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Abstract. Machine learning platforms that provide no-code capabilities
allow for users to use machine learning without advanced domain knowl-
edge or training. These tools enable those having no formal expertise
in software development to create machine learning applications. Our
analysis of existing no-code ML platforms reveals that most of them o�er
core ML, but not deep learning network models and can not be accessed
for free. Therefore we have created a web-based application that allows
researchers to experiment with machine learning solutions concerning
time series prediction without the need for coding. This paper presents
a case study demonstrating the operation of the platform.
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1. Introduction

There are thousands of di�erent programming languages that exist. Although
they may share some common features, they were originally created for dif-
ferent application areas or for di�erent programming styles. Machine learning
(ML) is a special application area yielding the creation of speci�c programming
languages. These are de�nitely more appropriate for machine learning tasks
than others. Still, it is a question to choose from them when solving a business
problem. For instance, machine learning engineers often use Python for NLP
problems, while they prefer R or Python for sentiment analysis tasks, and are
likely to use Java for security and threat detection [1].
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On the other hand, no-code development is a recent approach that allows
non-technical users to solve problems through visual modeling tools and con-
�guration. The use of no-code platforms require less formal programming
expertise, which helps close the IT gap that many companies face [2]. No-code
ML platforms deploy ML models, so analysts have the power of quick data
predictions. The most widely used no-code ML platforms that can be applied
for business purposes are as follows.

• BigML: an open-source web-based platform that o�ers machine learn-
ing and application integration services to businesses. For time series
analysis it automatically selects the best model that �ts the data.

• CreateML: a no-code drag and drop platform available for iOS devel-
opers to create and train custom machine learning models, or to use
pre-trained templates on Mac.

• Data Robot: a popular cloud-based end-to-end enterprise AI platform
for the fast and easy deployment of accurate predictive models. It en-
ables business analysts to build predictive analytics without knowledge
of ML or programming. It aids in the preparation, development, deploy-
ment, monitoring, and maintenance of enterprise-scale AI applications.

• Google AutoML: a no-code cloud platform including di�erent types of
data and covering a broad range of use cases from computer vision and
video intelligence to NLP and translation.

• Obviously AI: a platform that uses state-of-the-art NLP to perform com-
plex tasks on user-de�ned CSV data. It can be used by marketers and
business owners who want to forecast revenue �ow, optimize business
processes, build a more e�ective supply chain, and conduct personalized
automated marketing campaigns.

Table 1 summarizes some properties of these no-code ML platforms. The
studied features are the capability for time series analysis (TSA), the inclusion
of deep learning models (DLM), the possibility of customizing the selected
model, whether we should install the software on our computer and whether
we should pay for it. As can be seen, most of them o�er core ML, but not deep
learning network models and can not be accessed for free.

Table 1. Features of existing no-code platforms

TSA DLM Customization No-install Free

BigML X X X
CreateML X X
Data Robot X X X
Google AutoML X X
Obviously AI X X X X
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Based on our study, we conclude that there is a need for a free no-code ML
platform that integrates deep learning models for business purposes. Our aim
is to develop a web-based platform that allows researchers to deliver end-to-
end machine learning solutions without the need for coding, allowing them to
focus more on analysis, making the process faster and more e�cient. As a �rst
approach, we have created a platform that can serve as support for solving
time series prediction tasks.

2. Time series

A time series can be considered as a collection of observations of well-de�ned
data items that are gained from repeated measurements over time. For exam-
ple, recording the value of exchange rates each week of the year would comprise
a time series. This is because the collected data are well de�ned, and consis-
tently measured at equally spaced intervals [3].

Figure 1. Stationary and non-stationary time series [5]

Time series analysis is a method for examining the changes of a variable
or a combination of variables over a period of time. It helps organizations
understand the underlying causes of trends or regular patterns over time. Data
visualization techniques support business users to follow seasonal trends and
dig deeper into why these trends occur. Time series forecasting can be used
to predict the likelihood of future events by showing likely changes in the data
[4].
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Time series have mainly two types. In stationary time series the data have
constant mean, variance and covariance. While non-stationary data are con-
stantly �uctuating over time or are a�ected by time, that is these time series
have volatile mean, variance and covariance as shown in Figure 1.

An observed time series can be decomposed into three components: the
trend (long term direction), the seasonal (systematic, usually calendar related
movements) and the irregular (unsystematic, short term �uctuations).

The trend is the long term movement in a time series. The seasonal com-
ponent consists of e�ects that are reasonably stable with respect to timing,
direction and magnitude. It arises from systematic, calendar related in�u-
ences. Seasonality in a time series can be identi�ed by regularly spaced peaks
and troughs which have a consistent direction and approximately the same
magnitude. There is a so called cyclic pattern, which can be confused with
seasonal behaviour. A cycle occurs when the data exhibit rises and falls that
are not of a �xed frequency. The duration of these �uctuations is usually at
least 2 years.

The irregular component is what remains after the seasonal and trend com-
ponents of a time series have been estimated and removed. It results from short
term �uctuations in the series which are neither systematic nor predictable [3].

Figure 2. Time series examples [6]

In practice, however, many time series include a mixture of trend, cycles
and seasonality. When choosing a forecasting method, the �rst task is to
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identify the time series patterns in the data, and then choose a method that
is able to capture the patterns properly. The examples from [6] show di�erent
combinations of the components in Figure 2. The �rst diagram of the monthly
housing sales exposes strong seasonality with cyclic behaviour; the Australian
quarterly electricity production has an increasing trend with seasonality; the
US treasury bill contracts have a decreasing trend with no seasonality; while
the daily change in the Google closing stock price shows neither trend, no
seasonality or cyclic behaviour. In this case there are no patterns that would
help us developing a forecasting model.

3. Methods of time series prediction

Time series analysis involves developing models to gain an understanding
of the data. Then time series forecasting is the next step to �t the developed
model to historical, time-stamped data in order to predict future values.

Traditional types of forecasting methods include decompositional, smooth-
based, moving average, and exponential smoothing techniques. Decomposi-
tional methods split a time series into deterministic (i.e. predictable) and
non-deterministic components. Data smoothing data removes random varia-
tion and outliers, and shows underlying trends and cyclic components. The
moving-average model is a common approach for modeling univariate time se-
ries. It speci�es that the output variable depends linearly on the current and
various past values of a stochastic (i.e. imperfectly predictable) term, thereby
yielding a stationary model. The main di�erence between the moving-average
model and the exponential smoothing technique is that in the moving-average
model the past observations are weighted equally, while exponential smooth-
ing functions assign exponentially decreasing weights to the observations over
time [7]. In practice, there are more sophisticated models, like ARIMA and
TBATS, that combine some of the above approaches.

Regression models can also be applied in time series forecasting. In the
simplest case, we assume that the time series of interest (y) has a linear rela-
tionship with another time series (x). In the example shown in Figure 3, the
growth rates of personal consumption expenditure (y) and personal income
(x) are displayed together with the �tted regression line which has a positive
slope. In this case, the slope coe�cient means that 1 percentage point increase
in personal income results an average increase of 0.28 percentage points in
personal consumption expenditure.

More advanced forecasting methods include arti�cial neural networks, which
allow for complex non-linear relationships between the response variable and
its predictors. A neural network can be considered as a network of neurons
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which are organized in layers. The predictors (or inputs) form the bottom
layer, and the forecasts (or outputs) form the top layer. In the simplest case, a
neural network (NN) having only input and output layers corresponds to linear
regression. For more complex and non-linear forecasting tasks, hidden layers
must also be added to the NN architecture. With time series data, lagged
values of the time series can be used as inputs to a neural network. This is
called neural network autoregression (NNAR) model, which needs two input
parameters: the number of lagged input values and the number of nodes in
the hidden layer. When there is no hidden layer (i.e. the second parameter
is 0), the model is equivalent with the ARIMA (AutoRegression Integrated
Moving-Average) model [6].

Figure 3. Forecasting consumption vs income with linear regression
[6]

Although Convolutional Neural Networks (CNNs) are designed to e�ciently
handle image data, the ability of CNNs to learn and automatically extract
features from raw input data can be applied to time series forecasting problems
as well. A sequence of observations can be treated like a one-dimensional image
that a CNN model can read and learn a representation that is most relevant
for the prediction problem. It supports multivariate input, multivariate output
and learning arbitrary but complex functional relationships [8].

Recurrent Neural Networks (RNNs) add the explicit handling of order be-
tween observations when learning a mapping function from inputs to outputs.
Unlike a traditional NN, where the output is solely dependent on the input
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values, the recurring aspect yields that the calculation at time t is based on
the information provided at time t− 1. See the architecture in Figure 4.

Figure 4. Recurrent Neural Network architecture [9]

Although RNNs are more convenient for processing sequential input than
a traditional NN design, they are extremely di�cult to train to handle long-
term dependencies due to the multiplicative gradient that can exponentially
increase or decrease with respect to the number of layers. In order to remedy
the vanishing gradient problem, speci�c gates are used in some types of RNNs.

RNNs using LSTM units [10] solve the problem of vanishing gradient, but
still su�er from the exploding gradient problem. A common LSTM unit is
composed of a cell, an input gate, an output gate and a forget gate [11].
The cell remembers values over arbitrary time intervals and the three gates
regulate the �ow of information into and out of the cell. LSTM networks are
well-suited to making predictions based on time series data, since there can be
lags of unknown duration between important events in a time series and this
model is relatively insensitive to gap length.

Gated Recurrent Units (GRUs) [12] are a gating mechanism in RNNs, but
with less parameters than LSTMs. They have several variants from fully gated
units incorporating update and reset gates, to minimal gated units where the
new gates are merged into a single forget gate. Since GRUs have been shown to
yield better performance on smaller and less frequent datasets than LSTM [13],
we decided to include them in our experimental no-code time series prediction
platform.

4. The Tune-Quick platform

Tune-Quick is a web-based platform designed to help in the creation of end-
to-end machine learning solutions. The application can be downloaded from
github.com/YoucefGuichi/tune_quick. Figure 5 explains what is Tune-Quick
at system level. Users can provide data and set model parameters through
the GUI of the platform. The platform applies a queue structure to collect
input data that are waiting for processing. In Python, the queue module
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implements multi-producer, multi-consumer queues. It is especially useful in
threaded programming when information must be exchanged safely between
multiple threads. The Queue class in this module implements a FIFO queue
with all the required locking mechanisms.

Figure 5. Tune-Quick system architecture

The input received is parsed by two coroutines of the Parser class. The
reason for the use of the queue is to make the coroutines independent of each
other. Whenever a user submits a dataset and a model, it will be sent to the
queue. Many users can do this at the same time, so each one will wait for his
turn. The main steps, that are executed, are listed as follows (see Figure 6).

1. Create and initialize the queue.
2. Create a task for the Add model coroutine.
3. Create a task for the Run model coroutine.
4. Gather the tasks that will run concurrently.

Figure 6. The Main coroutine of the application

The Add data to queue routine (listed in Figure 7) will run only if the request
method is POST. It stores the data entered by the user in the dataset variable,
and selects the suitable algorithm from the algorithms dictionary (which is
LSTM or GRU in the present stage of the experiment). After reading the data
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and choosing the correct model, the coroutine will send them to the queue as
a task to be executed.

Figure 7. Add model to queue coroutine

The tasks waiting for processing in the queue will be picked up by another
process, the so called Run model coroutine (see its code in Figure 8). This
triggers the functions associated with each model in the following order.

1. Clean and prepare the dataset for the model.
2. Split the data into train and test sets.
3. Start training. It takes the parameters, such as the number of epochs,

the type of optimizer, and batch size, from the user input.
4. Predict the results.
5. Plot predictions and send the results to the front end of the platform.

Figure 8. Run model coroutine

The Tune-Quick platform is designed to integrate multiple models. Tech-
nically, it has a Model base class which de�nes the common attributes and
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functionalities for all NN models. The derived classes contain speci�c meth-
ods, namely the train function which di�ers from one model to another and
takes parameters from the user input. At present, the platform is at a test
phase, so there is only two models implemented in separate classes as shown
in the UML class diagram in Figure 9.

Figure 9. UML class diagram of the implemented models

The �rst method cleans and prepares the data so that they �t to the pre-
dictive models. This process consists of the following steps (see Figure 10).

1. Drop duplicates.
2. Drop nan values.
3. Transform the date column from text to date type.
4. Set the index to date because the data is a timeseries.

Figure 10. Steps of data preparation

The second function splits the data into train and test sets. This consists of
the next steps (see Figure 11).
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1. Get the data to be used in the training phase.
2. Take 95% from the actual data as training data and the rest for the test

set.
3. Scale the data which is very important for the training, especially for

avoiding local optima.
4. Split the train set into x_train and y_train.
5. Then turn both subsets to an array because the NN models expect arrays

as input.
6. Reshape the arrays to suit RNNs.

Figure 11. Splitting the data into train and test sets

After training the model, the next phase is to calculate the predictions based
on the test set (see Figure 12).

1. Take the rest (5%) of the data.
2. And repeat the same process as when splitting the training data.

Figure 12. Making predictions for the test values

The �nal step is to plot the prediction and convert it to HTML which can
be displayed in the front end. This function involves the next stages (see the
list in Figure 13).
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1. Get the training data.
2. Get the validation data.
3. Plot the predicted values.
4. Convert the diagram to HTML.

Figure 13. Plotting the predicted values

In order to ensure that the results are valid, we also calculate the root mean
square error (RMSE) using the function in Figure 14.

Figure 14. Calculation of RMSE

In the training phase, the model speci�c methods are executed. When the
GRU model is initiated, the following procedure runs (see Figure 15).

1. De�ne 3 layers. In each layer, except for the output layer, there are 50
GRU units. The last layer is a dense layer where the �nal output is
produced.

2. De�ne a dropout of 0.2 which skips some nodes to help reduce over�tting.
3. Use mean squared error (MSE) as loss function and keep the default

Adam optimizer. The role of the optimizer is to help in reaching the
local optima of the problem very quickly.

4. Use 20 as the default value for the number of epochs.

The LSTM architecture is very similar to the GRU. The steps of model
creation are listed in Figure 16.
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Figure 15. Creating a GRU model

Figure 16. Creating a LSTM model

5. Results

As a case study, we have uploaded stock market related time series data
(downloaded from �nance.yahoo.com/quote/IBM/history for the time period
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01/01/2006 - 01/01/2018). Figure 17 shows a few sample records from the
dataset.

Figure 17. Sample data

Tune-Quick takes the Close column, which refers to the last traded price, as
the input for the prediction. After the following parameters are set (see Figure
18), we get the result presented in Figure 19.

• CSV data �le
• NN predictive model: LSTM
• Loss function: mean_squared_error
• Optimizer: Adam
• Number of epochs: 10
• Batch size: 16
• Title for the resulting chart: IBM Stock Prices Prediction
• Caption for x axis: Dates
• Caption for y axis: Price (USD)

Figure 18. Tune-Quick front end with sample data

The result (see Figure 19) is displayed for the user as a chart that contains
the training data in blue, as well as the predicted values in red.
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Figure 19. Case study result: stock price prediction

6. Summary

Machine learning platforms that provide no-code capabilities enable users to
use machine learning without advanced domain knowledge or training. These
tools allow for those with no formal expertise in software development to utilize
machine learning without writing any code. In other words, no-code ML de-
velopment is a shorter process than traditional ML development, because after
de�ning the task and collecting the data, experts can directly upload the data
and set the parameters for training the model and then they can immediately
evaluate the results. So the bene�ts of no-code platforms are straightforward
for data analysts: they can focus on the analysis, which in turn will be a faster
and more e�cient procedure for them.

We have studied the most widely used no-code ML platforms that can be
applied for business purposes, and concluded that there is a need for a free
no-code ML platform that integrates deep learning models. Therefore we have
created a web-based application that allows researchers to experiment with
machine learning solutions without the need for coding. Section 4 introduces
the capabilities of the Tune-Quick platform. In its present experimental stage,
two RNN predictive models (LSTM and GRU) are available for time series
prediction tasks. We have shown the operation of the platform by means of a
case study with IBM historical stock prices in Section 5. The results prove that
the developed application can be applied for uploading the data and setting
the parameters without any e�ort. The selected model is generated and the
presented chart can be easily interpreted by experts, so it can be useful tool
for data analysts.



No-code Platform for Time Series Prediction 97

References

[1] Gupta, S.: What is the best language for Machine Learning? Springboard:
October 6, 2021. Available at: www.springboard.com/blog/data-science/

best-language-for-machine-learning (Accessed: 14 September 2022)

[2] Creatio: Why low-code & no-code development is a must for business growth?

Creatio: 2020. Available at: www.creatio.com/page/no-code (Accessed: 14
September 2022)

[3] Australian Bureau of Statistics: Time Series Analysis: The Basics.
Available at: www.abs.gov.au/websitedbs/d3310114.nsf/home/\time+

series+analysis:+the+basics (Accessed: 14 September 2022)

[4] Tableau: Time Series Analysis: De�nition, Types, Techniques, and

When It's Used. Available at: www.tableau.com/learn/articles/

time-series-analysis (Accessed: 14 September 2022)

[5] Palachy, S.: Stationarity in time series analysis Towards Data
Science: Apr 8, 2019. Available at: towardsdatascience.com/

stationarity-in-time-series-analysis-90c94f27322 (Accessed: 14
September 2022)

[6] Hyndman, R. J., Athanasopoulos G.: Forecasting: Principles and Practice.
OTexts: 2018.

[7] Dix, P.: Why Time Series Matters for Metrics, Real-Time and Sensor Data An
In�uxData Case Study. In�uxData: 2020. Available at: www.influxdata.com/

time-series-forecasting-methods (Accessed: 27 September 2022)

[8] Brownlee, J.: Deep Learning for Time Series Forecasting - Predict the Future

with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery: 2022.

[9] Amidi, A., Amidi S.: Recurrent Neural Networks. Available at: stanford.edu/
~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks (Ac-
cessed: 27 September 2022)

[10] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Compu-
tation, 9(8):1735-1780, 1997. doi:https://doi.org/10.1162/neco.1997.9.8.
1735

[11] Gers, F.A., Schmidhuber, J., Cummins F.: Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000. doi:https:
//doi.org/10.1162/089976600300015015

[12] Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On

the Properties of Neural Machine Translation: Encoder-Decoder Approaches.
arXiv:1409.1259, 1994.

[13] Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of

Gated Recurrent Neural Networks on Sequence Modeling. arXiv:1412.3555, 1994.

www.springboard.com/blog/data-science/best-language-for-machine-learning
www.springboard.com/blog/data-science/best-language-for-machine-learning
www.creatio.com/page/no-code
www.abs.gov.au/websitedbs/d3310114.nsf/home/\time+series+analysis:+the+basics
www.abs.gov.au/websitedbs/d3310114.nsf/home/\time+series+analysis:+the+basics
www.tableau.com/learn/articles/time-series-analysis
www.tableau.com/learn/articles/time-series-analysis
towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
www.influxdata.com/time-series-forecasting-methods
www.influxdata.com/time-series-forecasting-methods
stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015

	1. Introduction
	2. Time series
	3. Methods of time series prediction
	4. The Tune-Quick platform
	5. Results
	6. Summary
	References

