

Production Systems and Information Engineering

Volume 10 (3), pp. 129�136
doi: 10.32968/psaie.2022.3.10

129

COMPARISON OF COOLING STRATEGIES IN

SIMULATED ANNEALING ALGORITHMS FOR

FLOW-SHOP SCHEDULING

József Miliczki

University of Miskolc, Hungary
Institute of Information Technology

miliczki.jozsef@student.uni-miskolc.hu

Levente Fazekas

University of Miskolc, Hungary
Institute of Information Technology

levente.fazekas@uni-miskolc.hu

Abstract. Flow-shop scheduling is considered, where the order of op-
erations must be the same for each job to minimize the maximum com-
pletion time. The Simulated Annealing algorithm is a standard ap-
proximate solution method in scheduling and optimization in general.
Since the algorithm depends on cooling as a heuristic to generate bet-
ter approximations, choosing the strategy with which the temperature
decreases can a�ect the �nal result.

Keywords: �ow-shop, scheduling, heuristics, simulated annealing, an-
nealing strategies

1. Introduction

Flow-shop scheduling is considered, where the order of operations must be
the same for each job to minimize the maximum completion time. Simulated
Annealing algorithm is based on a local search algorithm with a stochastic cri-
terion for accepting worse solutions. This algorithm is based on the Metropolis
algorithm for simulating physics systems subject to a heat source [1]. Since the
algorithm depends on cooling as a heuristic to generate better approximations,
choosing the strategy with which the temperature decreases can a�ect the �nal
result.

The α|β|γ formal classi�cation scheme was introduced by Graham et al.,
where the resource environment, the characteristics of jobs, and the objective
function are described by α, β, γ, respectively. The permutation �ow-shop

http://doi.org/10.32968/psaie.2022.3.10

130 J. Miliczki and L. Fazekas

(Fm|perm|Cmax) scheduling problem is a classic example of production sched-
uling �rst formally introduced by Johnson et al. [2]. It is a one-way, multi-
operation, shop-level problem where the jobs cannot precede one another, and
the objective is to minimize the total makespan.

The �ow-shop problem is formulated as NJ number of jobs processed on
NR number of resources of machines in a strict order. Each job consists of the
same number of operations as the number of machines. The processing times
of these operations are denoted as pi,j , i ∈ 1, 2, . . . , NJ , j ∈ 1, 2, . . . , NR where
i is the job, and j is the machine index. Only one operation can take place on
a machine, and only one machine can operate on a job at a given time. We
want to �nd a sequence of jobs s, such that the time required to complete all
operations is minimized (Cmax → min).

The �ow-shop problem is proven to be NP hard [3, 4]. The best course of
action is to use a meta-heuristic algorithm to come as close to a possible optimal
solution without any certainty [5, 6]. The most common examples of these
meta-heuristic algorithms are Variable Neighborhood Search [7], Simulated
Annealing [8], and Genetic Algorithms [9, 10]. In this paper, we consider and
compare di�erent cooling strategies for the Simulated Annealing algorithm
introduced by Kirpatrick et al. [8]. To benchmark each strategy, we used a
benchmark set proposed by Taillard [11].

2. The Simulated Annealing Algorithm

The main premise of using Simulated Annealing is to use a cooling strategy
to calculate the probability of accepting a worse sequence than what was cur-
rently the base for the neighbourhood searches. The probability of acceptance
Pt can be calculated as such:

∆ = f∗ − f(st), (2.1)

Pt =

{
e

−∆
Tt , if ∆ ≥ 0

1, if ∆ < 0
(2.2)

where f is the object function which is to be optimized, t is the iteration
count, st is the current solution, f∗ is the best solution found until iteration
t, f(st) is the value of the object function for the current solution, and Tt is a
strictly decreasing sequence with

lim
t→∞

Tt = 0. (2.3)

Simulated Annealing Cooling Strategies 131

In algorithm 1 we de�ne the Simulated Annealing meta-heuristic search
algorithm, where

• s0 is the initial solution,
• s is the base of the neighborhood,
• sbest is the best solution found so far,
• tmax is the maximum iteration count,
• t is the current iteration,
• Tt is the temperature in iteration t,
• sn is the best candidate in a given neighborhood,
• nc is the number of neighbors per neighborhood,
• snew is neighbor of s,
• f is the object function,
• f∗ is the best object function value found until iteration t.

Algorithm 1 Simulated Annealing
s← s0
sbest ← s
for t← 0 to tmax do

Tt ← Temperature(t) . Computing temperature based on cho-
sen annealing strategy

sn ← s0
for 1 to nc do

snew ← neighbour(s)
if f(snew) < f(sn) then

sn ← snew
end if

end for

if Pt(f
∗, f(sn), Tt) ≥ rand() then

s← sn . If the condition (probability) for ac-
cepting a worse sequence is met or the
found solution is superior, we enact sn
as the new base

end if

if f(s) < f∗ then
sbest ← s

end if

end for

return s

132 J. Miliczki and L. Fazekas

3. Cooling Strategies

A practical implementation of the Simulated Annealing algorithm requires
the generation of �nite sequences decreasing values of temperatures T and a
�nite number of state transitions for each temperature value by using a cooling
schedule.

The following three parameters are present in the cooling schedule intro-
duced by Kirpatrick et al. [8]:

First, T0 is the initial value of the temperature. It must be high enough
that any new solution generated in a transition state should be accepted with
a probability of 1.

The temperature decrease function is generally an exponentially decreasing
function Tt = t0 − αk, where α is a constant smaller than 1.

The number of state transitions L for each temperature value.

The choice of cooling strategy will signi�cantly a�ect the performance of
Simulated Annealing so that the right approach can make a vast di�erence.
We can identify multiple approaches when calculating the temperature based
on time elapsed and a starting temperature as parameters. Choosing the right
starting temperature T0 is just as important as setting the lower boundary.
With a proper setup of these two bounds, each strategy can be �nely tuned to
meet speci�c needs.

3.0.1. Additive Cooling Strategies

In Additive cooling, we must consider two additional parameters: the num-
ber of cooling cycles n, and the �nal temperature of the system Tn, a term
that decreases with respect to the elapsed time t. Four variants are consid-
ered, based on the formulae proposed by B. T. Luke in 2005 [12]:

Linear Additive cooling (equation 3.1) is achieved by adding a term to the
�nal temperature Tn that decreases linearly with respect to the elapsed time
t:

T (t) = Tn + (T0 − Tn)

(
n− t
n

)
(3.1)

In Exponential Additive cooling (equation 3.2), the temperature decrease
is computed by adding a term to the �nal temperature Tn that decreases in
inverse proportion to an exponential function based on the elapsed time t:

Simulated Annealing Cooling Strategies 133

T (t) = Tn + (T0 − Tn)

(
n− t

1 + e
2 ln(T0−Tn)

n (t− 1
2
n)

)
(3.2)

Trigonometric Additive cooling (equation 3.3) computes the temperature by
adding a term to the �nal temperature Tn that decreases in proportion to the
cosine of the elapsed time t:

T (t) = Tn +
1

2
(T0 − Tn)

(
1 + cos

tπ

n

)
(3.3)

Quadratic Additive cooling (3.4.) decreases the temperature by adding a
term to the �nal temperature Tn that decreases in proportion to the square of
the elapsed time t:

T (t) = Tn + (T0 − Tn)

(
n− t
n

)2

(3.4)

3.0.2. Multiplicative Cooling Strategies

In multiplicative cooling, the system temperature T at time t is computed by
multiplying the initial temperature T0 by a factor that decreases with respect
to the current time t. Four variants are considered:

Linear Multiplicative cooling (equation 3.5) decreases the temperature by
multiplying the initial temperature T0 by a factor α that decreases in an inverse
proportion to the elapsed time t.

T (t) =
T0

1 + αt
(3.5)

In Quadratic Multiplicative cooling (equation 3.6), the temperature is de-
creased by multiplying the initial temperature T0 by a factor α that decreases
in an inverse proportion to the square of the elapsed time t:

T (t) =
T0

1 + αt2
(3.6)

Exponential Multiplicative cooling (equation 3.7), as proposed by Kirpatrick
et al. [8] is used as the reference for comparison among di�erent cooling criteria.
The temperature is obtained by multiplying the initial temperature T0 by a
factor α that decreases exponentially with respect to the elapsed time t:

T (t) = T0 · at. (3.7)

134 J. Miliczki and L. Fazekas

Logarithmic Multiplicative cooling (equation 3.8) is based on the asymptot-
ical convergence condition, but it incorporates a factor α of cooling speedup,
thus making it possible to use in practice. The temperature is decreased by
multiplying the initial temperature T0 by a factor α that decreases in an inverse
proportion to the natural logarithm of the elapsed time t:

T (t) =
T0

1 + α log(1 + t)
(3.8)

4. Comparison of Cooling Strategies

In this chapter, we compare the performances achieved by the introduced
cooling mechanisms using the Taillard benchmark set[11]. Every test has been
conducted using the same random number seed and production times described
in the �rst test of the 100 jobs, 20 machines set with an upper bound of 5770.
The performed number of iterations is 1000, each considering a neighbourhood
of 20. The initial temperature is 106, with α variable set to 0.8.

Table 1. contains the algorithms and their parameters, the �nal makespan,
the �nal temperature reached, as well as the changes in temperature and
makespan throughout the runtime of the algorithm.

Table 1. Benchmark results

Strategy T0 Ttmax α Cmax

Linear Additive 106 1000 � 7459

Quadratic Additive 106 3.20 � 7459

Trigonometric Additive 106 4.53 � 7459

Linear Multiplicative 106 62.56 0.8 7227

Logarithmic Multiplicative 106 50.05 0.8 7199

Exponential Additive 106 3.33 � 6851

Exponential Multiplicative 106 0 0.8 6588

Quadratic Multiplicative 106 0 0.8 6536

Simulated Annealing Cooling Strategies 135

From table 1 it is evident that choosing the proper cooling schedule along-
side the starting temperature has a signi�cant impact on the search results
when it comes to the Simulated Annealing Algorithm. One important thing to
note is the remaining temperature at the end of the search Ttmax . Where the
remaining temperature is higher, the search behaves more like a random search
algorithm throughout all the iterations, resulting in a higher Cmax value. The
Logarithmic multiplicative schedule is the only schedule mentioned here that
will never reach a temperature of 0, rendering it impractical for real-world use.

5. Conclusion

In addition to the �ndings and use cases presented in this paper, we also
found that these cooling schedules can be interpreted di�erently for other
scheduling tasks. The advantage of these cooling schedules is the ability to
�ne-tune the approach taken to scheduling when it comes to local search al-
gorithms. These techniques can prove helpful when tackling more and more
complex problems.

The results are encouraging to continue our research, incorporating other
methods, parameters, models and techniques into local search algorithms, ap-
plying them to real-world applications.

References

[1] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,
and Teller, E.: Equation of state calculations by fast computing machines. The
journal of chemical physics, 21(6), (1953), 1087�1092, URL https://doi.org/

10.1063/1.1699114.

[2] Johnson, S. M.: Optimal two-and three-stage production schedules with setup
times included. Naval research logistics quarterly, 1(1), (1954), 61�68, URL
https://doi.org/10.1002/nav.3800010110.

[3] Lageweg, B., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A.:
Computer aided complexity classi�cation of deterministic scheduling problems.
Stichting Mathematisch Centrum. Mathematische Besliskunde, 1(BW 138/81).

[4] Lageweg, B., Lenstra, J. K., Lawler, E., and Kan, A. R.: Computer-
aided complexity classi�cation of combinational problems. Communications of

the ACM, 25(11), (1982), 817�822, URL https://doi.org/10.1145/358690.

363066.

[5] Knust, S.: Complexity results for scheduling problems. http://www2.

informatik.uni-osnabrueck.de/knust/class/ [2022-06-09], 2009.

[6] Leung, J. Y.: Handbook of scheduling: algorithms, models, and performance

analysis. CRC press, 2004.

https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1145/358690.363066
https://doi.org/10.1145/358690.363066
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://www2.informatik.uni-osnabrueck.de/knust/class/

136 J. Miliczki and L. Fazekas

[7] Mladenovi¢, N. and Hansen, P.: Variable neighborhood search. Computers

& operations research, 24(11), (1997), 1097�1100, URL https://doi.org/10.

1016/S0305-0548(97)00031-2.

[8] Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P.: Optimization by
simulated annealing. science, 220(4598), (1983), 671�680, URL https://doi.

org/10.1126/science.220.4598.671.

[9] Fraser, A. S.: Simulation of genetic systems by automatic digital computers
i. introduction. Australian journal of biological sciences, 10(4), (1957), 484�491,
URL https://doi.org/10.1071/BI9570484.

[10] Fraser, A., Burnell, D., et al.: Computer models in genetics. Computer

models in genetics.

[11] Taillard, E.: Benchmarks for basic scheduling problems. european journal of

operational research, 64(2), (1993), 278�285, URL https://doi.org/10.1016/

0377-2217(93)90182-M.

[12] Luke, B. T.: Simulated annealing. Retrieved June, 8, (2005), 2005.

https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1071/BI9570484
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M

	References

