

Production Systems and Information Engineering

Volume 10 (3), pp. 65�69
doi: 10.32968/psaie.2022.3.6

65

BUILD AUTOMATION SYSTEMS AGAINST CI LOCK-IN

� A COMPARATIVE STUDY OF DAGGER AND MAGE

Áron Kiss

University of Miskolc, Hungary
Institute of Information Technology

kiss.aron@uni-miskolc.hu

Abstract. Vendor lock-in is a well-known phenomenon in the software
industry. Strongly relying on vendor-speci�c implementation may cause
�nancial and technological hardships to manufacturers and can establish
monopoly situation of a vendor. With the spread of cloud-based devel-
opment tools, vendor lock-in is present not only during operation, but
also during development. This article provides an overview of risk types
introduced to projects by vendor lock-in situation. Key factors of vendor
lock-in are also identi�ed, especially with regard to modern cloud-based
CI/CD services. Later, a test software architecture is demonstrated how
to minimize CI lock-in, followed by a detailed comparison of two build
automation systems that can be used in practice for this purpose. The
applicability of build automation systems is demonstrated on the imple-
mentation and test results.

Keywords: software build automation, continuous integration, agile soft-
ware development, software quality assurance

1. Introduction

Vendor lock-in is a well-known phenomenon in IT systems. With the growing
popularity of serverless computing, PaaS solutions and other cloud technolo-
gies, the transfer of cloud-based software between service providers became a
more di�cult task for software engineers. When a complex IT system is ex-
cessively depends on vendor-speci�c implementation, the migration to another
service provider (or either to an in-house solution) may become technologically
complicated, time-consuming and costly [1].

Vendor lock-in is present during the development and operation of today's
modern software systems. During the planning of software products and their
operation, software manufacturers must pay special attention to this problem,
otherwise switching barriers will arise and the adaption to unforeseen events

http://doi.org/10.32968/psaie.2022.3.6

66 Á. Kiss

(e.g. major changes in customer requirements, new legal constrains, signi�-
cant price increase, termination of a speci�c service) become technologically
complicated and/or �nancially impossible.

2. Vendor lock-in in cloud-based software products

Organizations developing modern software products often follow the "cloud-
native" approach in the development and operation of their product. It means
that cloud-based tools and services are used in the project to design, build,
test and later maintain the system in order to achieve elastic, scalable, loosely-
coupled and self-contained software components [2].

[3] examined cloud computing migration from a business perspective. [4] cre-
ated a model for classifying lock-in risk factors. Literature shows that vendor
lock-in may introduce risks to a system in the following areas:

1. Data transfer: Data migration and conversion might be costly between
di�erent cloud providers. Data transfer is likely to cause outage of ser-
vice. Loss of application functionality may occur due to incompatible
data storage solutions.

2. Application transfer: When a system depends on proprietary stan-
dards and interfaces of a certain cloud service provider, migrating to
another cloud solution involves major changes in application code. De-
pending on standard interfaces and open APIs is suggested to avoid this
type of risk.

3. Infrastructure transfer: Virtual machine technologies, o�erings of
managed services and the applied pricing models may vary from vendor
to vendor. It can be a complex problem to calculate which services
should be con�gured how to reduce costs (or keep it at the same level)
when switching between cloud providers, compared to an application
intentionally designed for a multi-cloud environment.

4. Human knowledge: Development and Operations team of a software
system is likely to gain a deeper level of knowledge among the current
vendor's products. It may take signi�cant amount of time to learn dif-
ferent infrastructure formats and implementation processes of the new
vendor.

Relying on open standards, protocols and interfaces are generally support in-
teroperability and migration capability of cloud-enabled software systems well.
In addition, novel methods, strategies and frameworks are being published with
the aim to avoid or mitigate the risks of vendor lock-in.

[5] proposed a software design pattern to handle risks of vendor lock-in by in-
troducing a standardized process of interacting with cloud service providers. [6]

Build automation systems against CI lock-in 67

proposed an abstraction model called "vendor agent" to support cloud interop-
erability. The vendor agent serves as a uni�ed resource provisioning interface
between application and di�erent cloud service providers. [7] introduced an
open-source system for small and medium-sized enterprises for deploying and
scaling containerized applications and for supporting transferability of the con-
tainers between IaaS providers. [8] created a framework for enterprises to avoid
being locked to individual cloud service providers and proposed several strate-
gies to avoid and mitigate lock-in risks when migrating an already existing
system to the cloud.

3. Vendor lock-in in the world of managed CI services

Cloud-based technologies are not only used during the operation of software
projects, but are also often present in the development process itself. The
usage rate of managed Continuous Integration (CI) services illustrates this
phenomenon well.

Managed CI/CD solutions (e.g., GitHub Actions, Azure Pipelines, TravisCI,
AppVeyor) are hosted, scaled, secured and generally maintained by an external
organization. These external organizations only provide CI/CD capabilities to
the development team through APIs. This can o�oad a large amount of work
from the development team. However, managed CI/CD services are often
considered less secure than on-premise solutions [9].

[10] found that approximately 40% of open-source projects are use at least one
CI service. They �nd, that most popular reasons behind using a CI service
are: 1) less chance of breaking the build, 2) possibility of early bug catching,
3) by running tests in the cloud, resources on local machines freed up.

Users of managed CI services are in danger of vendor lock-in, or as other
sources call it, CI lock-in. Termination, a signi�cant price change or a usage
limit exhaustion of a CI provider's service can originate the need to migrate the
entire CI pipeline of a project to another provider's infrastructure. However,
di�erent vendors are applying di�erent con�guration rules and methods for the
de�nition of the CI/CD pipeline. I present major factors that may complicate
transfering the pipeline between di�erent CI solutions.

YAML is currently the de-facto standard language for CI pipeline con�gura-
tion, but other languages (e.g. Jenkins�les are written in a language with
Groovy-like syntax [11]) and methods (e.g. AppVeyor supports GUI-based
con�guration of the entire pipeline) are also present.

The terminology used to construct the build pipeline shows di�erences between
CI service providers:

68 Á. Kiss

• Pipelines in Github Actions are made up of steps of jobs. Jobs are
organized into work�ows [12],

• Azure Pipelines are similarly uses the terminology of steps and jobs,
but it organizes jobs into stages rather than work�ows [13],

• Travis CI applies the terminology of phase for the sequential step of
a job. A group of parallel jobs are organized into a stage. The pipeline
(which is called build) consists of a sequence of jobs [14],

• AppVeyor provides jobs, which are consist of scripts with lines. Jobs
are assigned to pre-de�ned phases of the build. Phases are ran sequen-
tially to build the project [15].

There are also di�erences in the execution model of the CI/CD pipeline. For
example while for certain services, pipeline can be divided into arbitrary parts
and the build process can be assembled by chaining these [12, 13, 14], other
services have pre-de�ned phases of the build and requires the developer to
de�ne callback scripts for these phases [15].

The vast majority of CI services are support de�ning a build matrix. This
means that user can de�ne various environments by adding one or more "di-
mensions" (e.g. operating system, architecture, platform, runtime tools) to
the con�guration. After that, the build process will run on every combination
of values from each dimension.

Table 1 shows an example of a 2D build matrix with a set of 2 values in
each dimension. This means that the build process will run in 4 di�erent
environments.

Table 1. Example of a build matrix

Operating system

Windows 11 Ubuntu 22

Runtime env.
Node.js 16 Win11+Node16 Ubuntu22+Node16
Node.js 18 Win11+Node18 Ubuntu22+Node18

Each provider supports specifying partially di�erent dimensions and expects
the build matrix to be speci�ed with a di�erent data structure.

The factors mentioned above are a�ect complexity of migrating the build
pipeline between CI providers. Project migration can be especially compli-
cated, when the compilation process of the project is intricate, and the build
needs to be run in several environments to ensure reliability of the software.

4. Mitigating CI lock-in with modern build automation systems

Historically, automation of the build process was most often accomplished
through make�les. Nowadays, there are many modern build automation tools

Build automation systems against CI lock-in 69

and systems are available for software engineers [16, 17, 18, 19]. These systems
allow developers to de�ne tasks with several steps and specify dependencies
between these tasks. The build automation system then executes and orches-
trates these tasks (e.g. independent tasks run in parallel) in order to build the
project as e�ciently as possible.

Automated build systems can also be used to mitigate CI lock-in in projects
where a managed CI service is used. The proposed architecture is shown in
Figure 1. The vendor-speci�c code is indicated by rectangles surrounded with
dashed lines.

Figure 1. Software architecture to mitigate CI lock-in

On the left is the traditional architecture, where the CI/CD pipeline of the
project (practically, the environments' declaration and the build steps itself)
is declared in a vendor-speci�c data structure and format. In the proposed ar-
chitecture, the pipeline de�nition is moved out from the con�guration, and the
provider-speci�c CI con�guration �le only contains environment declarations
and the invocation of the build pipeline. In this architecture, the pipeline is
implemented with the help of an automated build system.

By applying this architectural solution, if a service provider changes, the im-
plementation of the build process remains the same, it does not need to be
rewritten according to a new data structure or format, not even in the case
of complex build tasks. When switching a new CI provider, development and
operations team only need to con�gure the environment(s) used, the installa-
tion of the build system, and the starting of a speci�c build target. This helps
to minimize the risk of vendor lock-in, because only the actual vendor-speci�c
settings need to be changed. The migration between CI service providers or
switching to an in-house solution is thus signi�cantly simpli�ed this way.

Modern build systems support di�erent models to implement the build process,
basically 2 approaches are typical:

70 Á. Kiss

• Declarative approach focuses on the description of the build goals,
without explicitly specifying its control �ow (e.g. YAML-based managed
CI services are applying this approach),

• Imperative approach focuses on the concrete steps need to be done to
reach the build goals (e.g. Jenkins' Scripted Pipeline is based on this
approach).

5. Comparison of Dagger and Mage

The applicability of two considerably di�erent build systems have been exam-
ined in order to eliminate CI lock-in in a test software project. Automated
build system called Dagger applies the declarative approach, and supports
building pipeline de�nitions written in CUE language [18]. An another build
automation system called Mage follows the imperative approach, because it
allows to de�ne build steps using plain Go functions [19].

5.1. Build pipeline for demonstration

Ability of the above mentioned build automation systems to avoid CI lock-
in was demonstrated on the codebase of an actively maintained open-source
NPM package [20], which supports managing e-payment transactions through
a payment gateway service.

The original project currently has two CI pipelines (unit tests are executed at
every push to the remote repository, integration tests are scheduled and can
be started manually) that are executed in several environments � de�ned in a
build matrix � on GitHub Actions.

For the demonstration, the pipeline that runs the unit tests is implemented
based on the compared build systems. Figure 2 shows the �owchart of the
pipeline.

The pipeline consists of an initialization step, during which two environments
need to be set up: an Ubuntu instance with Node.js 14 and an another Ubuntu
instance with Node.js 16. Then, the di�erent environments execute the same
build steps in parallel: 1) fetching the codebase from the central repository, 2)
installing production and development dependencies of the project, 3) running
unit tests and measuring code coverage, 4) reporting coverage statistics to a
third-party service. When all the environments have �nished running the build
process successfully, a webhook endpoint of the code coverage service must be
called to merge statistics from the parallel measurements.

The pipeline was implemented separately with Dagger and with Mage, focusing
on keeping the amount of vendor-speci�c code as few as possible.

Build automation systems against CI lock-in 71

Figure 2. Flowchart of the build pipeline

5.2. Build process

The two build systems are o�er di�erent tools and terminology to structure
the build process.

Dagger pipelines are de�ned in CUE, which is a novel declarative language,
designed to describe data schemas and con�gurations (CUE stands for "con-
�gure, unify, execute"). The pipelines have built on the top of 4 main building
blocks: secrets, client, actions, and a plan [18].

Actions are the basic building blocks of the Dagger platform. An action en-
capsulates an arbitrarily complex process of the build pipeline. Actions can be
safely shared, because they are reproducible on other machines and environ-
ments, due to virtualization techniques used by the Dagger engine. An action
can depend on other actions in an implicit way (e.g. it can use other action's
output as an input). When an action is invoked by the user with the command-
line interface (CLI), Dagger engine pieces together dependent actions based on
a Directed Acyclic Graph (DAG) generated from the CUE de�nition. Explicit
action chaining is not supported yet, only workarounds are exist [18]. Actions
are de�ned as building blocks of the plan. For the implementation of the plan,

72 Á. Kiss

the developer can import external packages from the Dagger Universe. These
external packages can contain pre-de�ned actions and data schemas [21]. A
plan can also read and use the state of the local machine through the "client"
object (e.g. read and write the local �lesystem, load environment variables,
run commands, etc.). Of course, dependence on the state of the local machine
should be reduced to a minimum in order to keep the CI pipeline reproducible
in other environments as well. Secret values also appear in the plan. Secrets
can be read from �les and environment variables and handled by the Dagger
runtime in a special way to minimize the risk of leak.

Mage uses a di�erent concept for the de�nition of build pipelines. It stores the
pipeline in the form of plain-old Go functions [19].

When developers de�ne the pipeline, their task is to implement private and
exported functions, that are run on the local machine. The exported functions
are called build targets. Build targets can be called from the CLI of Mage.

For the implementation of the build targets, any traditional Go packages and
modules can be imported in the code. This supports minimizing the imple-
mentation time of the build pipeline through code reuse. Mage also contains
several built-in packages, which support interaction with the system shell (e.g.
run commands, read environment variables, customize log messages, etc.) [19].
Build targets can be chained explicitly, dependencies can be de�ned with clas-
sical function call.

5.3. External dependencies

Both build systems have external dependencies. These must be present on the
host system to run build pipelines:

• Dagger requires a Docker set up in order to be able to build containers
using BuildKit, and also to be able to run the created containers,

• Mage requires the Go standard library installed, to be able to compile
build targets (functions) written in Go programming language.

5.4. Build isolation and reproducibility

In comparison with Dagger, Mage does not natively support virtualization
(however it can be achieved with external Go packages, like s2i or Docker
SDK), the build pipeline's code will run directly on the local machine. This
does not guarantee the reproducibility of the pipeline in di�erent environments
by design. Dagger runs the pipeline in Docker containers created with BuildKit
from the CUE de�nition, but it can also access the state of the local machine, so
the developer needs to be aware of reproducibility through the implementation
of the pipeline.

Build automation systems against CI lock-in 73

Mage does not include a separate procedure for managing secret values, leav-
ing it up to the developer to prevent them from leaking. Dagger supports
handling secrets in a special way, when the developer uses dagger.#Secret
datatype. These secrets are then managed by the Dagger runtime and be-
ing only referenced as opaque identi�ers. Furthermore, the system masks the
actual secret values on logging, in order to prevent unintentional leakage.

5.5. Build matrix support

De�ning the build matrix is usually a vendor-speci�c task, because di�erent
vendors provide di�erent dimensions and the use of di�erent value sets on these
dimensions. However, Dagger runs the actions in containers, which are virtu-
alized environments. Therefore, it is possible to run the same build pipeline in
several di�erent environments.

Listing 1. shows a simple implementation of a build matrix. It uses templating
in CUE to de�ne the same build actions in di�erent environments. This code
creates two tasks in the "build" action with the same content. The variable
"docker_image" in line 7 can be used to pull the appropriate Docker image in
each task for running the build.

Listing 1. Build matrix in Dagger

1 dagger .#Plan & {

2 ac t i on s : {

3 bu i ld : {

4 "node : l t s−ga l l ium " : _ // Debian with Node . j s v16

5 "node : l t s−fermium " : _ // Debian with Node . j s v14

6

7 [docker_image=s t r i n g] : {

8 // Dagger runs the same ta sk s de f ined here

9 // in con ta i n e r s cons t ructed from Docker images

10 // "node : l t s−ga l l ium " and "node : l t s−fermium " .

11 }

12 }

13 }

14 }

This is not a complete build matrix solution, as all the possible environments
must be listed explicitly. This is inadvantageous when a particularly large
number of environments are used.

Mage does not have this level of �exibility by design, because it runs the
build pipeline directly on the host machine. Using a virtualized environment
is only be possible by introducing external Go packages and modules. The
de�nition of the build matrix is thus speci�ed in a vendor-speci�c data format,

74 Á. Kiss

which in most cases cannot be transferred without changes between two service
providers.

5.6. Managing dependent tasks

The two build systems use di�erent models for managing dependent tasks.

In the case of Dagger, it is only possible to specify dependencies implicitly.
When an action is invoked through Dagger CLI, the system parses CUE de�ni-
tion to create the DAG, which models the sequence of execution. For instance,
an action can depend in other action's output or �nal state (success or fail).
Actions that depend on each other's status can only be executed sequentially,
while actions that do not have such a dependency can also run in parallel.

In the case of Mage, dependencies between tasks are de�ned explicitly. When
a function depends on the return value of another function, it simply calls the
appropriate function and processes its return value/error.

5.7. Availability of pre-de�ned tasks and environments

Reusable functionality is available for both of the build systems.

In the case of Dagger, Docker images can be pulled from private and public
Docker registries, and these can then be used to construct environment for the
build. Dagger also provides the usage of Dagger Universe packages and the
overall CUE package ecosystem [21]. That means, that pre-de�ned tasks and
data schemas can be imported. Dagger Universe is in early stage of develop-
ment, it contains few tools, and has a very basic ecosystem now.

Mage supports the usage of functions from the Go standard library and allows
developers to use other published packages and modules in the project too.
The Go ecosystem applies a decentralized publishing model, which means that
anyone can freely publish Go modules in their code repository. Registering in
a central service and pushing the code to it is not necessary for the maintainers
of modules [22]. Mage's built-in modules can also be used to implement the
build pipeline.

5.8. Running builds in a managed CI/CD service

The build pipelines are ran on Github Actions to present how much vendor-
speci�c con�guration is required in addition to the vendor-independent pipeline
implementation.

For Dagger, the vendor-speci�c con�guration involved:

• set the required environment variables,

Build automation systems against CI lock-in 75

• con�gure the used environment (Ubuntu virtual machine),
• setup Dagger build system,
• invoke build actions sequentially.

In the event of a service provider change, this con�guration must be trans-
ferred to the data structure of the new service provider. For specifying the
build matrix, there is no full-�edged solution in Dagger, as all the environ-
ments (containers) used must be listed explicitly, so if many environments are
used, their de�nition may also be included in the vendor-speci�c con�guration
structure.

For Mage, the vendor-speci�c con�guration involved:

• set the required environment variables,
• con�gure build matrix (Ubuntu with Node.js 14 and with Node.js 16),
• setup Mage build system,
• setup the execution �ow for build targets by using jobs:

1. �rstly, the build process must be run in the environments de�ned
by the build matrix,

2. after the separate builds in all of the environments are �nished suc-
cessfully, a webhook call should be sent to the remote code coverage
service.

It can be seen that in the case of Mage, more vendor-speci�c con�guration set-
tings are required (e.g. a build matrix and dependent jobs need to be de�ned),
compared to Dagger. This is due to the lack of built-in virtualization, since
in the case of Dagger the build pipeline itself can start di�erent environments
(containers), while Mage runs the pipeline relying on the shell of the speci�ed
host system. Running the build thus requires more vendor-speci�c code, how-
ever, the build commands are also simple enough for Mage to be considered as
portable.

5.9. Build time benchmarks

The execution time of the build process was measured for both build systems
on a local computer, with the following con�guration:

OS Name: Windows 10 Pro 64-bit

OS Version: Build 10.0.19044

System Manufacturer: FUJITSU

System Model: LIFEBOOK A555

CPU: Intel Core i3 5005U @ 2.00GHz

RAM: 8GB Dual-Channel DDR3

Storage: Samsung SSD 870 EVO 500GB (SATA)

76 Á. Kiss

3 di�erent test cases were de�ned for the measurement:

1. running the build with all the built-in caching mechanisms turned o�,
2. running the build while caching is turned on and changes are made on

the codebase after the last build run,
3. running the build while caching is turned on, but without changes on

the codebase.

As Dagger can run build in several Docker containers, but Mage does not have
a built-in virtualization support, the Dagger build was only ran in the Node.js
v16 container for the measurement.

Table 2. Measured build times

Dagger Mage

#1 #2 #3 #1 #2 #3
Without cache

102.814s 100.339s 104.547s 67.648s 63.698s 67.095s

With cache
with modi�cations

37.025s 36.882s 37.164s 58.575s 55.963s 57.605s

With cache
without modi�cations

3.912s 3.914s 3.403s 51.559s 49.832s 50.329s

Table 2 shows the measured build times under di�erent circumstances. The
measurement was performed 3 times in each of the con�gurations, the averages
of these values are shown on diagrams below.

5.9.1. Build time without cache

In the �rst test case, the build time was measured with all the caching mech-
anisms turned o�. For Dagger, the locally available images and containers
are pruned, and all the data related to the BuildKit daemon (i.e. "dagger-
buildkitd" container and the volume attached to it) was removed too. For
Mage, the NPM cache on the host system was cleaned completely. Measured
times are shown in Figure 3.

Mage performed better under these circumstances. Mage uses a more light-
weight build process than Dagger, while Dagger depends heavily on virtual-
ization. Initialization of the BuildKit daemon, pulling an approx. 300 MB
Docker-image, and constructing a container took much more time, than run-
ning the build using the host system's shell directly.

Build automation systems against CI lock-in 77

Figure 3. Build times without cache

5.9.2. Build time with cache and code changes

In the second test case, the build time was measured with all the built-in
caching mechanisms turned on and slight modi�cations applied to the code-
base. Build times are shown in Figure 4.

Figure 4. Build times with cache and changes

Dagger performed better in this test case. Pre-fetched Docker images, cached
containers and action steps are enabled faster execution of the build compared
to Mage.

78 Á. Kiss

5.9.3. Build time with cache without changes

In the third test case, the build time was measured with all the built-in caching
mechanisms turned on, but without modi�cations to the project codebase.
Results have been presented in Figure 5.

Figure 5. Build times with cache without changes

Dagger performed signi�cantly better in this case. This is because while Dagger
can cache the output of all steps of an action based on the running environ-
ment's state and the input passed to the command, Mage does not include this
level of caching. Mage only uses a binary cache to speed up the compilation
of the build pipeline itself. Due to the unchanged codebase and environment,
Dagger was able to read the result of installing project dependencies and run-
ning the tests from the cache, while Mage performed these steps again from
start to �nish.

6. Availability of the demonstration project

The complete codebase of the demonstration project is publicly available at
[23].

7. Conclusion

I have summarized the risks of vendor lock-in in software projects. Strong
dependence on vendor-speci�c implementation causes risks related to data-,
application- and infrastructure portability. It can also cause di�culties for
human resource to con�gure infrastructure provided by a new vendor if the

Build automation systems against CI lock-in 79

software does not contain appropriate abstractions to access the used cloud
services.

I also identi�ed the factors that may cause close dependence on a speci�c ven-
dor when using a managed CI/CD service. This type of dependency involves
risks related to the reliability and releasing of the software. The risk of losing
e�ective portability comes from di�erent terminology, data structures and for-
mats, execution models and environment de�nitions used in di�erent managed
CI/CD services.

In order to eliminate this problem, I presented an architectural solution that is
based on the use of automated build systems and aims to minimize the vendor-
speci�c con�guration to mitigate CI lock-in. I examined the applicability of
two automated build systems for this purpose. The solution was tested on an
open-source NPM package's codebase. The build pipeline was implemented
separately with build systems called "Dagger" and "Mage".

The applicability of the build systems was then compared with each other,
according to several aspects: building blocks of the pipeline, external depen-
dencies, build isolation, support for de�ning a build matrix, availability of
pre-de�ned tasks and build time benchmarks.

Regarding the results, it can be stated that any of the examined systems can
be used e�ectively in small to medium sized projects, while in larger projects
with complex build pipeline, using Dagger is preferable due to its e�ective
virtualization and caching capabilities.

References

[1] Beslic, A., Bendraou, R., Sopena, J., and Rigolet, J.-Y.: Towards a
solution avoiding Vendor Lock-in to enable Migration Between Cloud Platforms.
In MDHPCL 2013 - 2nd International Workshop on Model-Driven Engineering
for High Performance and CLoud computing, Miami, Florida, United States,
2013, pp. 5�14, URL https://hal.archives-ouvertes.fr/hal-01216403.

[2] Kratzke, N. and Quint, P.-C.: Understanding cloud-native applications after
10 years of cloud computing - a systematic mapping study. Journal of Systems
and Software, 126, (2017), 1�16, URL https://doi.org/10.1016/j.jss.2017.

01.001.

[3] Opara-Martins, J., Sahandi, R., and Tian, F.: Critical analysis of ven-
dor lock-in and its impact on cloud computing migration: a business per-
spective. Journal of Cloud Computing, 5(1), URL https://doi.org/10.1186/

s13677-016-0054-z.

[4] Opara-Martins, J.: Taxonomy of cloud lock-in challenges. In Mobile Comput-
ing - Technology and Applications, InTech, 2018, URL https://doi.org/10.

5772/intechopen.74459.

https://hal.archives-ouvertes.fr/hal-01216403
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1186/s13677-016-0054-z
https://doi.org/10.1186/s13677-016-0054-z
https://doi.org/10.5772/intechopen.74459
https://doi.org/10.5772/intechopen.74459

80 Á. Kiss

[5] Prasanth, K. V. V. N., Satyanarayana, K. V. V., Akhila, V., Sahithya,
M., andReddy, A. S.: Implementing a solution to the cloud vendor lock-in using
standardized API. International Journal of Computer Science and Information
Security, 16(1).

[6] Amato, A., Tasquier, L., and Copie, A.: Addressing the interoperability in
cloud: The vendor agent. Int. J. Comput. Sci. Eng., 11(1), (2015), 5�16, URL
https://doi.org/10.1504/IJCSE.2015.071357.

[7] Quint, P.-C. and Kratzke, N.: Overcome Vendor Lock-In by Integrating Al-
ready Available Container Technologies Towards Transferability in Cloud Com-
puting for SMEs. In CLOUD COMPUTING 2016: The Seventh International
Conference on Cloud Computing, GRIDs, and Virtualization, ISBN 978-1-61208-
460-2, 2016.

[8] Opara-Martins, J.: A decision framework to mitigate vendor lock-in risks
in cloud (saas category) migration., 2017, URL http://eprints.bournemouth.

ac.uk/29907/.

[9] Gruhn, V., Hannebauer, C., and John, C.: Security of public continuous
integration services. In Proceedings of the 9th International Symposium on Open
Collaboration, ACM, 2013, URL https://doi.org/10.1145/2491055.2491070.

[10] Hilton, M., Tunnell, T., Huang, K., Marinov, D., and Dig, D.: Usage,
costs, and bene�ts of continuous integration in open-source projects. In Proceed-
ings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ACM, 2016, URL https://doi.org/10.1145/2970276.2970358.

[11] Jenkins: Pipeline Syntax. URL https://www.jenkins.io/doc/book/

pipeline/syntax/. Accessed 2022-10-14.

[12] GitHub Actions: Documentation. URL https://docs.github.com/en/

actions. Accessed 2022-10-14.

[13] Microsoft Learn: Key concepts for new Azure Pipelines users.
URL https://learn.microsoft.com/en-us/azure/devops/pipelines/

get-started/key-pipelines-concepts. Accessed 2022-10-14.

[14] Travis CI: Core concepts for beginners. URL https://docs.travis-ci.com/

user/for-beginners/. Accessed 2022-10-14.

[15] AppVeyor: Documentation. URL https://www.appveyor.com/docs/. Ac-
cessed 2022-10-14.

[16] Google: Bazel. URL https://bazel.build/. Accessed 2022-10-16.

[17] Facebook: Buck. URL https://buck.build/. Accessed 2022-10-16.

[18] Dagger: Dagger. URL https://docs.dagger.io/. Accessed 2022-10-16.

[19] Mage: Mage. URL https://magefile.org/. Accessed 2022-10-16.

[20] Kiss Áron: aron123/node-barion (GitHub). URL https://github.com/

aron123/node-barion. Accessed 2022-10-18.

[21] Dagger: dagger/pkg/universe.dagger.io. URL https://github.com/dagger/

dagger/tree/v0.2.36/pkg/universe.dagger.io. Accessed 2022-10-23.

https://doi.org/10.1504/IJCSE.2015.071357
http://eprints.bournemouth.ac.uk/29907/
http://eprints.bournemouth.ac.uk/29907/
https://doi.org/10.1145/2491055.2491070
https://doi.org/10.1145/2970276.2970358
https://www.jenkins.io/doc/book/pipeline/syntax/
https://www.jenkins.io/doc/book/pipeline/syntax/
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/key-pipelines-concepts
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/key-pipelines-concepts
https://docs.travis-ci.com/user/for-beginners/
https://docs.travis-ci.com/user/for-beginners/
https://www.appveyor.com/docs/
https://bazel.build/
https://buck.build/
https://docs.dagger.io/
https://magefile.org/
https://github.com/aron123/node-barion
https://github.com/aron123/node-barion
https://github.com/dagger/dagger/tree/v0.2.36/pkg/universe.dagger.io
https://github.com/dagger/dagger/tree/v0.2.36/pkg/universe.dagger.io

Build automation systems against CI lock-in 81

[22] Go: Developing and publishing modules. URL https://go.dev/doc/modules/

developing. Accessed 2022-10-23.

[23] Kiss Áron: aron123/ci-lock-in (GitHub). URL https://doi.org/10.5281/

zenodo.7244304.

https://go.dev/doc/modules/developing
https://go.dev/doc/modules/developing
https://doi.org/10.5281/zenodo.7244304
https://doi.org/10.5281/zenodo.7244304

	1. Introduction
	2. Vendor lock-in in cloud-based software products
	3. Vendor lock-in in the world of managed CI services
	4. Mitigating CI lock-in with modern build automation systems
	5. Comparison of Dagger and Mage
	5.1. Build pipeline for demonstration
	5.2. Build process
	5.3. External dependencies
	5.4. Build isolation and reproducibility
	5.5. Build matrix support
	5.6. Managing dependent tasks
	5.7. Availability of pre-defined tasks and environments
	5.8. Running builds in a managed CI/CD service
	5.9. Build time benchmarks

	6. Availability of the demonstration project
	7. Conclusion
	References

