
 

Production Systems and Information Engineering

Volume 10 (3), pp. 19�25
doi: 10.32968/psaie.2022.3.2

19

AN EXPLORATIVE ANALYSIS OF MANAGED CI/CD
USAGE AMONG OPEN-SOURCE C/C++ PROJECTS

Áron Kiss

University of Miskolc, Hungary
Institute of Information Technology

kiss.aron@uni-miskolc.hu

Abstract. CI/CD is a common practice in software projects today,
because it provides a higher level of reliability and safety, especially in
the case of dynamically typed script languages. Several studies have
examined questions about the e�ects of using CI/CD pipelines in gen-
eral. This paper presents, how projects are written primarily in one of
the mature C and C++ programming languages adapt to the emerging
CI/CD trend. What proportion of these projects are using a CI/CD
pipeline? Which managed CI/CD services are typically used in these
projects? How early are the CI/CD approach adopted? Is project pop-
ularity related to CI/CD adoption rate? Data about 6,000 open-source
C/C++ repositories were collected and analysed in this study to answer
the aforementioned questions.

Keywords: continuous integration, agile software development, software
quality assurance

1. Introduction

Continuous Integration, Delivery and Deployment are modern approaches, that
make it possible to automate linting, building, packaging, testing, releasing,
and deployment of software products. This provides more reliable software and
reduces the need for human labor during software release or deployment to a
production system.

Nowadays, many software support the needs of software developers in connec-
tion with their CI/CD process. There are on-premise and managed solutions
on the market. Most of the modern CI/CD solutions can be integrated with
code hosting platforms, like GitHub.

Nowadays CI/CD methods are actively researched area of software engineering.
[1] concluded that adoption of CI improves the productivity of the development
team and makes it possible to integrate more outside contribution without

http://doi.org/10.32968/psaie.2022.3.2


20 Á. Kiss

degrading code quality. [2] was combined their data set of open-source software
projects with an online survey to �nd out why developers chose to use or not
to use CI, and what are the bene�ts and costs of introducing a CI/CD pipeline
to a project. [3] and [4] are examined automated build runs in Travis CI to
answer questions about the usage characteristics of managed CI/CD solutions.

Studies are reported that CI/CD pipeline is more often used in projects that are
written in modern, dynamically-typed languages, such as Python, JavaScript
and Ruby [2, 4].

However, I did not �nd studies that speci�cally examine the characteristics
of CI/CD use among software developed with more mature, but still widely
used programming languages, especially C and C++. The aim of this study
is to explore, how C/C++ developers are adopting CI/CD in their projects,
and what characteristics can be observed in their CI/CD usage. By collecting
and analysing a set of open-source C and C++ projects, I will be able answer
several research questions:

RQ1. How common is the usage of managed CI/CD services among C
and C++ projects?
RQ2. Which managed CI/CD solutions are used for open-source C/C++
projects in GitHub?
RQ3. How early do C/C++ developers adopt CI/CD in their projects?
RQ4. How does the popularity of projects in�uence the CI/CD usage
rate?

2. Background

CI/CD � which is an acronym of Continuous Integration and Continuous De-
livery or Continuous Deployment � is a collection of principles and technologies
that make it possible to develop and release software products faster and more
e�ciently, than following classical software engineering approaches like the wa-
terfall model. CI/CD's aim is to help software development and operation by
introducing automated processes, which are triggered by development units
(e.g. commits in the version control system [VCS]). These automated pro-
cesses can carry out multiple checks, formatting and inspection (e.g. linting
code based on pre-de�ned rules, fetching dependencies, building binaries, unit
testing, integration testing, acceptance testing, etc.) on the codebase, can
build manually releasable units of the software and can deploy a release of the
software to production environments completely automatically.

Continuous Integration (CI) is the process during which every single commit
pushed to the central repository is evaluated with a test suite and merged into
the main development branch only if all the test cases ran successfully [2].



An explorative analysis of managed CI/CD usage among open-source C/C++
projects 21

Continuous Delivery (CDE) is the process of building a manually installable
unit from the new state of the codebase. CDE often includes steps like com-
piling and packaging the code, running unit-, integration- and automated ac-
ceptance tests. This ensures that the software can be released reliably at any
time [5].

Continuous Deployment (CD) is the process where the changes of the code-
base � even the smallest ones � are delivered frequently through completely
automated deployments to production or customer environments [6]. We can
consider CD as a more complete form of CDE, as during this process not only
the deployable software unit is produced, but it is also deployed automatically.

CI, CDE and CD processes are often depending on each other's output, so we
can collectively refer to this automation as a CI/CD pipeline [6].

By introducing a CI/CD pipeline to a project, errors can be traced back to
smaller code changes, shortly after the changes are published to the VCS. As
a result, the cost of �xing errors and the chance to introduce new ones can be
reduced.

This practice of merging fewer changes at a time allows developers to re-
solve merge con�icts earlier and address regression defects more e�ciently and
quickly [7]. However, setting up the CI/CD environment and later operating
and maintaining it is a time-consuming task that requires human work. This
is partially eliminated by today's cloud-based solutions. Secondly, the method
itself can only add unnecessary complexity to smaller projects. [8] found that
very small projects (up to 1,000 lines of code) are the ones that take the longest
time to �x broken builds. Moreover, CI/CD's advantages are not necessarily
noticeable if one want to apply it to a legacy codebase that cannot be covered
well by automatic tests.

2.1. Basic example of CI/CD work�ow

Figure 1 shows a basic CI/CD work�ow. In step 1, a developer pushes changes
to the central repository.

In step 2, the CI/CD service has to be noti�ed about the code change. It can
be achieved in two ways: a) the repository service noti�es the CI/CD server
about the change (e.g. GitHub Webhooks); b) the CI/CD server polls the state
of the central repository if any changes are made [9].

In step 3, the CI/CD server fetches code from the central repository and run
the pre-de�ned tasks on it. These tasks can include but not limited to

• linting the code,
• compiling the code,
• packaging the output of compilation,



22 Á. Kiss

• running automated unit, integration, and acceptance tests,
• determining code quality,
• measuring code coverage,
• generating documentation,
• releasing executable binaries,
• deploying the software automatically.

Figure 1. Basic CI/CD work�ow

In step 4, the CI/CD server sends report about the process to the development
team and/or the code hosting service. This report can contain information such
as metadata about the testing environment, logs of the standard output, and
the resulting state of the CI/CD pipeline's actual run (success, failure, timeout,
etc.). In case of error, the VCS provider can automatically decline merging the
changes to the main development branch.

2.2. On-premise and managed CI/CD solutions

CI/CD solutions can basically be divided into two groups based on their op-
erating method.

On-premise CI/CD servers (e.g. Jenkins, TeamCity, Bamboo, Azure DevOps)
are operated by the organization that uses the CI/CD pipeline in their devel-
opment process. Setting up the testing environment, and later operating and
maintaining it is the organization's responsibility, which requires human work.
When CI/CD is heavily used in the development of software systems, a new
role may even be involved, which is often called DevOps Engineer. DevOps
Engineers are responsible for reducing the time between committing a change
to a system and the change being placed into normal production [10]. This
can be achieved by building an e�ective pipeline of releases.



An explorative analysis of managed CI/CD usage among open-source C/C++
projects 23

Managed CI/CD solutions (e.g., GitHub Actions, Azure Pipelines, TravisCI,
CircleCI) are hosted, scaled, secured and generally maintained by an external
organization. These external organizations are only provide CI/CD capabili-
ties to the development teams through APIs. This can o�oad a large amount
of work from the development team. However, managed CI/CD services are
often considered less secure than on-premise solutions, because the software
product's code is examined and executed in an external company's infrastruc-
ture, most often in a multitenant environment, where malicious tenants can
damage the CI system as a whole or can compromise builds of other tenants
[11]. This might also cause compliance issues with organizational standards
and further regulations in certain cases (e.g. in the development of healthcare
software).

Developers of open-source projects are often choose managed CI/CD solutions
because these are easy-to-use and often free services, at least to a limited extent
[12, 13, 14]. Also, keeping the algorithm a secret is not a consideration in these
projects.

3. Usage characteristics of managed CI/CD services

Here, I present the process of collecting and pre-processing the data on which
the study is based. I also describe the observations made on the data.

3.1. Data collection and pre-processing

Data on which the study is based are collected from the GitHub API. This
collected data is used to answer the speci�ed questions about the usage of
CI/CD pipelines in open-source C/C++ projects.

The repositories whose creation date falls between 2017 and 2022 and the
C or C++ programming language was determined as the primary language
were queried. For each year, the repositories was sorted in descending order
of popularity (the number of stars of the repository served as the basis for
determining popularity), and then data of the �rst 1,000 repositories was col-
lected. These repositories are less likely to contain unmaintained, deprecated
or personal-purpose (e.g. homework) projects. The resulting data set contains
6,000 records. Each record contains the name of the repository, the owner's
GitHub username, the primary programming language, the creation date and
time of the repository, the CI systems used in the project (if any), and the
number of stars for the project.

The CI systems used in the projects are determined with GitHub's Commit
statuses API. The last commit's status in the repository's default branch (most
often called "master" or "main") was queried. The queried statuses are con-
tained results of CI/CD pipeline(s), and also di�erent outputs from various



24 Á. Kiss

services (e.g. static code analysis tools, CLA bots, DCO checkers, vulnerabil-
ity scanners, etc.) as structured JSON objects [15]. A commit can have several
status objects (one or more for each service provider), these are returned by
the API as an array. For each repository, the unique service provider names
were stored as "CI systems used in the project".

The aim of this study is to examine the usage of full-�edged CI/CD services
(where developers can run a completely customized pipeline) only, so services
other than this have been manually deleted from the collected data. Firstly,
the unique names of the service providers issuing commit statuses were queried
from the data set. Each provider's name was then checked manually with
Google Search, to determine if it was a full-�edged CI/CD provider that emit-
ted the commit statuses. After that, providers of additional services were
deleted from the data set.

3.2. Usage rate of managed CI/CD services among C and C++
projects is lower than in general (RQ1)

Figure 2. CI/CD usage by the primary programming language

The examined data set contains information about 6,000 GitHub repositories,
of which 2,400 were C projects and 3,600 were C++ projects. It has been
found, that 1,796 projects are using at least one managed CI/CD pipeline.
Figure 2 shows the distribution between C and C++ projects. 27.04% of C
projects and 31.86% of C++ projects are adopted CI/CD in their development
process. This is signi�cantly lower than the overall 40.27% ratio determined
by [2], which refers to several programming languages, not just C and C++.



An explorative analysis of managed CI/CD usage among open-source C/C++
projects 25

Figure 3 illustrates how many CI/CD solutions the projects are using. Most
of the projects taking advantage of only one CI/CD provider, while a few
projects are using 2 di�erent CI/CD solutions at the same time. The reason
for this might be that managed CI/CD services are often only free for open-
source projects to a limited extent, so the CI/CD pipeline is distributed among
several service providers. Another possible reason is that project owners want
to test the project on several platforms/environments for greater reliability.
Using CI/CD services of 3 or more providers are not typical.

Figure 3. Number of CI/CD services used in projects

3.3. GitHub Actions is the most popular CI/CD solution used in
open-source C/C++ projects in GitHub (RQ2)

In the collected data set, 9 of the managed CI/CD providers are presented.
The exact occurences of the di�erent providers are shown in Table 1. In the
event that a project used more service providers, these were considered as one
occurrence separately for each of the providers.

It is observed, that most of the CI/CD pipelines (89.6%) are run on GitHub
Actions. This is related to that the data was collected from GitHub, where
GitHub Actions is a closely integrated, limitedly free CI/CD alternative, that
meets with the needs of most open-source projects. Usage rate of other providers
are the following: Azure Pipelines 4.5%; Travis CI 3.5%; Cirrus CI 1.3%. Other
CI/CD providers (Circle CI, Google Cloud Build, XCode Cloud, Multipass CI,
Garnix CI) are only used sporadically. Figure 4 illustrates the distribution of
occurences of CI/CD providers which are present in at least 1%. In plot a) all



26 Á. Kiss

Table 1. Occurences of managed CI/CD providers.

CI/CD provider Occurences
GitHub Actions 1,672
Azure Pipelines 84
Travis CI 66
Cirrus CI 24
Circle CI 15
Google Cloud Build 2
XCode Cloud 1
Multipass CI 1
Garnix CI 1
Total: 1,866

the providers has been depicted. Plot b) shows all the providers but GitHub
Actions, to exclude its distorting e�ect.

Figure 4. Managed CI/CD usage by providers

3.4. Age of project is related to the rate of CI/CD usage (RQ3)

The data set contains information about the 1,000 most popular repositories
from each year, that are created between 2017 and 2022. Figure 5 shows the
relation between the repositories' creation year and the number of repositories
that are using at least one CI/CD service. Usage ratios are the following for
the di�erent years: 2017: 32.2%, 2018: 30.8%, 2019: 34.9%, 2020: 34.3%,
2021: 30.1%, 2022: 17.3%.



An explorative analysis of managed CI/CD usage among open-source C/C++
projects 27

Figure 5. CI/CD usage by project age

It can be concluded from the data that less than a year old repositories are less
likely to use a CI/CD pipeline. In terms of 1 to 5 years old projects, CI/CD
usage rate is very similar.

3.5. Popularity of project in�uences the CI/CD usage rate (RQ4)

For this explorative analysis, the most popular repositories, created in di�erent
years are collected. Number of stars are between 43 and 85,012. Average
number of the projects' stars is 934, while the median is 433 stars. 90% of the
examined projects are having 1,772 or less stars, repositories with more stars
than this are appear too sparsely in the data set to draw conclusions about
them, so I used the bottom 90% of the projects sorted by the number of stars
in descending order to answer RQ4. The results are illustrated in Figure 6.

Figure 6. CI/CD usage by project popularity



28 Á. Kiss

Projects are sorted by popularity (number of stars) in ascending order, then
divided into 12 even groups. It is observed, that the more popular a project
is, the more likely it is to use at least one CI/CD pipeline. While 17% of
the projects with 43�147 stars are using CI/CD, this ratio is approx. 40% for
projects with 1,625�1,772 stars.

4. Conclusion

The presented data revealed that projects using primarily mature technologies,
especially the C and C++ programming languages have a lower adaption rate
of CI/CD, but other characteristics of CI/CD pipeline usage are almost identi-
cal to general observations. Approximately 30% of C/C++ projects are using
CI/CD pipeline(s) in their work�ows, which is less than the values measured
by researchers in terms of newer and/or more popular programming languages.

This research shows that, the vast majority of projects hosted on GitHub use
GitHub Actions as CI/CD provider. In future research, it would be worthwhile
to include other VCS platforms into the data collection, to get more complete
results from the characteristics of CI/CD usage.

It have been found that CI/CD usage rate is higher in the case of older projects
than in the case of projects created less than 1 year ago.

It was also observed that, in terms of C/C++ codebases, the popularity of the
project a�ects the rate of CI/CD usage. More popular projects use CI/CD
pipelines in greater proportion.

Only open-source projects are examined in this study, so the results cannot
be generalized to all C/C++ projects. In the case of enterprise proprietary
software, the proportion of on-premise CI/CD solutions is likely to be higher
than managed CI/CD services.

In addition to the CI/CD systems, the output of several development-supporting
services (e.g. static code analyzers and vulnerability scanners) are appeared
in the collected raw data. Examining output of these is an interesting future
research opportunity.

References

[1] Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., and Filkov, V.: Quality
and productivity outcomes relating to continuous integration in GitHub. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ACM, 2015, URL https://doi.org/10.1145/2786805.2786850.

https://doi.org/10.1145/2786805.2786850


An explorative analysis of managed CI/CD usage among open-source C/C++
projects 29

[2] Hilton, M., Tunnell, T., Huang, K., Marinov, D., and Dig, D.: Usage,
costs, and bene�ts of continuous integration in open-source projects. In Proceed-
ings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ACM, 2016, URL https://doi.org/10.1145/2970276.2970358.

[3] Beller, M., Gousios, G., and Zaidman, A.: Oops, my tests broke the build:
An explorative analysis of Travis CI with GitHub. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), IEEE, 2017,
URL https://doi.org/10.1109/msr.2017.62.

[4] Durieux, T., Abreu, R., Monperrus, M., Bissyande, T. F., and Cruz,

L.: An analysis of 35+ million jobs of travis CI. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2019, URL
https://doi.org/10.1109/icsme.2019.00044.

[5] Chen, L.: Continuous delivery: Huge bene�ts, but challenges too. IEEE Soft-
ware, 32(2), (2015), 50�54, URL https://doi.org/10.1109/ms.2015.27.

[6] Shahin, M., Babar, M. A., and Zhu, L.: Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and practices.
IEEE Access, 5, (2017), 3909�3943, URL https://doi.org/10.1109/access.

2017.2685629.

[7] Dingare, P. P.: CI/CD Pipeline Using Jenkins Unleashed. Apress, 2022, URL
https://doi.org/10.1007/978-1-4842-7508-5.

[8] Felidre, W., Furtado, L., da Costa, D. A., Cartaxo, B., and Pinto, G.:
Continuous integration theater. In 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), IEEE, 2019, URL
https://doi.org/10.1109/esem.2019.8870152.

[9] Henschel, J.: A comparison study of managed CI/CD solutions. 2020, URL
https://git.cubieserver.de/jh/cs-e4000-seminar.

[10] Kerzazi, N. and Adams, B.: Who needs release and devops engineers, and
why? In Proceedings of the International Workshop on Continuous Software
Evolution and Delivery, ACM, 2016, URL https://doi.org/10.1145/2896941.

2896957.

[11] Gruhn, V., Hannebauer, C., and John, C.: Security of public continuous
integration services. In Proceedings of the 9th International Symposium on Open
Collaboration, ACM, 2013, URL https://doi.org/10.1145/2491055.2491070.

[12] GitHub Actions: Usage, limits, billing and administration. URL
https://docs.github.com/en/actions/learn-github-actions/

usage-limits-billing-and-administration. Retrieved 2022-09-01.

[13] Travis CI: Pricing. URL https://www.travis-ci.com/pricing/. Retrieved
2022-09-01.

[14] Circle CI: Pricing. URL https://circleci.com/pricing/. Retrieved 2022-
09-01.

https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1109/msr.2017.62
https://doi.org/10.1109/icsme.2019.00044
https://doi.org/10.1109/ms.2015.27
https://doi.org/10.1109/access.2017.2685629
https://doi.org/10.1109/access.2017.2685629
https://doi.org/10.1007/978-1-4842-7508-5
https://doi.org/10.1109/esem.2019.8870152
https://git.cubieserver.de/jh/cs-e4000-seminar
https://doi.org/10.1145/2896941.2896957
https://doi.org/10.1145/2896941.2896957
https://doi.org/10.1145/2491055.2491070
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://www.travis-ci.com/pricing/
https://circleci.com/pricing/


30 Á. Kiss

[15] GitHub: Commit statuses - GitHub Docs. URL https://docs.github.com/

en/rest/commits/statuses. Retrieved 2022-09-05.

https://docs.github.com/en/rest/commits/statuses
https://docs.github.com/en/rest/commits/statuses

	References

