
Production Systems and Information Engineering

Volume 10 (3), pp. 98–104.

https://doi.org/10.32968/psaie.2022.3.8

AN APPROACH TO CLASSIFY ALGORITHMS BY COMPLEXITY

OLIVÉR HORNYÁK
University of Miskolc

Hungary Institute of Information Technology

oliver.hornyak@uni-miskolc.hu

Abstract. This paper investigates computer algorithms complexity, which

takes an important role in software design. An algorithm is a finite set of

instructions, those if followed, accomplishes a particular task. It is not language

specific; any language and symbols can represent instructions. While

complexity is usually in terms of time, sometimes complexity is also analyzed

in terms of space, which translates to the algorithm’s memory requirements.

The paper gives an overview of the most widely used O notation. Experienced

programmers can evaluate the time and memory complexity of a block of

source code; however, this is not possible when the algorithm is available in the

form of an executable. In this paper a method is proposed to evaluate

algorithms without having the source code. The potential drawbacks of the

proposal are also considered.

Keywords: algorithm, complexity

1. Introduction

Computers run programs that are representations of an algorithm. Computational

complexity refers to measures to evaluate the efficiency of algorithms [6]. The

need for writing efficient algorithms is very old. Euclid worked on finding the

greatest common divisor of two integers in his Book VII [7]. This is said to be the

oldest known algorithm which is still in use. As you can see the study of

investigating the available resources is back to 300 BC.

The complexity theory provides the theoretical estimates for the resources

needed by an algorithm to solve any computational task. Two resource types are

investigated typically: time and space complexities [3]. Time complexity is defined

as the amount of time requires executing each statement of the algorithm.

Figure 1. Time complexity

mailto:oliver.hornyak@uni-miskolc.hu

 An approach to classify algorithms by complexity 99

Space complexity refers to the memory space used by the algorithm. It consists of

the space of the input parameters and the temporary space required by algorithm –

the later one is celled auxiliary space.

Figure 2. Space complexity

1.1. Literature review

In this section the textbooks on mathematical complexity are reviewed. Turing

introduced a concept called Turing machines [12]. It serves as an idealized

computer model. In his paper he focused on computability theory in general rather

than complexity theory. Alternating Turing machines were introduced

independently by [13], they introduced time and space complexity. Balcázar et al.

[9], [10] focuses on structural complexity. An overview is given on the complexity

classes in [11]. The O-notation, which will be explained in the next chapter was

introduced by [14]. This is the most widely used mathematical notation. Specific

complexity measures such as time and space complexity were first analyzed

systematically by [15]. Computational difficulty of functions was studied by [16]

Quantitative aspects of the computation were studied by [17] to find an efficient

algorithm for graph problems. The gap theorem was independently proved by [18]

and [19] stating that there are large computable gaps in the hierarchy of complexity

classes. The following complexity classes can be identified:

where

 NL stands for Nondeterministic Logarithmic space (that can be solved by a

nondeterministic Turing machine using a logarithmic amount of memory

space),

 P contains problems that can be solved by a deterministic Turing machine

using a polynomial time,

 NP stands for nondeterministic polynomial time that can be solved in

polynomial time by a nondeterministic Turing machine,

 PSPACE is the set of all decision problems that can be solved by a Turing

machine using a polynomial amount of space,

 EXPTIME is the set of problems that are solvable by a deterministic Turing

machine in exponential time,

100 O. Hornyák

 EXPSPACE denotes the problems solvable by a deterministic Turing

machine in exponential space,

 denotes the subset relation.

Relations between time and space complexity is investigated in [11]. Complexity

results for multiprocessor is investigated in [20].

1.2. Notations for computer algorithm complexity

The notation introduced in [14] which is used to describe the complexity is as

follows. A function f is said to be if here is a constant and a natural

number such that

 for all , .

Some properties of the complexity measures.

 Constant multiplication does not modify complexity

If then

 Independent consecutive statements ignore non-significant term

Let be the cost of running and be the cost of running .

The total time and

 Let’ have the following polynomial function:

 then

 If and then
 notation is a worst-case complexity number as it represents the upper bound

of the running time of an algorithm.

The notation is sometimes referred a Big O notation. Its advantage that it

abstracts away constant order differences in efficiency which can vary from

platform, language, OS to focus on the inherent efficiency of the algorithm and

how it varies according to the size of the input [21]. Its limitation is that There are

numerous algorithms that are too difficult to analyze mathematically. There may

not be sufficient information to calculate the behaviour of the algorithm in an

average case.

Some typical complexity measures:

Table 1. Typical complexities

Complexity Usage

O(N), O(log N), O(1) greedy algorithms, typical mathematical algorithms

O(N log N) Sorting, binary search

O(N2) Graph, tree

O(2N N) Bit manipulation

O(N!) Recursive algorithms

mailto:kovacs@iit.uni-miskolc.hu
mailto:agardianita@iit.uni-miskolc.hu

 An approach to classify algorithms by complexity 101

2. Asymptotic complexity calculator

As you can see the calculation of complexity can be difficult as it may depend on

run-time parameters. In practice, the exact value is not necessary. Furthermore, the

resource usage is critical for large n values only [4].

In this section the algorithm of a runtime complexity calculator will be

specified. The problem is formularized as follows. The calculated complexity of

the algorithm (C(n)) is defined in the following form [5]:

You can note, that in O notation [14] the parameter b is always one so the equation

can be reduced as:

So that the calculator needs to find the (a, k, i) values that describes the

algorithm best, however in practice, we can assume that (a, k, i) This

assumption reduces the search space significantly, while still can indicate the

complexity classification of the algorithm examined.

Let’s have a runtime algorithm that works on n input values. Let’s create N

random samples, denoted as n1, n2, …nN. Measure time- and memory consumption:

tj and mj while executing the algorithm on each sample nj, where j=1..N. Also

calculate the complexity using the forementioned equation. Use least square error

method to find the best fitting curve as you can see in Figure 3.

Figure 3. Complexity evaluation

Calculate the error i.e.: the square of the difference of the measured and calculated

complexity value for each (a, k, i) indexes. The best fitting complexity curve at the

(amin, kmin, imin) indexes.

102 O. Hornyák

The meta-algorithm of the calculator for the time complexity is as follows:

errora,k,i = 0

for all (a, k, i) {1, 2, 3}

for all j {1..N}

calculate C(nj)= a O(nj) + O(nj
k
(log nj)

i
)

errora,k,i = (C(nj) - tj)
2

find min errora,k,i

display the (a,k,i) indexes of the minimum value

The same can be performed on memory consumption figures.

The algorithm can be improved bey introducing a weight factor for the error

calculation, so that (O(nj) - tj)
2

to be a wj where the larger nj is the bigger wj is. In

other words, the fitting of larger n values is more important.

2.1. Limitations of the algorithm

The biggest limitation of the complexity calculation algorithm that it may become

unresponsive: it can reach a large n value where the running time or memory

consumptions exceeds the limitation of the host computer it uses.

Another limitation is that in practice almost all inputs have a limit: numerical

variables have a variable type like int, long, float or double so you can not test

against any arbitrary number of inputs.

It can be difficult to limit your computer to run only the algorithm to test. It is

expedient to have a virtual running environment that allows a separated running

environment to be defined. Figure 5 depicts the architecture of the runner.

Figure 5. Architecture of the runner

Using this approach, the proposed algorithm remains responsible for large n values,

although it won’t return any value when the resource limits are exceeded. So, you

will have test results for small n values where no code optimization is needed. The

lack of results can be a bad smell that indicates that the algorithm is not optimal.

 An approach to classify algorithms by complexity 103

3. Summary

In this paper an overview was given on the calculation of time and memory

complexity of software algorithms. A method was proposed that makes an

estimation of the complexity of an executable by running the algorithm to be

investigated. This approach is very useful when the source code is not available, it

investigated the executable. Also, for unexperienced programmers it may indicate

the need for optimization. The earlier it is detected, the easier to fix the

performance problems.

References

[1] Kruskal, C. P., Rudolph, L., Snir, M.: A complexity theory of efficient parallel

algorithms. Theoretical Computer Science, 1990, 71, 1, pp. 95–132.

[2] Xu, M., Li, T., Wang, Z., Deng, X., Yang, R. Guan, Z.: Reducing Complexity of

HEVC: A Deep Learning Approach. In IEEE Transactions on Image Processing

(TIP), vol. 27, no. 10, pp. 5044–5059, Oct. 2018.

https://doi.org/10.1109/TIP.2018.2847035

[3] Li, T., Xu, M., Deng, X.: A deep convolutional neural network approach for

complexity reduction on intra-mode HEVC. 2017 IEEE International Conference on

Multimedia and Expo (ICME), Hong Kong, Hong Kong, 2017, pp. 1255–1260.

https://doi.org/10.1109/ICME.2017.8019316

[4] JCT-VC: HM Software. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags

/HM-16.5/.

[5] Bentley, J. L., Haken, D., Saxe, J. B. (September 1980): A general method for

solving divide-and-conquer recurrences. ACM SIGACT News, 12 (3), pp. 36–44.

https://doi.org/10.1145/1008861.1008865

[6] Huang, S.: What is Big O Notation Explained: Space and Time Complexity. https://

www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-167

4 cfa8a23c/

[7] Euclid: The Elements: Books I–XIII – Complete and Unabridged. Translated by Sir

Thomas Heath, Barnes & Noble, 2006.

[8] Kades, E.: The laws of complexity and the complexity of laws: the implications of

computational complexity theory for the law. Rutgers L. Rev., 49 (1996), p. 403.

[9] Balcazar, J. L., Diaz, J., Gabarr, J.: Structural Complexity I, volume 11 of. EATCS

Monographs on Theoretical Computer Science, 1988.

[10] Balcázar, J. L., Díaz, J., Gabarró, J.: Structural complexity II. Vol. 22. Springer

Science & Business Media, 2012.

[11] Bovet, D. P., Crescenzi, P., Bovet, D.: Introduction to the Theory of Complexity.

London, Prentice Hall, 1994.

https://doi.org/10.1109/TIP.2018.2847035
https://doi.org/10.1109/ICME.2017.8019316
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags%20/HM-16.5/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags%20/HM-16.5/
https://doi.org/10.1145/1008861.1008865

104 O. Hornyák

[12] Turing, A.M.: On computable numbers, with an application to the

Entscheidungsproblem. Proc. London Mathematical Society, ser. 2, 42, 1936, pp. 230–

265.

[13] Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of ACM, 28,

1981, pp. 114–133.

[14] Knuth, D.E.: The art of computer programming. Vol. 1. Fundamental Algorithms,

Addison-Wesley, 1968.

[15] Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.

Transactions of the American Mathematical Society, 117, 1965, pp. 285–306.

[16] Cobham, A.: The intrinsic computational difficulty of functions. Proc. Congress for

Logic, Mathematics, and Philosophy of Science, 1964, pp. 24–30.

https://doi.org/10.2307/2270887

[17] Edmonds, J.R.: Paths, trees and flowers. Canadian Journal of Mathematics, 17,

1965, pp. 449–467, https://doi.org/10.4153/CJM-1965-045-4.

[18] Trakhtenbrot, B. A. (1967). The Complexity of Algorithms and Computations

(Lecture Notes). Novosibirsk University.

[19] Borodin, A.: Complexity Classes of Recursive Functions and the Existence of

Complexity Gaps. Proc. of the 1st Annual ACM Symposium on Theory of

Computing, 1969, pp. 67–78, https://doi.org/10.1109/SWAT.1969.4.

[20] Garey, M. R., Johnson, D. S.: Complexity results for multiprocessor scheduling

under resource constraints. SIAM journal on Computing, 4.4 (1975), pp. 397–411.

https://doi.org/10.1137/0204035

[21] What is the big deal about Big-O notation in computer science?
https://stackoverflow.com/questions/1996457/what-is-the-big-deal-about-big-o-

notation-in-computer-science (Last accessed 04.10. 2022)

https://doi.org/10.2307/2270887
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1109/SWAT.1969.4
https://doi.org/10.1137/0204035
https://stackoverflow.com/questions/1996457/what-is-the-big-deal-about-big-o-notation-in-computer-science
https://stackoverflow.com/questions/1996457/what-is-the-big-deal-about-big-o-notation-in-computer-science

