
Production Systems and Information Engineering

Volume 11 (3), pp. 128–141.

https://doi.org/10.32968/psaie.2023.3.9

ANALYSING OF LIBRARY, LITERATURE AND

SEM ONTOLOGIES

ANITA AGÁRDI

University of Miskolc

Hungary Institute of Information Technology

agardianita@iit.uni-miskolc.hu

Abstract: In this article, I present an analysis of three ontologies.

These three ontologies are the followings: Library (representing a

library), Literature (representing an ontology of literature), and

Sem (representing software annotation). These ontologies have

been downloaded from Github, all three ontologies created in

OWL. The article also contains measures adapted from UML

metrics and their evaluation. The article first presents some in

connection with the UML and ontology metrics. Next, the article

presents the ontologies, followed by the evaluation of the metrics.

The article shows that the metrics are suitable for the analysis of

ontologies.

Keywords: library ontology, literature ontology, sem ontology,

metrics

1. Introduction

The demand for software and software codes is playing an increasingly important

role these days. Software developers need metrics to objectively measure individual

implemented functions and the entire software. [1] Today, many such metrics have

been developed for UML (Unified Modeling Language), such as the following [1]:

 WMC (Weighted Methods per Class),

 DIT (Depth of Inheritance),

 NOC (Number Of Childrens),

 DAC,

 DAC’,

 NOM,

 SIZE2,

 MHF (Method Hiding Factor),

 AHF (Attribute Hiding Factor),

 MIF (Method Inheritance Factor),

 AIF (Attribute Inheritance Factor)

https://doi.org/10.32968/psaie.2023.3.9
mailto:agardianita@iit.uni-miskolc.hu

 Analysing of library, literature and sem ontologies 129

The use of metrics in the software development phase, especially in the early phase,

greatly contributes to the quality of the developed software. [2]

Baroni & Abreu [3] discuss object-oriented design metrics. Also Chen, Boehm,

Madachy, & Valerdi. [4] investigated the importace of these types of metrics. The

authors of [4] discuss the following metrics:

System and Software Architecture Description (SSAD):

 Number of decomposed use cases

 Number of steps in sequence diagram

 Number of classes

 Average number of methods per class

 Average number of attributes per class

Source Code Metrics

 Requirement Metrics:

 Number of project requirements

 Number of capability requirements

 Number of interface requirements

 Number of level of service requirements

According to the authors Lavazza & Agostini [5], UML metrics play an increasingly

important role in software development. According to them, it is crucial to be able

to derive accurate quantitative knowledge from software products. Metrics should

be measured especially in the early phase of software development, because with

these metrics, managers also have more information for decision-making. They

discussed the following object-oriented metrics: Weighted Methods per Class

(WMC), Depth of Inheritance Tree (DIT), Number Of Children (NOC), Coupling

Between Object classes (CBO), Response For a Class (RFC), Lack of Cohesion in

Methods (LCOM).

According to the authors Genero, Miranda, & Piattini [6], software maintain-

ability is an increasingly important quality aspect. The authors also draw attention to

the early phase of software development, when the most important thing is to be able

to evaluate the quality characteristics of the software. The authors examine the

relationship between early maintainability and complexity of UML state diagrams.

The following metrics were defined in their article:

 NUMBER OF ENTRY ACTIONS (NEntryA): The total number of entry

operations, i.e., each operation of the status.

 NUMBER OF EXIT ACTIONS (NExitA): The total number of exit

operations, that is, the number of operations performed when leaving the state.

 NUMBER OF ACTIVITIES (NA): The total number of activities in the state chart.

 NUMBER OF STATES (NS): Total number of simple states, including simple

states within complex states.

 NUMBER OF TRANSITIONS (NT): Total number of transitions.

130 Anita Agárdi

Fourati, Bouassida, & Abdallah [7] investigated with anti-patterns in UML. Anti-

patterns are bad design patterns, they greatly impair the progress of software

development. It is worth avoiding these patterns and refactoring the code in such a

way. Design patterns, on the other hand, provide good solutions to common

problems. To use them, software developers must have thorough knowledge. The

authors discuss the following patterns:

Coupling:

 CBO (Coupling Between Objects)

 RFC (Response For Call)

Cohesion:

 LCOM (Lack Of Cohesion in Methods)

 TCC (Tight Class Cohesion)

 LCC (Loose class Cohesion)

 Coh

Complexity:

 WMC (Weighted Methods per Class)

 NAtt: the Number of the Attributes

 NPrAtt: the Number of Private Attributes

 NOM: the Number Of Methods

 NII: the Number of Imported Interfaces

Inheritance:

 DIT (Depth of Inheritance of a class)

 NOC (Number Of Children)

 NAcc: the Number of the Accessors

 NAss: the Number of Associations

 NInvoc: the Number of the Invoked methods

 NReceive: the Number of the Received messages

The article is structured as follows. After this literature research, I present the

ontology and the three selected ontological systems, followed by the analyzes of

the metrics.

2. Ontology systems

2.1. Ontology

An ontology is a tool for standard knowledge representation. An ontology describes

concepts and relationships between them. But ontology is actually more than that,

because it also contains an inference engine, so it also contains knowledge that is not

explicitly described. One of the tools of the semantic web is OWL [8] (Web

 Analysing of library, literature and sem ontologies 131

Ontology Language). Describe the individual ontologies in OWL XML style. It

contains the following important elements [9]:

 Namespaces

 Ontology Headers

 Classes and Individuals: the most important elements of ontologies. An

individual represents an instance of the class. Classes can be arranged in a

class-subclass hierarchy.

 Properties:

o ObjectProperty: connects two classes

o DatatypeProperty: connects a class with a datatype

o Annotation property

 Property characteristics :

o Transitive property: P(x,y) and P(y,x) implies P(x,z)

o Symmetry property: P(x,y) iff P(y,x)

o FunctionalProperty: P(x,y) and P(x,z) implies y = z

o inverseOf: P1(x,y) iff P2(y,x)

o InverseFunctionalProperty: P(y,x) and P(z,x) implies y = z

 Property restrictions:

o allValuesFrom, someValuesFrom

o Cardinality

o hasValue

 Equivalence between Classes and Properties:

o equivalentClass, equivalentProperty

 Identity between Individuals:

o sameAs

 Different Individuals

o differentFrom, AllDifferent

In the followings, the structures of the ontologies and their VOWL diagrams are

presented. The conversion of ontologies to UML will be also presented in this

section, and in the next chapter, the values of UML metrics will also be detailed.

2.2. Library ontology

The library ontology [10] represents a library. It contains classes such as

‘LibraryMember’, which describes a person that can be connected to a library. This

class has three subclasses, ‘AdminStaff’ (which represents the administrators),

‘GuestUser’ (which describes the guest users), ‘Student’ (the class which represents

the students) The ‘LibraryPersonnel’ class represents the librarians, which has two

subclasses: ‘Librarian’ and ‘Technician’. ‘LibraryResource’ contains the contents of

the library, which can be borrowed and viewed. It contains the following three

subclasses: ‘Book’, ‘CD’ and ‘Journal’. The library also provides services, represented

by the ‘LibraryService’ class. It provides three services, which are the followings:

132 Anita Agárdi

‘InternetAndWiFiService’, ‘NewsPaperService’ and ‘ReferenceService’. The system

contains only a few object properties, these are: ‘hasName’, ‘isUsedBy’, ‘Use’ and

‘Utilize’. The ‘hasName’ is a property of a ‘Student’ class, ‘isUsedBy’ binds a

‘LibraryMember’ and an ‘InternetAndWifiService’ class, ‘Use’ binds the ‘Library

Member’ and ‘InternetAndWifiService’ classes, and ‘Utilize’ connects the

‘LibraryMember’ and ‘LibraryResource’ classes. The system does not contain a

datatype property, but it contains the following individuals: ‘AMaheshwari’, ‘Chip’,

‘Digit’, ‘ElectronicsForU’, ‘EmbeddedSystemDesign’, ‘IndianJournalOfLabourEcono

mics’, ‘IUPJournalOfMarketing’, ‘KSathish’, ‘MMadhu’, ‘MMalathi’, ‘PCQuest’,

‘Prof.ShivaramaKrishna’, ‘Prof.VenkatapathiRaju’, ‘Raju’, ‘RRajesh’ and ‘Rushi’. These

includes the followings: ‘AdminStaff’, ‘CD’, ‘Journal’, ‘Librarian’, ‘GuestUser’ and

‘Technician’. The VOWL representation of the system is illustrated in Figure 1.

Figure 1. Library ontology VOWL representation

During the UML conversion of the Library ontology, the OWL classes will be UML

classes. Class-subclass relationships are remained in UML. The figure shows that

most ontological classes had no properties, and the classes that have properties in

 Analysing of library, literature and sem ontologies 133

OWL remained properties in UML as well. UML class diagrams could also be

supplemented with methods, but based on OWL, this was not created due to the

structure of the ontology.

Figure 2. Library ontology UML representation

2.3. Literature ontology

The Literature ontology [11] is an ontology

describing literature. This ontology contains

only a few classes, which are arranged in a

hierarchy. A subclass of ‘Author’ is ‘Book’.

The child of ‘Book’ is ‘Fiction’, which is further

specified by the authors, with two subclasses,

which are as follows: ‘Murder_Mystery’ and

‘Science_Fiction’. This ontology does not

contain properties (neither object properties nor

datatype properties). But it contains individuals,

but only the ‘Author’ class, which is the

following: ‘Agatha_Christie’, ‘Charles_Dickens’,

‘Dick_Francis’, ‘Ernest_Hemingway’, ‘James_

Agee’, /James_Joyce’, ‘John_Grishom’, ‘John_

Steinbeck’, ‘John_Updike’, ‘Ken_Follet’,

‘Mave_Binchey’, ‘PD_James’, ‘Scott_Turow’

and ‘William_Falkner’. The VOWL represent-

tation of these system is illustrated in Figure 2.

Figure 3

Literature ontology

VOWL representation

134 Anita Agárdi

The Literature ontology is a small ontology, so it is easy to convert less to UML. It

only consists of classes and subclasses, so this hierarchy must also be represented in

the UML.

Figure 4. Literature ontology UML representation

2.4. Sem ontology

Ontology, which describes software annotations is called as the Sem ontology [12].

This ontology does not contain individuals or properties (neither datatype property

nor object property). Its main class is ‘comment’, which represents software

commenting. This class contains a single subclass, ‘I_have_written_it’, which

indicates that the comment was made by the user. Here, the other subclasses of the

‘comment’ class could be expanded, which indicates who created the comment,

because a larger software is not created by just one person, the software is created

by working in a team. You could also specify which part of the software has the

comment (which could even be specialized with subclasses: which class, backend or

frontend for a web application, which function it is related to, which jira ticket, which

software version, etc.) This class only contains the following subclasses: ‘autogenerated’

(which indicates that it is automatically generated by the IDE), ‘documention_exists’

(there is additional documentation), ‘documention_is_missing’ (there is no additional

documentation), ‘i_do_not_remember_why_I_wrote_it’ (I don’t remember why this

code was written), ‘i_do_not_understand_how_it_could_work’, ‘i_do_not_understand_

my_code’, ‘i_have_to_used_it_for_years’, ‘it_compiles’ code), ‘it_is_deprecated’,

‘it_was_a_one_shot’ and ‘just_a_proof_of_concept’. The VOWL representation of

these system is illustrated in Figure 3.

 Analysing of library, literature and sem ontologies 135

Figure 5. Sem ontology VOWL representation

I have represented the UML representation of this ontology in a slightly different

way. I created some properties for ‘Comment’ even though OWL does not contain

any properties. The elements in the enumeration were originally classes in OWL, but

in UML they correspond to a ‘type’ property. This example clearly illustrates that it

is not possible to convert ontologies to UML completely according to the rules,

because if we followed the rules, the UML would contain many classes and the

classes would be without properties. The human modeling approach is also necessary

during conversion, it is not enough to know the conversion rules, there are cases

when it is better if the conversion differs from them.

Figure 6. Sem ontology UML representation

136 Anita Agárdi

3. Ontology systems evalutation

In this chapter, I present the evaluation of the three ontologies. I used the following

evaluation metrics, which I adapted from the UML metrics, which I already

presented in more detail in the following publication [13]:

 WMC (Weighted Methods per Class) and Average WMC

 DIT (Depth of Inheritance) and Average DIT

 NOC (Number Of Childrens) and Average NOC

 DAC and Average DAC

 OA1

 OA2

3.1. Library ontology

The WMC (Weighted Methods per Class) values of the Library ontology are between

0 and 3. Each class has this many properties. Many classes don’t have a single

property, but the ‘LibraryMember’ class has 3 properties. Average WMC (Weighted

Methods per Class) is 0.466666667. The WMC diagram is illustrated in Figure 4.

The DIT (Depth of Inheritance) values are between 0 and 1, which means that the

system has 2 levels. 4 classes with a value of 0, these classes are on the first level.

Average DIT (Depth of Inheritance): 0.733333333. The DIT diagram is illustrated in

Figure 5.

The average NOC is 0.733333333. The NOC diagram is illustrated in Figure 6.

OA1 (total number of classes) is 15, while OA2 value (total number of inheritance

hierarchies) is 2.

Figure 7. Library Ontology: WMC (Weighted Methods per Class)

 Analysing of library, literature and sem ontologies 137

Figure 8. Library Ontology: DIT (Depth of Inheritance)

Figure 9. Library Ontology: NOC (Number Of Childrens)

3.2. Literature ontology

The Literature ontology has no properties, so the WMC (Weighted Methods per

Class) and Average WMC (Weighted Methods per Class) values are 0.

138 Anita Agárdi

Literature: DIT (Depth of Inheritance) values are between 0 and 3. This means

that ‘Author’ is at the first level and there are two classes that are at the last level,

Average DIT value (Depth of Inheritance) is 1.8. The DIT diagram is illustrated in

Figure 7.

The NOC (Number Of Childrens) values are between 0 and 4. This is how many

descendants each class has. Average NOC (Number Of Childrens) is 1.8, so a class

has this many children on average. the NOC diagram is illustrated in Figure 7.

The OA1 value (total number of classes) is 5, the OA2 value (total number of

inheritance hierarchies) is 3, so it is a three-tier system.

Figure 10. Literature: DIT (Depth of Inheritance)

Figure 11. Literature: NOC (Number Of Childrens)

3.3. Sem ontology

The Sem ontology contains no properties, so the WMC (Weighted Methods per

Class) and Average WMC (Weighted Methods per Class) values are 0.

Sem ontology DIT (Depth of Inheritance) values are between 0 and 2. A class

(‘comment’) has a value of 0, it is the ancestor of all other classes. A single class

(‘I_have_written_it’) has a value of 1 and is the ancestor of all other classes (except

‘comment’). Average DIT (Depth of Inheritance) value is 1.769230769. This means

that, on average, the classes would be located between levels 1 and 2. The DIT

diagram is illustrated in Figure 8.

The NOC (Number Of Childrens) values are between 0 and 12. These values also

show that all other classes are subclasses of two classes. Average NOC (Number Of

Childrens) is 1.769230769. The NOC diagram is illustrated in Figure 9. The OA1 (Total

number of classes) is 13, while OA2 (Total number of inheritance hierarchies) is 3.

 Analysing of library, literature and sem ontologies 139

Figure 12. Sem: DIT (Depth of Inheritance)

Figure 13. Sem: NOC (Number Of Childrens)

3.4. Summary results

The summary results are illustrated with a diagram in Figure 9. Based on the

diagram, the Library ontology and the Sem ontology are larger ontologies than the

Literature ontology. The value of the average WMC is not 0 only for the Library

ontology. The average DIT and NOC values are not high for any of the ontologies,

this means, that there is no class-subclass relationship, it is not important, there is no

great specialization. However, the number of classes is large compared to the other

metrics, as indicated by the OA1 values. The low WMC and DIT of the Library and

Literature ontology suggests that the classes are simple and the hierarchy shallow

and medium. A higher DIT and NOC in the Sem ontology indicates that the classes

140 Anita Agárdi

are more complex and the hierarchy is deeper. Based on the measures of the

ontologies, the average WMC in all three cases is 0, which indicates that the classes

do not have methods, that is, their structure is more descriptive. Based on the DIT

and NOC values, the Library ontology is the simplest, the Literature ontology is

moderately complex, while the Sem ontology has a more complex and hierarchical

structure. Based on these observations, the Library ontology has a simpler structure,

while the Literature and Sem ontologies have a more complex hierarchy

Figure 14. Summary results

4. Conclusions and future work

In this article, three ontologies were presented and evaluated in terms of UML

metrics. The three ontologies are the followings: Library, Literature and Sem

ontology. All three ontologies can be downloaded as OWL format, from GitHub, all

are open-source. The Library ontology represents libraries, the Literature ontology

represents literature, and the Sem ontology represents software annotation. The

following metrics were evaluated: WMC (Weighted Methods per Class) and

Average WMC, DIT (Depth of Inheritance) and Average DIT, NOC (Number Of

Childrens) and Average NOC, DAC and Average DAC, OA1, OA2. By evaluating

the metrics, it can be seen that the number of classes is large, but the number of class

hierarchies and the average number of descendants are small.

Acknowledgement

Supported by the ÚNKP-22-3 New National Excellence Program of the Ministry for

Culture and Innovation from the source of the National Research, Development and

Innovation Fund.

 Analysing of library, literature and sem ontologies 141

References

[1] Genero, M., Piattini, M. & Calero, C. (2005). A survey of metrics for UML class

diagrams. Journal of object technology, 4 (9), pp. 59–92.

[2] Manso, M. E., Genero, M. & Piattini, M. (2003, June). No-redundant metrics for UML

class diagram structural complexity. In: International Conference on Advanced

Information Systems Engineering, Springer, Berlin, Heidelberg, pp. 127–142.

https://doi.org/10.1007/3-540-45017-3_11

[3] Baroni, A. L. & Abreu, F. B. (2002, October). Formalizing object-oriented design

metrics upon the UML meta-model. In Brazilian Symposium on Software

Engineering, Gramado-RS, Brazil.

[4] Chen, Y., Boehm, B. W., Madachy, R. & Valerdi, R. (2004, August). An empirical

study of eServices product UML sizing metrics. In: Proceedings. 2004 International

Symposium on Empirical Software Engineering, 2004, ISESE'04. IEEE, pp. 199–206.

https://doi.org/10.1109/ISESE.2004.1334907

[5] Lavazza, L. & Agostini, A. (2005). Automated Measurement of UML Models: an

open toolset approach. J. Object Technol., 4 (4), pp. 115–134.

[6] Genero, M., Miranda, D. & Piattini, M. (2002). Defining and validating metrics for

UML statechart diagrams. Proceedings of QAOOSE.

[7] Fourati, R., Bouassida, N. & Abdallah, H. B. (2011). A metric-based approach for

anti-pattern detection in UML designs. In: Computer and Information Science 2011,

Springer, Berlin, Heidelberg, pp. 17–33).

https://doi.org/10.1007/978-3-642-21378-6_2

[8] OWL documentation. https://www.w3.org/OWL/, accessed: 29. 11. 2022.

[9] OWL guide. https://www.w3.org/TR/2004/REC-owl-guide-20040210, accessed: 29.

11. 2022.

[10] Library ontology. https://github.com/ayesha-banu79/Owl-Ontology, accessed: 29. 11.

2022.

[11] Literature ontology. https://github.com/detnavillus/rdf-owl-ontologies.git, accessed:

29. 11. 2022.

[12] sem ontology. https://github.com/lindenb/semontology.git, accessed: 29. 11. 2022.

[13] Agárdi, A. (2023). Ontology metrics as UML metrics aspect. Production Systems and

Information Engineering, 11 (3), pp. 128-139

https://doi.org/10.32968/psaie.2023.3.10

https://doi.org/10.1007/3-540-45017-3_11
https://doi.org/10.1109/ISESE.2004.1334907
https://doi.org/10.1007/978-3-642-21378-6_2
https://www.w3.org/OWL/
https://www.w3.org/TR/2004/REC-owl-guide-20040210
https://github.com/ayesha-banu79/Owl-Ontology
https://github.com/detnavillus/rdf-owl-ontologies.git
https://github.com/lindenb/semontology.git
https://doi.org/10.32968/psaie.2023.3.10

