediction based on convolutional neural network… 5

have been adopted to enhance research tasks in the field of SDP. One effort to create

effective DL models valuable for the software engineering community is the

classification and regression based on source code metrics, but the most popular DL
algorithms used to predict software defects are classification algorithms. Even

though these efforts share the fundamentals of analyzing code metrics, they also vary

in terms of accuracy, complexity, and the input data they require to predict a defect

[2, 9]. Commonly, there are three classes of prediction models that are used to predict
defective software modules, binary class classification of defects, number or density

of defects prediction, and severity of defect prediction. The binary class is the most

frequently used in SDP. Researchers have provided different classification
techniques for binary class classification of defects, including statistical techniques,

supervised techniques, semi supervised techniques, and unsupervised techniques.

Most of the studies in the literature have used statistical and supervised learning

techniques [22].

3.2. Convolutional Neural Network

Convolutional Neural Network (CNN) is a special type of deep neural network or a
class of convolutional feedforward neural network used to process data that has a

known, grid-like topology. It is constructed to mimic the visual perception of

biological processes and can be used for both supervised learning and unsupervised
learning. CNN has been tremendously successful in practical applications, including

speech recognition, image classification, and natural language processing [1, 6].

CNN model is inspired by the typical CNN architecture used in image classification

and consists of a feature extraction part and a classification part as shown in the
Figure 1. These parts consist of multiple layers are convolution, batch normalization,

and maximum merge layers. These layers constitute the hidden layer of the

architecture. The convolutional layer performs convolution operations based on the
specified filter and kernel parameters and calculates the network weights to the next

layer, while the maximum pooling layer achieves a reduction in the dimension of the

feature space. Batch normalization is used to mitigate the effect of different input
distributions for each training mini-batch for the purpose of improving training.

Activation functions enabling the training of CNN model in a fast and accurate

manner. There are many activation functions used in CNN such as Sigmoid,

Rectified Linear Unit (ReLU) and hyperbolic tangent (Tanh) [18]. In this study, we
used two activation functions, the ReLU function for the input and hidden layers and

the Sigmoid function for the output layer as shown in equations below.

 ℎ𝑖
𝑚 = 𝑅𝑒𝐿𝑈(𝑊𝑖

𝑚−1 × 𝑉𝑖
𝑚−1 + 𝑏𝑚−1) (1)

Where ℎ𝑖
𝑚

 represents convolutional layer, 𝑊𝑖
𝑚−1

 represents the weights of neuron,

𝑉𝑖
𝑚−1

 represents the nodes, and 𝑏𝑚−1 represents the bias layer.

6 N. A. A. Khleel – K. Nehéz

 𝑆(𝑥) =
1

 1+ 𝑒− ∑ 𝑊𝑖+𝑋𝑖

𝑘 +𝑏 (2)

Where 𝑋𝑖 represents the input, 𝑊𝑖 is the weight of the input and b is the bias.

Figure 1. CNN Model for SDP

3.3. Long-Short Term Memory (LSTM) Networks and BI-LSTM Networks

Long-Short Term Memory (LSTM) Networks are a special type of RNN used in the
field of DL, which are designed to recognize patterns in data sequences. LSTM

Networks were introduced to avoid or handling long term dependencies problem

without being affected by an unstable gradient. This problem frequently occurs in
regular RNN when connecting previous information to new information [13, 23]. A

common LSTM unit is composed of a cell, an input gate, an output gate and a forget

gate. The cell remembers values over arbitrary time intervals and the three gates
regulate the flow of information into and out of the cell. Due to the ability of the

LSTM network to recognize longer sequences of time-series data, LSTM models can

provide high predictive performance in SDP. [24]. More recently, Bidirectional long-

short term memory (BI-LSTM) are a new way to train data by expanding the
capabilities of LSTM networks, it uses two separate hidden layers to train the input

data twice in the forward and backward directions as shown in Figure 2. With the

regular LSTM Networks, the input flow in one direction, either backwards or
forward. BI-LSTM Networks are the process of making any neural network have the

sequence information in both directions (a sequence processing model that consists

of two LSTM): one taking the input in a forward direction (past to future), and the

other in a backwards direction (future to past). [14, 23, 24]. we build a BI-LSTM
Network, because the defective source code is closely related to its previous and

subsequent source code segments. The idea behind BI-LSTM Networks is to exploit

 A new approach to software defect prediction based on convolutional neural network… 7

spatial features to capture bidirectional temporal dependencies from historical data

to overcome the limitations of traditional RNN. Standard RNNs take sequences as

inputs, and each step of the sequence refers to a certain moment. For a certain

moment t, the output 𝑜𝑡 not only depends on the current input 𝑥𝑡 but is also

influenced by the output from the previous moment 𝑡 − 1. The output of moment

(t) can be formulated as the following equations:

 ℎ𝑡 = 𝑓(𝑈 × 𝑥𝑡 + 𝑊 × ℎ𝑡−1 + 𝑏) (3)

 𝑜𝑡 = 𝑔(𝑉 × ℎ𝑡 + 𝑐)

Where U, V, and W denote the weights of the RNN, b and c denote the bias, f and g

are the activation functions of the neurons. The cell state carries the information from

the previous moments and will flow through the entire LSTM chain, which is the
key that LSTM can have long-should be filtered from the previous moment, the

output of forget gate can be formulated as the following equation:

 𝑓𝑡 = σ(𝑊𝑓 . [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑓) (4)

Where σ denotes the activation function, 𝑊𝑓 and 𝑏𝑓 denote the weights and bias of

the forget gate, respectively. The input gate determines what information should be

kept from the current moment, and its output can be formulated as the following
equation:

 𝑖𝑡 = σ(𝑊𝑖 . [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖) (5)

Where σ denotes the activation function, 𝑊𝑖 and 𝑏𝑖 denote the weights and bias of

the input gate, respectively. With the information from forget gate and input gate,

the cell state 𝐶𝑡−1 is updated through the following formula:

 Č𝑡 = tanh(𝑊𝑐 . [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑐) (6)

 Č𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖 × Č𝑡)

Č𝑡 is a candidate value that is going to be added into the cell state and 𝐶𝑡 is the current

updated cell state. Finally, the output gate decides what information should be

outputted according to the previous output and current cell state.

 𝑜𝑡 = σ(𝑊𝑜 . [ℎ𝑡−1 , 𝑥𝑡 + 𝑏𝑜] (7)

 ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡).

8 N. A. A. Khleel – K. Nehéz

Figure 2. Interacting layers of the repeating module in a BI-LSTM Network

4. The proposed methodology

The aim of this study is to build SDP models that would outperform other defect

prediction models. This study proposed a method to train and test SDP model based
on high-performance DL algorithms, namely CNN and BI-LSTM. A series of steps

have been taken and described such as data modelling and collection, data pre-

processing and features selection, models building and evaluation. Figure 3
illustrates the overview of the proposed approach for SDP where each step is

described in the following sections.

Figure 3. Proposed SDP approach

4.1. Data modelling and collection

Dataset selection is an important task in the problem of DL, and classification models

perform better if the dataset is more relevant to the problem. Having a large dataset
is fundamental to train DL models and allow generalization of the obtained results.

Software defect database consists mostly of three components: collection of software

metrics, defect details (Defective or non-defective code) and meta information [25].

 A new approach to software defect prediction based on convolutional neural network… 9

In this study, we select public benchmark datasets for SDP which obtained from the

GitHub repository (GHPR Dataset) [9]. The GHPR dataset contains 21 static metrics

for the total 6052 instances (3026 defective instances and 3026 non-defective
instances), which is the data used for the baseline approaches. This dataset focuses

on class-level and metric-level code metrics in Java projects that computed by CK-

open-source tool. Table 1 shows the description of the metrics. Dataset links are:

https://github.com/feiwww/GHPR_dataset

Table 1. Class-level and metric-level code metrics calculated by the CK-open-source tool [9]

Metrics Description

Coupling Between Objects

(CBO)
Counts the number of dependencies a class has.

Weight Method Class or

McCabe’s complexity (WMC)
It counts the number of branch instructions in a class.

Depth Inheritance Tree (DIT)
It counts the number of “fathers” a class has. All classes have

DIT at least 1 (everyone inherits java.lang.Object).

Response for a Class (RFC) Counts the number of unique method invocations in a class.

Lack of Cohesion of Methods

(LCOM)
Calculates LCOM metric.

Total Methods Counts the number of methods.

Total Fields Counts the number of fields.

NOSI
Number of static invocations. Counts the number of invocations

to static methods.

Lines of code (LOC) It counts the lines of count, ignoring empty lines.

Quantity of returns (Return Qty) The number of return instructions.

Quantity of loops (Loop Qty) The number of loops (i.e., for, while, do while, enhanced for).

Quantity of comparisons

(Comparisons Qty)
The number of comparisons (i.e., == and! =).

Quantity of try/catches (Try

Catch Qty)
The number of try/catches.

Quantity of parenthesized

expressions (Parenthesized

Exps Qty)

The number of expressions inside parenthesis.

String Literals Qty The number of string literals (e.g., “John Doe”).

Quantity of Number (Numbers

Qty)
The number of numbers (i.e., int, long, double, float) literals.

Quantity of Variables

(Assignments Qty)
Number of declared variables.

Quantity of Math Operations

(Math Operations Qty)

The number of math operations (times, divide, remainder, plus,

minus, left shit, right shift).

Quantity of Variables

(Variables Qty)
Number of declared variables.

Max nested blocks (Max Nested

Blocks)
The highest number of blocks nested together.

Number of unique words

(Unique Words Qty)
Number of unique words in the source code.

https://github.com/feiwww/GHPR_dataset

10 N. A. A. Khleel – K. Nehéz

4.2. Data Pre-processing and Features Selection

Pre-processing the collected data is one of the important stages before constructing

the model. To generate a good model, the quality of data needs to be considered. Not
all data collected is suitable for training and model building. Anyhow the inputs will

greatly impact the performance of the model and later moreover affect the output.

Data pre-processing is known as a group of techniques that are applied to the data to

improve the quality of the data before model building for the purpose of removing
noise and unwanted outliers from the data set, dealing with missing values, feature

type conversion, etc. [21, 26, 27]. The data set used in this study is a clean copy.

Normalization is necessary to convert the values into scaled values (scaling of the
data in numeric variables in the range of 0 to 1) to increase the efficiency of the

model. Therefore, the data set was normalized using Min–Max normalization. The

formula for calculating normalized score can be described by (8). Feature selection

is a crucial step to select the most discriminative features from the list of features
using appropriate feature selection methods. The goal of feature selection is to select

the features which are more relevant to the target class from high-dimensional

features and remove the features which are redundant and uncorrelated. Feature
extraction facilitates the conversion of pre-processed data into a form that the

classification engine can use [14, 28]. In this study, no feature was removed, all

features in the data sets were identified as independent variables of the models and
feature scaling technique was applied to make the output the same standard. Figure

4 shows a heat map of the data features.

 𝑥𝑖 = (𝑥𝑖 — 𝑋 𝑚𝑖𝑛)/ (𝑋 𝑚𝑎𝑥 — 𝑋 𝑚𝑖𝑛) (8)

Where max(x) and min(x) represent the maximum and minimum value of the

attribute x respectively.

Figure 4. Heatmap representing correlation-based feature selection

 A new approach to software defect prediction based on convolutional neural network… 11

4.3. Models building and evaluation

Different ML algorithms are used to build defect prediction models and each

algorithm has its own benefits. Most studies of SDP divide the data into two sets: a
training set and a test set. The training set is used to train the model, whereas the

testing set is used to evaluate the performance of the defect’s prediction model. Once

a defects prediction model is built, its performance needs to be evaluated [29, 30].

Implementation framework of our models: We use Keras as a high-level API based
on TensorFlow to build our models for simplicity and correctness, training is

performed with 80% of the dataset (random selection of features), while the

remaining 20% is used for validation. We evaluate the performance of our proposed
models based on a set of common performance measures such as confusion matrices,

MCC, AUC, and MSE as a Loos Function. MCC is a measure used for model

evaluation by measure the difference between the predicted values and actual values.

It takes into account true and false positives and negatives. AUC, which plots the
false positive rate on the x-axis and true positive rate on the y-axis over all possible

classification thresholds. MSE is a metric which measures the amount of error the

model. It assesses the average squared difference between the actual and predicted
values. A confusion matrix is a specific table used to measure the performance of a

model. A confusion matrix summarizes the results of the testing algorithm and

presents a report of True Positive (TP), False Positives (FP), True Negatives (TN),
and False Negatives (FN). The subsections below describe the confusion matrix and

performance measures applied as it is shown in Table 2 and equations.

Table 2. The Confusion matrix

Predicted

Actual

Class X Class Y

Class X TN FP

Class Y FN TP

 Accuracy = (TP + TN) / (TP + TN + FP + FN). (9)

 Precision = TP / (TP + FP). (10)

 Recall = TP / (TP + FN). (11)

 F − measure = (2 ∗ Recall ∗ Precision)/ (Recall + Precision). (12)

 MCC = TP ∗ TN − FP ∗ FN / √(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN) (13)

 AUC =
∑ rank(𝑖𝑛𝑠𝑖)−

M(M+1)

2

𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠

M . N
 (14)

12 N. A. A. Khleel – K. Nehéz

Where ∑ rank(𝑖𝑛𝑠𝑖)
𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠 is the sum of ranks of all positive samples, M

and N are the number of positive samples and negative samples, respectively.

 MSE =
1

n
∑ (x(i) − y(i))2

n

i=1
 (15)

Where n is the number of the observations, x(i) is the actual value, y(i) is the

observed or predicted value for the ith observation.

5. Experimental results and discussion

The experiments have been performed on open-source Java projects to predict

software defects based on class-level and metric-level code metrics. The proposed

models are developed based on classification patterns and compared together for
classifying the software defects. The comparison is performed on the basis of seven

standard classification parameters.

Results: Table 3 presents the training results of our CNN and BI-LSTM Models
on benchmark dataset in terms of accuracy, precision, recall, F-Measure, MCC,

AUC, and MSE. We notice that the highest accuracy was achieved by CNN model

which is 81%, the lowest accuracy was achieved by BI-LSTM model which is 80%.

The highest precision was achieved by CNN model which is 79%, the lowest
precision was achieved by BI-LSTM model which is 77%. The highest recall was

achieved by CNN model which is 85%, the lowest recall was achieved by BI-LSTM

model which is 84%. The highest f-measure was achieved by CNN model which is
82%, the lowest f-measure was achieved by BI-LSTM model which is 80%. The

highest MCC was achieved by CNN model which is 61%, the lowest MCC was

achieved by BI-LSTM model which is 59%. The highest AUC was achieved by CNN
model which is 88%, the lowest AUC was achieved by BI-LSTM model which is

84%. The highest MSE was achieved by BI-LSTM model which is 0.152, the lowest

MSE was achieved by CNN model which is 0.140.

Table 4 presents the validation results of our CNN and BI-LSTM Models on
benchmark dataset in terms of accuracy, precision, recall, F-Measure, MCC, AUC,

and MSE. We notice that the highest and lowest accuracy was achieved by the both

models (CNN and BI-LSTM) which is 80%. The highest and lowest precision was
achieved by the both models (CNN and BI-LSTM) which is 77%. The highest recall

was achieved by BI-LSTM model which is 85%, the lowest recall was achieved by

CNN model which is 84%. The highest f-measure was achieved by BI-LSTM model

which is 81%, the lowest f-measure was achieved by CNN model which is 80%. The
highest MCC was achieved by BI-LSTM model which is 60%, the lowest MCC was

achieved by CNN model which is 59%. The highest AUC was achieved by BI-LSTM

model which is 84%, The lowest AUC was achieved by CNN model which is 83%.
The highest MSE was achieved by CNN model which is 0.158, the lowest MSE was

achieved by BI-LSTM model which is 0.151.

 A new approach to software defect prediction based on convolutional neural network… 13

Figures 5 and 6 below show the training and validation accuracy and training

and validation loss of the models on dataset. Figures 7 and 8 below show the AUC

obtained by the models on dataset. After comparing the results obtained by the
proposed models, we noticed that both models got the best scores on the both

training and validation datasets, which indicated that the proposed models

performed well in SDP.

We also compared our results with the results obtained in previous studies based
on the accuracy and AUC. Table 5 compare the values of accuracy and AUC

obtained by our models and the values of accuracy and AUC in previous studies.

According to compression results, some of the results in the previous studies are
better than ours, but in the most cases, our approach is outperforming the other state-

of-the-art approaches on the benchmark datasets in terms of evaluation measures

such as accuracy and AUC.

Table 3. Performance measures for the proposed models over dataset –Training Results

proposed

models

Performance measures

Accuracy Precision Recall F-

measure

MCC AUC MSE

CNN 0.81 0.79 0.85 0.82 0.61 0.88 0.140

BI-LSTM 0.80 0.77 0.84 0.80 0.59 0.84 0.152

Table 4. Performance measures for the proposed models over dataset – Validation Results

proposed

models

Performance measures

Accuracy Precision Recall F-measure MCC AUC MSE

CNN 0.80 0.77 0.84 0.80 0.59 0.83 0.158

BI-LSTM 0.80 0.77 0.85 0.81 0.60 0.84 0.151

Figure 5. Training and Validation Accuracy for the models over dataset

14 N. A. A. Khleel – K. Nehéz

Figure 6. Training and Validation Loss for the models over dataset

Figure 7. ROC curves for models training over dataset

Figure 8. ROC curves for models validation over dataset

 A new approach to software defect prediction based on convolutional neural network… 15

Table 5. Comparison of the proposed approach with other existing approaches based
on the accuracy and AUC

Approaches Datasets Accuracy AUC

deep neural networks
[5]

Unified Bug Dataset

(PROMISE Dataset, Bug
Prediction Dataset, GitHub

Bug Dataset)

– 0.81

LSTM [7] Code4Bench for C/C++ code 0.70 –

Random Forest [7] Code4Bench for C/C++ code 0.62 –

deep neural network

[8]

PROMISE datasets (CM1,

JM1, KC1)

0.87, 0.79,

0.75
–

Linear Twin Support

Vector Machine [11]

PROMISE datasets (CM1,

PC1, KC1, KC2)

0.90, 0.94,

0.86, 0.86
–

LSTM [13]
Bug report datasets (Eclipse

Platform UI, JDT)
0.67, 0.76 –

LSTM [14] JIRA dataset 0.89 –

CBIL model [16]

PROMISE datasets (Camel,

Jedit, Lucene, Poi, Synapse,

Xalan, Xerces)

–

0.96, 0.91,

0.83, 0.95,

0.95, 0.76,

0.98

Convolutional Neural

Network and Random
Forest with Boosting

[21]

Bug report datasets (Mozilla,

Eclipse, JBoss, Open FOAM,
Firefox)

0.94, 0.95,

0.94, 0.98,
0.97

–

Our models – training

(CNN, BI-LST
GHPR Dataset 0.81, 0.80 0.88, 0.84

Our models –

validation (CNN, BI-

LSTM)

GHPR Dataset 0.80, 0.80 0.83, 0.84

6. Conclusion

Software defects have a major impact of software development life cycle and defect

prevention plays an important role in the software quality assurance. In previous

studies there are many papers discussed different types of datasets, presented
different software metrics, and examine the applicability of different ML algorithms

and evaluation criteria. In this study, we proposed approach based on two DL models

to predict software defects. We conducted the experiments based on the dataset were
obtained from open-source java projects GitHub repository. In order to validate the

proposed approach, different performance measures were used. The evaluation

results showed that the proposed approach have a good performing and can
significantly improve upon the state-of-the-art approaches. In our future work, our

approach will be evaluated on various datasets to validate the robustness and we

would like to combine more DL techniques with data balancing methods to improve

the accuracy of SDP.

16 N. A. A. Khleel – K. Nehéz

Acknowledgement

The authors gratefully acknowledge the financial assistance from the Institute of
Information Science, Faculty of Mechanical Engineering and Informatics, University

of Miskolc.

References

[1] Akimova, E.N., Bersenev, A.Y., Deikov, A.A., Kobylkin, K.S., Konygin, A.V.,

Mezentsev, I.P. and Misilov, V.E.: A survey on software defect prediction using deep

learning. Mathematics, vol. 9, no.11, p. 1180, 2021.

https://doi.org/10.3390/math9111180

[2] Omri, S. and Sinz, C.: Deep learning for software defect prediction: a survey. In

Proceedings of the IEEE/ACM 42nd International Conference on Software

Engineering Workshops, pp. 209–214, Association for Computing Machinery, New

York, NY, USA, 2020, https://doi.org/10.1145/3387940.3391463.

[3] Dam, H.K., Pham, T., Ng, S.W., Tran, T., Grundy, J., Ghose, A., Kim, T. and Kim,
C.J.: A deep tree-based model for software defect prediction. arXiv preprint

arXiv:1802.00921, 2018, https://doi.org/10.48550/arXiv.1802.00921.

[4] Miholca, D.L., Czibula, G. and Tomescu, V.: COMET: A conceptual coupling based

metrics suite for software defect prediction. Procedia Computer Science, vol. 176, pp.

31–40, 2020, https://doi.org/10.1016/j.procs.2020.08.004.

[5] Ferenc, R., Bán, D., Grósz, T. and Gyimóthy, T.: Deep learning in static, metric-based

bug prediction. Array, vol. 6, p. 100021, 2020.

https://doi.org/10.1016/j.array.2020.100021

[6] Qiao, L., Li, X., Umer, Q. and Guo, P.: Deep learning based software defect

prediction. Neurocomputing, vol. 385, pp. 100–110, 2020.

https://doi.org/10.1016/j.neucom.2019.11.067

[7] Majd, A., Vahidi-Asl, M., Khalilian, A., Poorsarvi-Tehrani, P. and Haghighi, H.:
SLDeep: Statement-level software defect prediction using deep-learning model on

static code features. Expert Systems with Applications, vol. 147, p. 113156, 2020.

https://doi.org/10.1016/j.eswa.2019.113156

[8] Samir, M., El-Ramly, M. and Kamel, A.: Investigating the use of deep neural

networks for software defect prediction. In 2019 IEEE/ACS 16th International

Conference on Computer Systems and Applications (AICCSA), pp. 1–6, Abu Dhabi,

United Arab Emirates, 2019, https://doi.org/10.1109/AICCSA47632.2019.9035240.

[9] Xu, J., Wang, F. and Ai, J.: Defect prediction with semantics and context features of

codes based on graph representation learning. IEEE Transactions on Reliability, vol.

70, no. 2, pp. 613–625, 2020, https://doi.org/10.1109/TR.2020.3040191.

[10] Al-Ahmad, B.: Using Code Coverage Metrics for Improving Software Defect
Prediction. J. Softw., vol. 13, no. 12, pp. 654–674, 2018.

https://doi.org/10.17706/jsw.13.12.654-674

https://doi.org/10.3390/math9111180
https://doi.org/10.1145/3387940.3391463
https://doi.org/10.48550/arXiv.1802.00921
https://doi.org/10.1016/j.procs.2020.08.004
https://doi.org/10.1016/j.array.2020.100021
https://doi.org/10.1016/j.neucom.2019.11.067
https://doi.org/10.1016/j.eswa.2019.113156

 A new approach to software defect prediction based on convolutional neural network… 17

[11] Agarwal, S. and Tomar, D.: A feature selection based model for software defect
prediction. International Journal of Advanced Science and Technology, vol. 65, pp.

39–58, 2014, http://dx.doi.org/10.14257/ijast.2014.65.04.

[12] Deng, J., Lu, L. and Qiu, S.: Software defect prediction via LSTM. IET Software, vol.

14, no. 4, pp. 443–450, 2020, https://doi.org/10.1049/iet-sen.2019.0149.

[13] Ye, X., Fang, F., Wu, J., Bunescu, R. and Liu, C.: Bug Report Classification using

LSTM architecture for more accurate software defect locating. In International

Conference on Machine Learning and Applications (ICMLA), IEEE, pp. 1438–1445,

Orlando, FL, USA, 2018, https://doi.org/10.1109/ICMLA.2018.00234.

[14] Bani-Salameh, H. and Sallam, M.: A deep-learning-based bug priority prediction

using RNN-LSTM neural networks. e-Informatica Software Engineering Journal,

vol. 15, no. 1, pp. 29–45, 2021, https://doi.org/10.37190/e-Inf210102.

[15] Liang, H., Yu, Y., Jiang, L. and Xie, Z.: Seml: A semantic LSTM model for software
defect prediction. IEEE Access, vol. 7, pp. 83812–83824, 2019.

https://doi.org/10.1109/ACCESS.2019.2925313

[16] Farid, A.B., Fathy, E.M., Eldin, A.S. and Abd-Elmegid, L.A.: Software defect

prediction using hybrid model (CBIL) of convolutional neural network (CNN) and

bidirectional long short-term memory (Bi-LSTM). PeerJ Computer Science, vol. 7, p.

e739, 2021, https://doi.org/10.7717/peerj-cs.739.

[17] Zhou, X. and Lu, L.: Defect prediction via LSTM based on sequence and tree

structure. In 2020 IEEE 20th International Conference on Software Quality,

Reliability and Security (QRS), pp. 366–373, IEEE, Macau, China, 2020.

https://doi.org/10.1109/QRS51102.2020.00055

[18] Pan, C., Lu, M., Xu, B. and Gao, H.: An improved CNN model for within-project
software defect prediction. Applied Sciences, vol. 9, no. 10, p. 2138, 2019.

https://doi.org/10.3390/app9102138

[19] Zhu, K., Zhang, N., Ying, S. and Zhu, D.: Within‐project and cross‐project just‐in‐

time defect prediction based on denoising autoencoder and convolutional neural

network. IET Software, vol. 14, no. 3, pp. 185–195, 2020.

https://doi.org/10.1049/iet-sen.2019.0278

[20] Li, J., He, P., Zhu, J. and Lyu, M.R.: Software defect prediction via convolutional

neural network. In international conference on software quality, reliability and

security (QRS), pp. 318–328, IEEE, Prague, Czech Republic, 2017.

https://doi.org/10.1109/QRS.2017.42

[21] Kukkar, A., Mohana, R., Nayyar, A., Kim, J., Kang, B.G. and Chilamkurti, N.: A

novel deep-learning-based bug severity classification technique using convolutional
neural networks and random forest with boosting. Sensors, vol. 19, no. 13, p. 2964,

2019, https://doi.org/10.3390/s19132964.

[22] Alsawalqah, H., Hijazi, N., Eshtay, M., Faris, H., Radaideh, A.A., Aljarah, I. and

Alshamaileh, Y.: Software defect prediction using heterogeneous ensemble

classification based on segmented patterns. Applied Sciences, vol. 10, no. 5, p. 1745,

2020, https://doi.org/10.3390/app10051745.

http://dx.doi.org/10.14257/ijast.2014.65.04
https://doi.org/10.1049/iet-sen.2019.0149
https://doi.org/10.7717/peerj-cs.739
https://doi.org/10.3390/app9102138
https://doi.org/10.1049/iet-sen.2019.0278
https://doi.org/10.3390/s19132964
https://doi.org/10.3390/app10051745

18 N. A. A. Khleel – K. Nehéz

[23] Sethi, T.: Improved approach for software defect prediction using artificial neural
networks. In 2016 5th International Conference on Reliability, Infocom Technologies

and Optimization (Trends and Future Directions)(ICRITO), pp. 480–485, IEEE,

Noida, India, 2016, https://doi.org/10.1109/ICRITO.2016.7785003.

[24] Fan, G., Diao, X., Yu, H., Yang, K. and Chen, L.: Software defect prediction via

attention-based recurrent neural network. Scientific Programming, p. 6230953, 2019.

https://doi.org/10.1155/2019/6230953

[25] Sirshar, M., Mir, H., Amir, K. and Zainab, L.: Comparative Analysis of Software

Defect Prediction Techniques. automotive engineering, Preprints, 2019, 2019120075

[26] Zhao, L., Shang, Z., Zhao, L., Zhang, T. and Tang, Y.Y.: Software defect prediction

via cost-sensitive Siamese parallel fully-connected neural networks. Neurocomputing,

vol. 352, pp. 64–74, 2019, https://doi.org/10.1016/j.neucom.2019.03.076.

[27] Miholca, D.L., Czibula, G. and Czibula, I.G.: A novel approach for software defect
prediction through hybridizing gradual relational association rules with artificial

neural networks. Information Sciences, vol. 441, pp. 152–170, 2018.

https://doi.org/10.1016/j.ins.2018.02.027

[28] Khan, M.Z.: Hybrid Ensemble Learning Technique for Software Defect Prediction.

International Journal of Modern Education & Computer Science, vol. 12, no. 1, pp.

1–10, 2020, https://doi.org/10.5815/ijmecs.2020.01.01.

[29] Kamei, Y. and Shihab, E.: Defect prediction: Accomplishments and future challenges.

In 2016 IEEE 23rd international conference on software analysis, evolution, and

reengineering (SANER), vol. 5, pp. 33–45, IEEE, Osaka, Japan, 2016.

https://doi.org/10.1109/SANER.2016.56

[30] Yang, Z. and Qian, H.: Automated Parameter Tuning of Artificial Neural Networks
for Software Defect Prediction. In Proceedings of the 2nd International Conference

on Advances in Image Processing, pp. 16–18, Association for Computing Machinery,

Chengdu, China, 2018, https://doi.org/10.1145/3239576.3239622.

https://doi.org/10.1155/2019/6230953
https://doi.org/10.1016/j.neucom.2019.03.076
https://doi.org/10.1016/j.ins.2018.02.027
https://doi.org/10.5815/ijmecs.2020.01.01
https://doi.org/10.1109/SANER.2016.56

