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Abstract. Software defect prediction (SDP) plays an important role in improving 

software quality and reliability while reducing software maintenance cost. The 

problem in the field of SDP is how to determine the defective source code with 

high accuracy. To build more accurate predictor models, a lot of features are 
presented, e.g., static code features, social network features, and process features, 

etc. Several machine learning (ML) and deep learning (DL) algorithms have 

been developed and adopted to identify and remove defects from the source code, 

where previous studies have proved that DL algorithms are promising techniques 

for predicting software defects. The aim of this study is to investigate the 

prediction performance of two DL algorithms namely, Convolutional Neural 

Network (CNN) and Bidirectional Long short-term memory (BI-LSTM) in the 

domain of SDP. To establish the effectiveness of the proposed approach, the 

experiments were conducted on the available benchmark datasets which 

obtained from open-source java projects GitHub repository and the models were 

evaluated by applying seven evaluation metrics which are accuracy, precision, 
recall, f-measure, matthews correlation coefficient (MCC), area under the ROC 

curve (AUC), mean square error (MSE). We found out that the best accuracy 

obtained on training dataset is 81% by using CNN model, while the best accuracy 

obtained on validation dataset is 80% by using BI-LSTM model. The best AUC 

obtained on training dataset is 88% by using CNN model, while the best AUC 

obtained on validation dataset is 83% by using the both models. It is nearly 

impossible to rule which model is better than the other so every model can be 

analyzed separately and the best model according to the problem at hand can be 

used, therefore, based on the problem of this study, The evaluation results show 

the effectiveness of our proposed models based on standard performance 

evaluation criteria. 
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1. Introduction 

These days, software quality assurance is overall the most necessary activity for 

software developing organizations. A software defect can be defined as errors in the 
software development process which may cause many problems for users and 

developers aside and may lead to the failure of the program to meet the desired 

expectations, which lead to raised development and maintenance costs and reduced 
customer satisfaction. Where the cost of finding and repairing defects represents one 

of the costliest software development activities. Early detection of defects helps 

practitioners allocate additional resources [1, 2]. There are many activities during the 
software life cycle to identify source code defects such as design review, code 

inspection, integration testing, functions and units testing, etc. Various research 

studies have analysed and applied SDP approaches to help prioritize software testing 

and correction. SDP refers to the techniques that use the historical defect data to 
build the relationship between software metrics and software defects. Earlier work 

in domain of SDP concentrated on static source code metrics e.g., size, complexity, 

and object-oriented metrics etc. as the main predictors of software defects [2, 3]. 
SDP is a process depends on three main components: dependent variables, 

independent variables and a model. Dependent variables are the defect data for the 

particular piece of code (defective or non-defective), which can be binary or ordinal 

variables. Independent variables are the metrics (inputs) that scores the software 
code. The model contains the rules or algorithms which predict the dependent 

variable from the independent variables. To determine the effectiveness of the 

classifier, the inputs (variables) are split into test and training data sets. Where the 
training data set is used to create the classifier and then this classifier is used to 

predict potential defects in the test data set and evaluate these predictions using 

different performance measures to determine if they are correct or not [4]. DL is a 
new and very successful area in artificial intelligence, it applies deep neural 

networks. Recently, DL algorithms have been adopted to improve research tasks in 

software engineering, especially in the field of SDP [5]. DL is a type of ML that 

allows computational models consisting of multiple processing layers to learn data 
representations with multiple levels of abstraction [6]. DL architecture has been 

widely applied in many fields and used to solve many detections, classification, and 

prediction problems. DL has drawn more and more attention, because of its powerful 
feature learning capability, and has been successfully used in many domains, such 

as speech recognition, image classification, etc. [7, 8] This study selects dataset from 

the GitHub repository for experimental purposes. Although some experiments in the 
previous studies [9] are conducted based on this dataset using ML techniques, very 

few of them are based on DL. Even there is no experiment using CNN and BI-LSTM 

in the literature. To bridge these gaps, the novelty and main contributions of our 

work are summarized as follows: 
1. In this study, we propose a novel approach based on CNN and BI-LSTM to 

predict software defects. 
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2. This study evaluates the effectiveness and efficiency of the proposed approach 

based on different performance measures.  

 
The structure of this paper is organized as follows. Section 2 presents a discussion 

on related work. Section 3 presents background on the topics of DL algorithms, 

CNN, Long-Short Term Memory (LSTM) Networks and BI-LSTM Networks. After 

that, our research methodology is presented in Section 4. Section 5 presents the 
experimental results and discussion followed by conclusions in the last section. 

 

2. Related work 

The efforts of previous studies toward building accurate prediction models can be 

categorized into the two following approaches: The first approach is manually 

designing new features or new combinations of features to represent defects more 
effectively, and the second approach involves the application of new and improved 

ML based classifiers. Many research studies in literature apply ML techniques to 

predict software’s defects [4, 9, 10]. Hoa Khanh Dam et al. [3] presented a novel 
approach based on LSTM architecture to predict source code defects. Abstract 

syntax tree which representing a source code was used as input for the proposed 

prediction model to predict if the source code is defective or non-defective. The 

experiments were evaluated based on two different datasets presented by Samsung 
and the PROMISE repository. The results showed that the approach was accurate 

and significant enough to predict source code defects. Rudolf Ferenc et al. [5] 

proposed a methodology of how to adapt DNNs s for bug prediction. The 
methodology was applied on a large bug dataset (containing 8780 bugged and 38,838 

not bugged Java classes). The results demonstrate that DL with static metrics can 

indeed boost prediction accuracies. Amirabbas Majd et al. [7] proposed SLDeep 
using LSTM as learning model, a technique for statement-level SDP based on more 

than 100,000 C/C ++ programs. The evaluation results show that the proposed model 

seems to be effective at statement-level SDP and can be adopted. Mohamed Samir 

et al. [8] proposed a new method using DNN to predict software defects. The method 
has been compared with some ML algorithms. The results of the experiment showed 

that the proposed method has a slight improvement over the other methods. Sonali 

Agarwal and Divya Tomar [11] proposed a new method called the feature selection 
based Linear Twin Support Vector Machine (LSTSVM) model to predict software 

defects. The experiment was performed on four PROMISE datasets. The method was 

evaluated and compared with other existing ML models. The experimental results 
showed the effectiveness of the proposed method. Jiehan Deng et al. [12] proposed 

a novel LSTM method to perform SDP, their method can automatically learn 

semantic and contextual information from the program’s ASTs. The experiment was 

performed on several open-source projects, the results showed that the proposed 
LSTM method is superior to the state-of-the-art methods. Xin Ye et al. [13] proposed 

a classification model using a LSTM-network to classify bugs based on 9,000 bug 

reports from three software projects. The results of the evaluation and comparison 
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show that the proposed model achieves the best results. Hani Bani-Salameh et al. 

[14] proposed a framework using LSTM for automatically assigning bugs. The 

proposed model has been validated on five real projects. The performance of the 
model was compared with two ML algorithms. The results show that LSTM predicts 

and assigns the priority of the bug more accurately and effectively. HONGLIANG 

LIANG et al. [15] proposed Seml, a novel framework for defect prediction using 

LSTM network based on eight open-source projects. The evaluation results show 
that the proposed model outperforms three state-of-the-art defect prediction 

approaches on most of the datasets. Ahmed Bahaa Farid et al. [16] proposed a hybrid 

model using BI-LSTM and a CNN to predict software defects. The proposed model 
was evaluated using seven open-source Java projects from the PROMISE dataset. 

The results show that the proposed model is accurate for predicting software defects. 

Xuan Zhou and Lu Lu [17] developed a LSTM network based on bidirectional and 

tree structure (LSTM-BT) to predict software defects based on 8 pairs of Java open-
source projects. The evaluation results show that the proposed model performs better 

compared to several state-of-the-art defect prediction models. Cong Pan et al. [18] 

proposed an improved CNN model for within project defect prediction (WPDP) and 
compare the results of the experiment with those of existing CNN studies. The 

experiment was performed based on a 30-repetition holdout validation and a 10 * 10 

cross-validation. The results showed that the CNN model outperformed the state-of-
the-art ML models significantly for WPDP. JIEHAN. Kun Zhu et al. [19] proposed 

a novel just-in-time defect prediction model named DAECNN-JDP based on 

denoising autoencoder and CNN. The model was evaluated based on six large open-

source projects and compared with 11 baseline models. The experimental results 
show that the DAECNN-JDP model outperforms these baseline models. Jian Li et 

al. [20] proposed a framework based on the programs' Abstract Syntax Trees called 

Defect Prediction via CNN (DP-CNN). the model was evaluated based on seven 
open-source projects in terms of F-measure. The experimental results show that on 

average, the DP-CNN model improves the state-of-the-art method by 12%. Ashima 

Kukkar et al. [21] proposed a novel DL model for multiclass severity classification 
called Bug Severity classification using a CNN and Random Forest with Boosting 

based on five open-source projects. The results prove that the proposed model 

enhances the performance of bug severity classification over state-of-the-art 

techniques. 
 

3. Background 

In this section, we present the background about the topics of DL algorithms, CNN, 

Long-Short Term Memory (LSTM) Networks and BI-LSTM Networks. 

 

3.1. Deep learning algorithms in software defect prediction 

Deep learning (DL) algorithms have received extensive attention in the field of 

software engineering for a considerable period. Therefore, recently DL algorithms 
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have been adopted to enhance research tasks in the field of SDP. One effort to create 

effective DL models valuable for the software engineering community is the 

classification and regression based on source code metrics, but the most popular DL 
algorithms used to predict software defects are classification algorithms. Even 

though these efforts share the fundamentals of analyzing code metrics, they also vary 

in terms of accuracy, complexity, and the input data they require to predict a defect 

[2, 9]. Commonly, there are three classes of prediction models that are used to predict 
defective software modules, binary class classification of defects, number or density 

of defects prediction, and severity of defect prediction. The binary class is the most 

frequently used in SDP. Researchers have provided different classification 
techniques for binary class classification of defects, including statistical techniques, 

supervised techniques, semi supervised techniques, and unsupervised techniques. 

Most of the studies in the literature have used statistical and supervised learning 

techniques [22]. 
 

3.2. Convolutional Neural Network 

Convolutional Neural Network (CNN) is a special type of deep neural network or a 
class of convolutional feedforward neural network used to process data that has a 

known, grid-like topology. It is constructed to mimic the visual perception of 

biological processes and can be used for both supervised learning and unsupervised 
learning. CNN has been tremendously successful in practical applications, including 

speech recognition, image classification, and natural language processing [1, 6]. 

CNN model is inspired by the typical CNN architecture used in image classification 

and consists of a feature extraction part and a classification part as shown in the 
Figure 1. These parts consist of multiple layers are convolution, batch normalization, 

and maximum merge layers. These layers constitute the hidden layer of the 

architecture. The convolutional layer performs convolution operations based on the 
specified filter and kernel parameters and calculates the network weights to the next 

layer, while the maximum pooling layer achieves a reduction in the dimension of the 

feature space. Batch normalization is used to mitigate the effect of different input 
distributions for each training mini-batch for the purpose of improving training. 

Activation functions enabling the training of CNN model in a fast and accurate 

manner. There are many activation functions used in CNN such as Sigmoid, 

Rectified Linear Unit (ReLU) and hyperbolic tangent (Tanh) [18]. In this study, we 
used two activation functions, the ReLU function for the input and hidden layers and 

the Sigmoid function for the output layer as shown in equations below. 

 
 

 ℎ𝑖
𝑚 =  𝑅𝑒𝐿𝑈(𝑊𝑖

𝑚−1 ×  𝑉𝑖
𝑚−1 + 𝑏𝑚−1)  (1) 

 

Where ℎ𝑖
𝑚

 represents convolutional layer, 𝑊𝑖
𝑚−1

 represents the weights of neuron, 

𝑉𝑖
𝑚−1

 represents the nodes, and  𝑏𝑚−1 represents the bias layer. 
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 𝑆(𝑥) =  
1

  1+ 𝑒− ∑ 𝑊𝑖+𝑋𝑖
  
𝑘 +𝑏  (2) 

 

Where 𝑋𝑖 represents the input, 𝑊𝑖 is the weight of the input and b is the bias. 

 

 

 
 

Figure 1. CNN Model for SDP 

 

 

3.3. Long-Short Term Memory (LSTM) Networks and BI-LSTM Networks 

Long-Short Term Memory (LSTM) Networks are a special type of RNN used in the 
field of DL, which are designed to recognize patterns in data sequences. LSTM 

Networks were introduced to avoid or handling long term dependencies problem 

without being affected by an unstable gradient. This problem frequently occurs in 
regular RNN when connecting previous information to new information [13, 23]. A 

common LSTM unit is composed of a cell, an input gate, an output gate and a forget 

gate. The cell remembers values over arbitrary time intervals and the three gates 
regulate the flow of information into and out of the cell. Due to the ability of the 

LSTM network to recognize longer sequences of time-series data, LSTM models can 

provide high predictive performance in SDP. [24]. More recently, Bidirectional long-

short term memory (BI-LSTM) are a new way to train data by expanding the 
capabilities of LSTM networks, it uses two separate hidden layers to train the input 

data twice in the forward and backward directions as shown in Figure 2. With the 

regular LSTM Networks, the input flow in one direction, either backwards or 
forward. BI-LSTM Networks are the process of making any neural network have the 

sequence information in both directions (a sequence processing model that consists 

of two LSTM): one taking the input in a forward direction (past to future), and the 

other in a backwards direction (future to past). [14, 23, 24]. we build a BI-LSTM 
Network, because the defective source code is closely related to its previous and 

subsequent source code segments. The idea behind BI-LSTM Networks is to exploit 
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spatial features to capture bidirectional temporal dependencies from historical data 

to overcome the limitations of traditional RNN. Standard RNNs take sequences as 

inputs, and each step of the sequence refers to a certain moment. For a certain 

moment t, the output 𝑜𝑡 not only depends on the current input 𝑥𝑡 but is also 

influenced by the output from the previous moment  𝑡 − 1. The output of moment 

(t) can be formulated as the following equations: 

 

 ℎ𝑡   =  𝑓( 𝑈 ×  𝑥𝑡 + 𝑊 ×  ℎ𝑡−1 + 𝑏)  (3) 

 

 𝑜𝑡   =  𝑔( 𝑉 ×  ℎ𝑡 + 𝑐)  

 
Where U, V, and W denote the weights of the RNN, b and c denote the bias, f and g 

are the activation functions of the neurons. The cell state carries the information from 

the previous moments and will flow through the entire LSTM chain, which is the 
key that LSTM can have long-should be filtered from the previous moment, the 

output of forget gate can be formulated as the following equation: 

 

 𝑓𝑡   =  σ( 𝑊𝑓  .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑓)  (4) 

 

Where σ denotes the activation function, 𝑊𝑓 and 𝑏𝑓 denote the weights and bias of 

the forget gate, respectively. The input gate determines what information should be 

kept from the current moment, and its output can be formulated as the following 
equation: 

 

 𝑖𝑡   =  σ( 𝑊𝑖  .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖)  (5) 

  

Where σ denotes the activation function, 𝑊𝑖 and 𝑏𝑖 denote the weights and bias of 

the input gate, respectively. With the information from forget gate and input gate, 

the cell state 𝐶𝑡−1  is updated through the following formula: 

 

 Č𝑡   =  tanh( 𝑊𝑐  .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑐)  (6) 

 

 Č𝑡   =  𝑓𝑡  ×  𝐶𝑡−1 + 𝑖 ×  Č𝑡)   

 

Č𝑡 is a candidate value that is going to be added into the cell state and 𝐶𝑡 is the current 

updated cell state. Finally, the output gate decides what information should be 

outputted according to the previous output and current cell state. 
 

 𝑜𝑡   =  σ( 𝑊𝑜 .  [ℎ𝑡−1 , 𝑥𝑡 + 𝑏𝑜]  (7) 

 ℎ𝑡   =  𝑜𝑡 × tanh(𝐶𝑡).   
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Figure 2. Interacting layers of the repeating module in a BI-LSTM Network 

 

4. The proposed methodology 

The aim of this study is to build SDP models that would outperform other defect 

prediction models. This study proposed a method to train and test SDP model based 
on high-performance DL algorithms, namely CNN and BI-LSTM. A series of steps 

have been taken and described such as data modelling and collection, data pre-

processing and features selection, models building and evaluation. Figure 3 
illustrates the overview of the proposed approach for SDP where each step is 

described in the following sections. 

 

 
 

Figure 3. Proposed SDP approach 

 

4.1. Data modelling and collection 

Dataset selection is an important task in the problem of DL, and classification models 

perform better if the dataset is more relevant to the problem. Having a large dataset 
is fundamental to train DL models and allow generalization of the obtained results. 

Software defect database consists mostly of three components: collection of software 

metrics, defect details (Defective or non-defective code) and meta information [25]. 
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In this study, we select public benchmark datasets for SDP which obtained from the 

GitHub repository (GHPR Dataset) [9]. The GHPR dataset contains 21 static metrics 

for the total 6052 instances (3026 defective instances and 3026 non-defective 
instances), which is the data used for the baseline approaches. This dataset focuses 

on class-level and metric-level code metrics in Java projects that computed by CK-

open-source tool. Table 1 shows the description of the metrics. Dataset links are: 

https://github.com/feiwww/GHPR_dataset 
 
Table 1. Class-level and metric-level code metrics calculated by the CK-open-source tool [9] 

 

Metrics Description 

Coupling Between Objects 

(CBO) 
Counts the number of dependencies a class has. 

Weight Method Class or 

McCabe’s complexity (WMC) 
It counts the number of branch instructions in a class. 

Depth Inheritance Tree (DIT) 
It counts the number of “fathers” a class has. All classes have 

DIT at least 1 (everyone inherits java.lang.Object). 

Response for a Class (RFC) Counts the number of unique method invocations in a class. 

Lack of Cohesion of Methods 

(LCOM) 
Calculates LCOM metric. 

Total Methods Counts the number of methods. 

Total Fields Counts the number of fields. 

NOSI 
Number of static invocations. Counts the number of invocations 

to static methods. 

Lines of code (LOC) It counts the lines of count, ignoring empty lines. 

Quantity of returns (Return Qty) The number of return instructions. 

Quantity of loops (Loop Qty) The number of loops (i.e., for, while, do while, enhanced for). 

Quantity of comparisons 

(Comparisons Qty) 
The number of comparisons (i.e., == and! =). 

Quantity of try/catches (Try 

Catch Qty) 
The number of try/catches. 

Quantity of parenthesized 

expressions (Parenthesized 

Exps Qty) 

The number of expressions inside parenthesis. 

String Literals Qty The number of string literals (e.g., “John Doe”). 

Quantity of Number (Numbers 

Qty) 
The number of numbers (i.e., int, long, double, float) literals. 

Quantity of Variables 

(Assignments Qty) 
Number of declared variables. 

Quantity of Math Operations 

(Math Operations Qty) 

The number of math operations (times, divide, remainder, plus, 

minus, left shit, right shift). 

Quantity of Variables 

(Variables Qty) 
Number of declared variables. 

Max nested blocks (Max Nested 

Blocks) 
The highest number of blocks nested together. 

Number of unique words 

(Unique Words Qty) 
Number of unique words in the source code. 

https://github.com/feiwww/GHPR_dataset
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4.2. Data Pre-processing and Features Selection 

Pre-processing the collected data is one of the important stages before constructing 

the model. To generate a good model, the quality of data needs to be considered. Not 
all data collected is suitable for training and model building. Anyhow the inputs will 

greatly impact the performance of the model and later moreover affect the output. 

Data pre-processing is known as a group of techniques that are applied to the data to 

improve the quality of the data before model building for the purpose of removing 
noise and unwanted outliers from the data set, dealing with missing values, feature 

type conversion, etc. [21, 26, 27]. The data set used in this study is a clean copy. 

Normalization is necessary to convert the values into scaled values (scaling of the 
data in numeric variables in the range of 0 to 1) to increase the efficiency of the 

model. Therefore, the data set was normalized using Min–Max normalization. The 

formula for calculating normalized score can be described by (8). Feature selection 

is a crucial step to select the most discriminative features from the list of features 
using appropriate feature selection methods. The goal of feature selection is to select 

the features which are more relevant to the target class from high-dimensional 

features and remove the features which are redundant and uncorrelated. Feature 
extraction facilitates the conversion of pre-processed data into a form that the 

classification engine can use [14, 28]. In this study, no feature was removed, all 

features in the data sets were identified as independent variables of the models and 
feature scaling technique was applied to make the output the same standard. Figure 

4 shows a heat map of the data features. 

 

 𝑥𝑖  =  (𝑥𝑖  —  𝑋 𝑚𝑖𝑛)/ (𝑋 𝑚𝑎𝑥 —  𝑋 𝑚𝑖𝑛)  (8) 
 

Where max(x) and min(x) represent the maximum and minimum value of the 

attribute x respectively. 

 

 
Figure 4. Heatmap representing correlation-based feature selection 
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4.3. Models building and evaluation 

Different ML algorithms are used to build defect prediction models and each 

algorithm has its own benefits. Most studies of SDP divide the data into two sets: a 
training set and a test set. The training set is used to train the model, whereas the 

testing set is used to evaluate the performance of the defect’s prediction model. Once 

a defects prediction model is built, its performance needs to be evaluated [29, 30]. 

Implementation framework of our models: We use Keras as a high-level API based 
on TensorFlow to build our models for simplicity and correctness, training is 

performed with 80% of the dataset (random selection of features), while the 

remaining 20% is used for validation. We evaluate the performance of our proposed 
models based on a set of common performance measures such as confusion matrices, 

MCC, AUC, and MSE as a Loos Function. MCC is a measure used for model 

evaluation by measure the difference between the predicted values and actual values. 

It takes into account true and false positives and negatives. AUC, which plots the 
false positive rate on the x-axis and true positive rate on the y-axis over all possible 

classification thresholds. MSE is a metric which measures the amount of error the 

model. It assesses the average squared difference between the actual and predicted 
values. A confusion matrix is a specific table used to measure the performance of a 

model. A confusion matrix summarizes the results of the testing algorithm and 

presents a report of True Positive (TP), False Positives (FP), True Negatives (TN), 
and False Negatives (FN). The subsections below describe the confusion matrix and 

performance measures applied as it is shown in Table 2 and equations. 

 

Table 2. The Confusion matrix 
 

 

Predicted 
 

Actual 

Class X Class Y 

Class X TN FP 

Class Y FN TP 

 

 

 Accuracy =  (TP +  TN) / (TP +  TN +  FP +  FN).  (9) 

 

 Precision =  TP / (TP +  FP).  (10) 
 

 Recall =  TP / (TP +  FN).  (11) 

 

 F − measure =  (2 ∗  Recall ∗  Precision)/ (Recall +  Precision).  (12) 

 

 MCC =  TP ∗ TN −  FP ∗ FN / √(TP + FP) ∗ (TP + FN) ∗ (TN +  FP) ∗ (TN + FN)  (13) 

 

 AUC =   
∑ rank(𝑖𝑛𝑠𝑖)− 

M(M+1)

2
   

𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠

M .  N
    (14) 
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Where ∑ rank(𝑖𝑛𝑠𝑖)    
𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠 is the sum of ranks of all positive samples, M 

and N are the number of positive samples and negative samples, respectively. 

 

 MSE =   
1

n
∑ (x(i) − y(i))2 

n

i=1
  (15) 

 

Where n is the number of the observations, x(i) is the actual value, y(i) is the 

observed or predicted value for the  ith observation. 

 

5. Experimental results and discussion 

The experiments have been performed on open-source Java projects to predict 

software defects based on class-level and metric-level code metrics. The proposed 

models are developed based on classification patterns and compared together for 
classifying the software defects. The comparison is performed on the basis of seven 

standard classification parameters.  

Results: Table 3 presents the training results of our CNN and BI-LSTM Models 
on benchmark dataset in terms of accuracy, precision, recall, F-Measure, MCC, 

AUC, and MSE. We notice that the highest accuracy was achieved by CNN model 

which is 81%, the lowest accuracy was achieved by BI-LSTM model which is 80%. 

The highest precision was achieved by CNN model which is 79%, the lowest 
precision was achieved by BI-LSTM model which is 77%. The highest recall was 

achieved by CNN model which is 85%, the lowest recall was achieved by BI-LSTM 

model which is 84%. The highest f-measure was achieved by CNN model which is 
82%, the lowest f-measure was achieved by BI-LSTM model which is 80%. The 

highest MCC was achieved by CNN model which is 61%, the lowest MCC was 

achieved by BI-LSTM model which is 59%. The highest AUC was achieved by CNN 
model which is 88%, the lowest AUC was achieved by BI-LSTM model which is 

84%. The highest MSE was achieved by BI-LSTM model which is 0.152, the lowest 

MSE was achieved by CNN model which is 0.140.  

Table 4 presents the validation results of our CNN and BI-LSTM Models on 
benchmark dataset in terms of accuracy, precision, recall, F-Measure, MCC, AUC, 

and MSE. We notice that the highest and lowest accuracy was achieved by the both 

models (CNN and BI-LSTM) which is 80%. The highest and lowest precision was 
achieved by the both models (CNN and BI-LSTM) which is 77%. The highest recall 

was achieved by BI-LSTM model which is 85%, the lowest recall was achieved by 

CNN model which is 84%. The highest f-measure was achieved by BI-LSTM model 

which is 81%, the lowest f-measure was achieved by CNN model which is 80%. The 
highest MCC was achieved by BI-LSTM model which is 60%, the lowest MCC was 

achieved by CNN model which is 59%. The highest AUC was achieved by BI-LSTM 

model which is 84%, The lowest AUC was achieved by CNN model which is 83%. 
The highest MSE was achieved by CNN model which is 0.158, the lowest MSE was 

achieved by BI-LSTM model which is 0.151.  
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Figures 5 and 6 below show the training and validation accuracy and training 

and validation loss of the models on dataset. Figures 7 and 8 below show the AUC 

obtained by the models on dataset. After comparing the results obtained by the 
proposed models, we noticed that both models got the best scores on the both 

training and validation datasets, which indicated that the proposed models 

performed well in SDP. 

We also compared our results with the results obtained in previous studies based 
on the accuracy and AUC. Table 5 compare the values of accuracy and AUC 

obtained by our models and the values of accuracy and AUC in previous studies. 

According to compression results, some of the results in the previous studies are 
better than ours, but in the most cases, our approach is outperforming the other state-

of-the-art approaches on the benchmark datasets in terms of evaluation measures 

such as accuracy and AUC. 

 
Table 3. Performance measures for the proposed models over dataset –Training Results 

 

 

proposed 

models 

Performance measures 

Accuracy Precision Recall F-

measure 

MCC AUC MSE 

CNN 0.81 0.79 0.85 0.82 0.61 0.88 0.140 

BI-LSTM 0.80 0.77 0.84 0.80 0.59 0.84 0.152 

 

 
Table 4. Performance measures for the proposed models over dataset – Validation Results 

 

 

proposed 

models 

Performance measures 

Accuracy Precision Recall F-measure MCC AUC MSE 

CNN 0.80 0.77 0.84 0.80 0.59 0.83 0.158 

BI-LSTM 0.80 0.77 0.85 0.81 0.60 0.84 0.151 

 

 
 

 
 

Figure 5. Training and Validation Accuracy for the models over dataset 
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Figure 6. Training and Validation Loss for the models over dataset 

 

 

 
 

Figure 7. ROC curves for models training over dataset 

 

 

 
 

Figure 8. ROC curves for models validation over dataset 
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Table 5. Comparison of the proposed approach with other existing approaches based  
on the accuracy and AUC 

 

Approaches Datasets Accuracy AUC 

deep neural networks 
[5] 

Unified Bug Dataset 

(PROMISE Dataset, Bug 
Prediction Dataset, GitHub 

Bug Dataset) 

– 0.81 

LSTM [7] Code4Bench for C/C++ code 0.70 – 

Random Forest [7] Code4Bench for C/C++ code 0.62 – 

deep neural network 

[8] 

PROMISE datasets (CM1, 

JM1, KC1) 

0.87, 0.79, 

0.75 
– 

Linear Twin Support 

Vector Machine [11] 

PROMISE datasets (CM1, 

PC1, KC1, KC2) 

0.90, 0.94, 

0.86, 0.86 
– 

LSTM [13] 
Bug report datasets (Eclipse 

Platform UI, JDT) 
0.67, 0.76 – 

LSTM [14] JIRA dataset 0.89 – 

CBIL model [16] 

PROMISE datasets (Camel, 

Jedit, Lucene, Poi, Synapse, 

Xalan, Xerces) 

– 

0.96, 0.91, 

0.83, 0.95, 

0.95, 0.76, 

0.98 

Convolutional Neural 

Network and Random 
Forest with Boosting 

[21] 

Bug report datasets (Mozilla, 

Eclipse, JBoss, Open FOAM, 
Firefox) 

0.94, 0.95, 

0.94, 0.98, 
0.97 

– 

Our models – training 

(CNN, BI-LST 
GHPR Dataset 0.81, 0.80 0.88, 0.84 

Our models – 

validation (CNN, BI-

LSTM) 

GHPR Dataset 0.80, 0.80 0.83, 0.84 

 

6. Conclusion 

Software defects have a major impact of software development life cycle and defect 

prevention plays an important role in the software quality assurance. In previous 

studies there are many papers discussed different types of datasets, presented 
different software metrics, and examine the applicability of different ML algorithms 

and evaluation criteria. In this study, we proposed approach based on two DL models 

to predict software defects. We conducted the experiments based on the dataset were 
obtained from open-source java projects GitHub repository. In order to validate the 

proposed approach, different performance measures were used. The evaluation 

results showed that the proposed approach have a good performing and can 
significantly improve upon the state-of-the-art approaches. In our future work, our 

approach will be evaluated on various datasets to validate the robustness and we 

would like to combine more DL techniques with data balancing methods to improve 

the accuracy of SDP. 
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