
Production Systems and Information Engineering

Volume 10 (3), pp. 105–114.

https://doi.org/10.32968/psaie.2022.3.9

EXAMINING THE PERFORMANCE OF MATLAB’S MATRIX

CAPABILITIES, TESTING ON EULER’S METHOD APPLIED

ON THE DIFFUSION EQUATION

DÁNIEL KOICS
University of Miskolc, Hungary

Institute of Automation and Infocommunication

daniel.koics@uni-miskolc.hu

KÁROLY NEHÉZ
University of Miskolc, Hungary

Institute of Informatics

aitnehez@uni-miskolc.hu

ENDRE KOVÁCS
University of Miskolc, Hungary

Institute of Physics and Electrotechnics

fizendre@uni-miskolc.hu

Abstract. When one develops, tests and uses numerical methods to solve a

differential equation, the performance of the method depends on the concrete

way how the method is implemented and coded. In this tentative work, we

solve the linear diffusion equation by the simplest explicit Euler method

implemented with for loops as well as the built-in matrix operations of

MATLAB. We obtain that the for loop performs better in one space

dimension, but the matrix operations are faster in two space dimensions.

Keywords: CPU time; numerical methods; partial differential equations; MATLAB

1. Aims and Scope of the Publication

While most physical and engineering problems are related to ordinary or partial

differential equations (ODEs or PDEs), there is no clear consensus about the

numerical strategies to solve these equations. Explicit methods are quite simple to

implement and one time step is usually performed in a very small time. However,

they suffer from a very restrictive time step to satisfy the requirement of numerical

stability. For time step sizes larger than the so called CFL limit, the magnitude of

any computation error is amplified in each time step, leading to completely

unusable results. Implicit schemes have better stability properties, but they are

more complicated to use in practice, and the calculation of one timestep can be

much longer than with explicit methods. If the number of space dimensions is

mailto:daniel.koics@uni-miskolc.hu
mailto:aitnehez@uni-miskolc.hu
mailto:fizendre@uni-miskolc.hu

106 D. Koics, K. Nehéz, E. Kovács

larger than one, the number of nodes or cells can be very large, thus the running

time becomes a critical issue.

Several novel explicit methods are proposed recently in the scientific literature,

both for ODEs [1], and PDEs [3], [5]. In order to develop and test new numerical

methods, as well as to explore which one can be proposed to different problems

under specific circumstances, one should have information on what the actual

running time depends on. When Runge-Kutta type methods are compared in the

case of ODEs, it is usual to consider the number of function calls or evaluations as

an indicator for the running time [4]. However, for PDEs, the CPU time depends

on other factors as well, such as the number of space dimensions and the amount

and way of memory usage. For example, remarkably different running times can be

obtained if the calculation of the node variables is performed one after another by

‘for’ loops over the space index or by the built-in matrix operations of MATLAB.

The goal of our work is to make experiments on this issue.

To achieve our goal, we have implemented Euler’s method in two different

ways. To describe the characteristics of our implementations, we find useful to plot

the CPU-time as a function of the timestep count and the numerical grid-point

count, as well as to plot the computation error as a function of the CPU-time. What

is more interesting, is to make comprehensive figure between different number of

dimensions, as well as different implementations. At the same time, it is important

to check whether the different implementations give the same computation error

for any given timestep size and spatial step size.

Therefore, in Section 2, we discuss the studied equation, Euler’s method and its

theoretical background. In 2.6 we give how to measure the error of an

implementation and highlight the error measurement way we use to verify our work.

In Section 3, we go into some details of our actual implementation. In Section 4, we

give the exact data that has been used for the test. In Section 5, we present our

measurement results. In case of both implementations (in 5.1 and 5.2), we firstly plot

the computation time and make comparison between 1-dimensional and 2-

dimensional case. Then we show the error – computation time characteristics of the

given implementation. In 5.3, we make a comparison between the two

implementations. Finally, in Section 6, we give our conclusions.

2. The Studied Equation and the Applied Algorithms

2.1. Heat Transfer or Diffusion Equation

In physics, one of the most well-known partial differential equations is the

diffusion equation or alternatively, Fick’s 2nd law:

 (1)

 MATLAB’s Matrix capabilities 107

where n is the spatial concentration of matter (a quantity varying across both space

 and time), D

 (in practice, rather

) is the diffusion coefficient and

 is the Laplacian operator.

According to this equation, the more different is the concentration at a given spatial

point from the concentration at the neighboring points, the faster it changes, as time

passes. The direction of concentration change is to reduce the difference in space.

Behind this phenomenon, we can find the second law of thermodynamics. The

equation in details, indicating dependency on both space and time:

 (2)

where

 is the derivation with respect to time, while

 ,

 and

 denotes to the

second derivation (i.e., taking the derivative of the derivative) with respect to the

appropriate spatial coordinate.

Heat transfer is based on an analogous principle: We only have to substitute

concentration n with temperature T [K] (also a function of space and time), and

diffusion coefficient D with thermal diffusivity

 :

 (3)

The thermal diffusivity can be expressed by substantial properties:

 (4)

where

 ,

 , and

 are the heat conductivity, specific heat, and

mass density, respectively.

In the rest of this paper we denote both and as .

2.2. Spatial and Time-Domain Discretization, FDM

The solution of the equations by a finite difference method consists of the

following steps:

 The studied spatial domain is discretized into a rectangular

grid, where , and denotes to the number of nodes along axis ,

and . The grid-points are:

 (5)

108 D. Koics, K. Nehéz, E. Kovács

where:

o , and are the possible spatial indexes,

o , and are the initial values of spatial

scales,

o
,

 and
 final values of spatial scales and

o

 are the division steps of spatial

scales

 The time domain is also discretized, and sampled in timepoints:

 (6)

where:

o are the possible time indexes,

o is the initial time value,

o
 is the final time value and

o

 is the size of timesteps.

 The continuous function can be approximated by a

 data matrix:

 (7)

 Since our differential operators are linear, each (spatial) differential operator

 can be replaced by a multi-index matrix

, for which:

 (8)

where p, q and r, as well as i, j and k are indexes running over the 3 spatial

dimensions.

 As a result, instead of differential equations, a system of algebraic equations

are sufficient to be solved.

We obtain the matrix of the Laplacian operator by the central difference formula:

 (9)

To introduce the

 formalism – as (8) suggests –, the

matrix of Laplacian operator must be:

 MATLAB’s Matrix capabilities 109

 (10)

In our paper, we consider only 1-dimensional and 2-dimensional cases.

2.3. Euler’s Method

It is well-known that the simplest and most famous explicit method is Euler’s

method. This is a first order method, which means that the local error (i.e. error per

timestep) is decreasing proportionally to the second power of the size of timesteps,

while the global error only with first power.

Let the differential equation to be solved be:

 (11)

where is a differential operator containing only spatial derivation. According to

Euler:

 (12)

where

 is the approximated value of the derivative around the spatial point

 at timepoint . In our case of 2-dimensional diffusion with spatial

points, one can substitute:

 (13)

where D is either the diffusion coefficient or the thermal diffusivity.

Based on the above derivation, Euler’s time-stepper formula (12) is the following:

 (14)

Regarding performance and optimization aspects, we would like to make two

remarks:

 It is sufficient to only store two data grids, for two sequential timesteps.

 Datapoints of the new timestep can be calculated independently from each

other, which gives us an opportunity to parallelization.

110 D. Koics, K. Nehéz, E. Kovács

2.4. Handling Boundary Conditions

The above formula has one incompletion: It can only be used in the inner domain –

where and . Only these datapoints have the neighbors

referenced by the formula. The boundaries – where , , or ,

– require further considerations. In our work, we deal with the fixed boundary

condition: We only perform calculation in the inner domain, and the values on the

boundaries remain unchanged. In case of heat transfer it means, that we are heating

or cooling the walls of the domain so that its temperature does not change. (This

kind of boundary condition belongs to the Dirichlet’s type of boundary conditions,

which is the name when a solution has to obtain predefined values at the

boundaries. In this paper, we simply refer to our fixed boundary condition as

Dirichlet’s boundary condition.)

This boundary condition is implemented such that the values at the boundary

are not refreshed during the calculation. It implies that the (1D) spatial differential

operator matrix must start and end with a zero row-vector:

 (15)

where is either the diffusion coefficient or the thermal diffusivity.

2.5. Deriving 2-dimensional from 1-dimensional case

Let be an operator dealing with functions with variable marked as . Also

let be another operator dealing with functions with variable denoted to as

 . According to the mathematicians’ definition [6],[7], the tensor product of these

operators is an operator dealing with 2-variable functions in such a

manner, that for any functions and it satisfies the equation:

 (16)

When we approximate continuous functions by discrete data vectors, operators has

to be replaced by matrices. When dealing with higher dimensions and multiple

variables, data vectors become matrices, while operator matrices turn into multi-

dimensional hypermatrices. To simplify formalism, we have to flatten the data

matrix to a single vector, containing the rows or columns of the matrix in an

ordered way. Let operator have an sized matrix , whilst let the matrix of

 be a matrix, marked as . In this case, when taking the above tensor

 MATLAB’s Matrix capabilities 111

product of the two operators, we have to take the so-called Kronecker’s product of

the two matrices:

 (17)

We’ve displayed the sizes of the matrices to highlight that the sizes along with the

corresponding dimensions are multiplicated.

In case of two dimensions, operator

 can be written as the

tensor product of the one-dimensional second derivation

 and an

identity operator . As the two-dimensional Laplacian operator

contains two such a member summed up, it can be considered as the sum of two

such tensor products. Having a data grid, its matrix has a size of

 and can be written as:

 (18)

where:

●
 and

 are and one-dimensional Laplacian operator

matrices,

●
 and

 are and unity matrices,

● and are the number of datapoints along the and axes, respectively.

When applying this to the differential operator and its finite matrix in equation

(12), one has to take further considerations regarding the boundary points. Namely,

we have to replace with zero the first and last element of the unity matrix in case of

Dirichlet’s condition:

 (19)

(Otherwise, simulation will enable heat transfer/diffusion at the boundary, in a

direction parallel to the boundary, and only the corner points will be truly fixed.)

MATLAB has a built-in function to calculate Kronecker’s product, and based

on it, we have created a MATLAB function to generate this matrix. See

APPENDIX 2.2.

112 D. Koics, K. Nehéz, E. Kovács

2.6. Reference Solutions, Measuring Error, Verification

If we wish to measure the accuracy of the computation and make statistics, we

need a reference solution to deal with. In our paper, we only use initial problems

with well-known analytical solutions, hence we can use the analytical solution, as a

reference. As we restrict our examination to Dirichlet’s case only, it is easy to

choose this option.

Once we have the reference solution, we have several ways to measure the

distance between the output of our algorithm and the reference. The 2 most used

error definitions (with one index for both dimension) are the following:

 Absolute maximum of difference:

 (20)

 RMS value of difference:

 (21)

In our work, we use the absolute maximum value formula (20). Our test-framework

we used to test the implementations can be found at [10].

3. Implementing the Algorithms

The repository, where we implemented the algorithms can be found at [11].

3.1. Using Simple For-Loop in MATLAB

When using MATLAB, we would like to compare the computation time of single

for-loops and matrix-based implementation. We have to start with the simple,

loop-based version of Euler’s method. The implementation in 1D and 2D can be

seen at APPENDIX 1.

3.2. Taking Advantage of MATLAB’s Sparse Matrices

As MATLAB is based on a matrix-oriented framework with lots of built-in

optimizations, we suppose that it takes less computation time to use matrix-algebra

instead of using loops directly. Namely, we use matrix (15) and its 2-dimensional

version. In this case, the kernel of the main loop of Euler’s method (12) becomes:

 (22)

or if we have flattened the data matrix to a single-column vector:

 (23)

 MATLAB’s Matrix capabilities 113

In a matrix form:

 (24)

As mentioned earlier, we created a dedicated function in MATLAB to produce

kernel matrix , which can be seen at APPENDIX 2.2. Note that in case of a

 spatial grid, this matrix has

 elements, which can easily deplete

the computer’s memory for large grids (let alone 3-dimensional cases of future

development), even without the presence of actual data. To make the situation

better, these functions use MATLAB’s sparse matrix architecture, which means only

the non-zero elements of the matrix allocate memory. The main loop of Euler’s

method in its simplified, matrix-based version can be seen at APPENDIX 2.1.

4. Sample Data

4.1. Scalings

4.1.1. Timescales

We always use 11 different timescales, namely (neglecting physical dimensions):

Table 1. The timescales used in this paper

Nt Tinit Tfin Δt

500 0 0.04 8.000e-5

900 0 0.04 4.444e-5

1,500 0 0.04 2.667e-5

3,000 0 0.04 1.333e-5

5,000 0 0.04 8.000e-6

9,000 0 0.04 4.444e-6

15,000 0 0.04 2.667e-6

30,000 0 0.04 1.333e-6

50,000 0 0.04 8.000e-7

90,000 0 0.04 4.444e-7

150,000 0 0.04 2.667e-7

4.1.2. 1D Spatial Grids

In case of 1 dimension, we used 7 different spatial grids:

114 D. Koics, K. Nehéz, E. Kovács

Table 2. The spatial grids used in 1-dimensional case

Nx Xinit Xfin Δx

50 0 10 2.041e-1

100 0 10 1.010e-1

200 0 10 5.025e-2

400 0 10 2.506e-2

800 0 10 1.252e-2

1,200 0 10 8.340e-3

2,000 0 10 5.003e-3

4.1.3. 2D Spatial Grids

In 2D case, we examine the same timescales, as in 1D. On the other hand, the

number of spatial grids has increased:

Table 3. The spatial grids used in the 2-dimensional case

Nx Ny NxNy ΔxΔy

25 25 625 1.736e-3

25 50 1,250 8.503e-4

50 50 2,500 4.165e-4

50 75 3,750 2.758e-4

75 75 5,625 1.826e-4

75 100 7,500 8.365e-4

100 100 10,000 5.020e-4

We have reduced the examined spatial intervals to have the same number of stable

datapoints as in 1D. Hence, the starting and ending grid-points are:

 ,

 . (25)

4.2. Sample Data

4.2.1. 1-dimension

To test our implementations in 1 dimension, we use:

 (26)

which has the analytic solution:

 MATLAB’s Matrix capabilities 115

 (27)

In Figure 1, this solution is shown for and . Note that we used

 for the actual computation.

Figure 1. Example initial function (red dotted line) and the analytical solution

in 1-dimensional case with Dirichlet’s boundary condition.

4.2.2. 2-dimensions

In 2 dimensions, we take the product of 2 sine terms:

 (28)

On a colormap (;):

Figure 2. Example initial function and its computed solution

in 2-dimensional Dirichlet’s case

116 D. Koics, K. Nehéz, E. Kovács

This has the following analytic solution:

 (29)

where:

 (30)

5. Measurement Results

Before stating the results, we have to notice, that we used a computer with Intel

Core i7-9700, 3GHz CPU, 16GB RAM and 64-bit Windows 10 Pro.

5.1. Single FOR-loop

5.1.1. Computation time

In case of the single for loop implementation, we have got the following CPU-time

values:

Figure 3. CPU-time of the loop-based implementation, as a function of timestep count,

for different spatial grids

 MATLAB’s Matrix capabilities 117

As a colormap:

Figure 4. CPU-time of the loop-based implementation, as a function of timestep and

spatial data-point count, for 1D (left) and 2D (right)

To compare 1- and 2-dimensional case in a more spectacular way, we can

rearrange Figure 3 to let the number of cells be on the horizontal axis, and filter out

some timescales:

Figure 5. CPU-time of the loop-based implementation, as a function of the number of

spatial nodes, for different dimensions and timestep counts

The linear connection between the computation time and the number of steps and

grid-points can be seen, especially for higher (>200) number of cells. According to

Figure 5, the CPU-time in 2-dimensional case is about 20 times greater than in 1

118 D. Koics, K. Nehéz, E. Kovács

dimension, if the number of spatial datapoints and the number of timesteps are

equal.

5.1.2. Error of 1D computation

If we display the error of the 1-dimensional computation:

Figure 6. Computation error of the loop-based implementation,

as a function of timestep size, for the 1D case

One can see that finer meshes yield more accurate solutions, but only if the time

step size is sufficiently small. The CFL limit is lower if the mesh is finer. Above

this limit, the algorithm is unstable and the error is extremely large. If one decrease

the time step size, the error suddenly drops to a very small value at a special point,

where the leading error terms of the space and time discretization cancels each

other. If the time step size is decreased further, the error tends to a constant value,

which is due to the space discretization only and its leading term is

 ,

where is the forth derivative of the function with respect to . (See [9])

To describe the performance better, we can plot the error as a function of the

computation time:

 MATLAB’s Matrix capabilities 119

Figure 7. Computation error of the loop-based implementation

as a function of CPU-time, for the 1D case

5.1.3. Error of the 2D computation

The error of the 2-dimensional computation as a function of the time step size and

the computation time is presented in Figure 8 and Figure 9, respectively.

Figure 8. Computation error of the loop-based implementation,

as a function of timestep size, for the 2D case

120 D. Koics, K. Nehéz, E. Kovács

Figure 9. Computation error of the loop-based implementation,

as a function of CPU-time, for the 2D case

5.2. Sparse matrix-based computation

5.2.1. Computation time

The computation time of the sparse matrix-based implementation, as a function of

the number of time and space points can be seen in Figure 10 and Figure 11,

respectively.

Figure 10. Computation time of the matrix-based implementation,

as a function of timestep count, for different spatial grids

 MATLAB’s Matrix capabilities 121

Figure 11. Computation time of the matrix-based implementation,

as a function of data-point count, for different dimension and timestep counts

The linear connection between the computation time and the number of timesteps

still holds, but in case of the number of cells, the proportional connection is a bit less

obvious, than in case of the loop-based implementation. The reason is, that MATLAB

does some optimization in the background, dynamically changing some implement-

tation details from experiment to experiment. At the end of the day, the difference

between the 1-dimensional and 2-dimensional computations is largely reduced.

5.2.2. Error of the 1D computation

The error of the matrix-based implementation in 1-dimensional case:

Figure 12. Computation error of the matrix-based implementation,

as a function of CPU-time, for the 1D case

122 D. Koics, K. Nehéz, E. Kovács

This implementation gives the same results as the previous one, but the running

times are different.

5.2.3. Error of 2D computation

In 2-dimensional case:

Figure 13. Computation error of the matrix-based implementation,

as a function of CPU-time, for the 2D case

5.3. Comparing loop-based and matrix-based solution

We can compare the different implementations by plotting similar figures like

Figure 5 or Figure 11. The running time as a function of the spatial nodes are

presented in Figure 14, Figure 15 and Figure 16 for the 900, 9000 and 90000-

timestep case, respectively.

Figure 14. Comparison of the loop-based and the matrix-based implementation,

using 900-timestep measurement data

 MATLAB’s Matrix capabilities 123

Figure 15. Comparison of the loop-based and the matrix-based implementation,

using 9000-timestep measurement data

Figure 16. Comparison of the loop-based and the matrix-based implementation,

using 90000-imestep measurement data

Based on the above figures – as well as comparing Figure 6 and Figure 11 –, one

can say that the 1-dimensional computation time has increased by a factor of 5,

while the 2-dimensional time values has decreased to a fraction of 4-5. One can

conclude, that only in case of multiple dimensions does the matrix-framework

accelerate the computation.

124 D. Koics, K. Nehéz, E. Kovács

6. Conclusion

In this work, we solved the linear diffusion equation by the explicit Euler (FTCS)

method implemented in two different ways: with for loops as well as the built-in

matrix operations of MATLAB. We obtained that the matrix-based implementation

is worth using only if the number of space dimensions is two, regardless of the time

step size. In the case of 1 dimension, the overhead of the framework used by

MATLAB makes things worse and we suggest using the traditional for-loop

implementation. We consider this work as only a preliminary investigation, based

on which the performance of the MATLAB implementations can be compared to

other programming languages such as C++ in the case of more complicated

problems and more sophisticated numerical methods as well. After that, we are

going to parallelize the calculations on GPUs to achieve a serious increase in

speed, which will enable us to solve large-scale engineering problems.

References

[1] Dang, Q. A., Hoang, M. T.: Positive and elementary stable explicit nonstandard

Runge-Kutta methods for a class of autonomous dynamical systems. International

Journal Computer Mathematics, vol. 97, no. 10, pp. 2036–2054.

https://doi.org/10.1080/00207160.2019.1677895

[2] Beuken, L., Cheffert, O., Tutueva, A., Butusov, D., Legat, V.: Numerical Stability

and Performance of Semi-Explicit and Semi-Implicit Predictor–Corrector Methods.

Mathematics, vol. 10, no. 12, 2022, https://doi.org/10.3390/math10122015.

[3] Pourghanbar, S., Manafian, J., Ranjbar, M., Aliyeva, A., Gasimov, Y. S.: An

efficient alternating direction explicit method for solving a nonlinear partial

differential equation. Mathematical Problems in Engineering, vol. 2020, no.

November, pp. 1–12, 2020, https://doi.org/10.1155/2020/9647416.

[4] Mazzia, F., Y., Sergeyev, Y. D., Iavernaro, F., Amodio, P., Mukhametzhanov, M.

S.: Numerical methods for solving ODEs on the Infinity Computer. AIP Conference

Proceedings, vol. 1776, no. 1, 2016, p. 090033, https://doi.org/10.1063/1.4965397.

[5] Saleh, M., Kovács, E., Barna, I. F., Mátyás, L.: New Analytical Results and

Comparison of 14 Numerical Schemes for the Diffusion Equation with Space-

Dependent Diffusion Coefficient. Mathematics, vol. 10, no. 15, Aug. 2022, p. 2813.

https://doi.org/10.3390/math10152813

[6] Bourbaki, N.: Elements of Mathematics. Vol. 1, chap. 2.3. Berlin, Springer-Verlag,

1989.

[7] Petz D.: Lineáris analízis. Chap. 1.2. Budapest, Műegyetemi Kiadó, 2001, id.

05057.

[8] Kumar, V., Chandan, K., Nagaraja, K. V., Reddy, M. V.: Heat Conduction with

Krylov Subspace Method Using FEniCSx. Energies, vol. 15, no. 21, Oct. 2022,

p. 8077, https://doi.org/10.3390/en15218077

https://doi.org/10.1080/00207160.2019.1677895
https://doi.org/10.3390/math10122015
https://doi.org/10.1155/2020/9647416
https://doi.org/10.1063/1.4965397
https://doi.org/10.3390/math10152813
https://doi.org/10.3390/en15218077

 MATLAB’s Matrix capabilities 125

[9] Nagy, Á., Majár, J., Kovács, E.: Consistency and Convergence Properties of 20

Recent and Old Numerical Schemes for the Diffusion Equation. Algorithms, vol. 15,

no. 11, Nov. 2022, p. 425, https://doi.org/10.3390/a15110425.

[10] https://bitbucket.org/koicsd/test-tool/.

[11] https://bitbucket.org/koicsd/diffusion/.

https://doi.org/10.3390/a15110425
https://bitbucket.org/koicsd/test-tool/
https://bitbucket.org/koicsd/diffusion/

126 D. Koics, K. Nehéz, E. Kovács

APPENDIX

In this appendix, we present some important code snippets from our repository

[11], extended with some comments for higher clarity.

1. Loop-based implementation of Euler’s method

1.1. 1-dimensional case

dt=(Tfin-Tinit)/Nt; % timestep size

Nx=numel(data); % number of spatial grid-points

dx=(Xfin-Xinit)/(Nx-1); % size of spatial step

... % preconditioning of periodic case comes here

COEFF_ = dt * coeff / dx / dx;

temp=zeros(1, Nx); % temporary data-vector for iterations

for n = 1 : Nt

 temp(1) = ... % first point of grid

 for i = 2 : Nx – 1

 % inner datapoints

 temp(i) = data(i) + COEFF_ * ...

 (data(i-1) + data(i+1) - 2 * data(i));

 end

 temp(Nx) = ... % last point of grid;

 data = temp;

end

1.2. 2-dimensional case

dt=(Tfin-Tinit)/Nt; % timestep size

Nr=size(data); % = [Nx, Ny] -- number of spatial grid-points

dr=(Rfin-Rinit)./(Nr-1); % = [dx, dy] -- size of spatial step

COEFF_ = dt * coeff ./ dr ./ dr;

% preconditioner loops of periodic case come here

temp = zeros(Nx, Ny);

for n = 1 : Nt

 temp(1,1) = ... % top left point

 % temp(1,Ny) = ... % top right point

 % temp(Nx,1) = ... % bottom left point

 % temp(Nx,Ny) = ... % bottom right point

 for i = 2 : Nx-1

 temp(i,1) = ... % top edge of grid

 temp(i,Nx) = ... % bottom edge of grid

 end

 for j = 2 : Ny-1

 temp(1,j) = ... % left edge of grid

 temp(Nx,j) = ... % right edge of grid

 end

 for i = 2 : Nx-1

 for j = 2 : Ny-1

 MATLAB’s Matrix capabilities 127

 % inner point

 temp(i,j) = data(i,j) + COEFF_ * [

 data(i-1,j) + data(i+1,j) - 2 * data(i,j);

 data(i,j-1) + data(i,j+1) - 2 * data(i,j)

];

 end

 end

 data = temp;

end

2. Matrix-based implementation of Euler’s method

2.1. Main loop

Please, substitute KerMat_Diffusion_FixedBC from 2.2 to kerfun.

dt=(Tfin-Tinit)/Nt; %% time step

Nr = size(data_init); %% number of datapoints along different axes

as vector

Nflat = prod(Nr); % numel(Nr) %% total number of datapoints

if isvector(data_init)

 %% creating sparse matrices

 [kernel, precond] = kerfun(Rinit, Rfin, Nflat, varargin{:});

else

 %% creating sparse matrices

 [kernel, precond] = kerfun(Rinit, Rfin, Nr, varargin{:});

end

%% flattening and preprocessing

flatdata = precond * reshape(data_init, Nflat, 1);

%% processing flattened data (iteration over time)

for i = 1 : Nt

 flatdata = flatdata + dt * kernel * flatdata;

end

data_fin = reshape(flatdata, Nr);

2.2. Sparse matrix creator function

To be used with 2.1.

function [kernel, precond] = KerMat_Diffusion_FixedBC(...

 Rinit, Rfin, Nr, coeff)

% Rinit, Rfin and Nr must be a vector (or a scalar for 1D calc.)!

% Rinit, Rfin and Nr must have the same array-size!

dim = numel(Nr);

dr = (Rfin - Rinit) ./ (Nr - 1);

switch dim

 case 1

 Nx = Nr;

128 D. Koics, K. Nehéz, E. Kovács

 dx = dr;

 kernel = coeff * spdiags([% Laplace’s tridiag. truncated

 % 1 above diag, last element 0:

 ones(1,Nx-2) 0 0;

 % -2 in diag, first and last element 0:

 0 repmat(-2, 1,Nx-2) 0

 % 1 below diag, first element 0:

 0 0 ones(1,Nx-2)

]', [-1 0 1], Nx, Nx) / dx / dx;

 precond = speye(Nx);

 case 2

 Ny = Nr(1);

 Nx = Nr(2);

 Yinit = Rinit(1);

 Xinit = Rinit(2);

 Yfin = Rfin(1);

 Xfin = Rfin(2);

 % dy = dr(1);

 % dx = dr(2);

 [kernelY, precondY] = KerMat_Diffusion_FixedBC(...

 Yinit, Yfin, Ny, coeff); % 1D trunc. Laplacian

 [kernelX, precondX] = KerMat_Diffusion_FixedBC(...

 Xinit, Xfin, Nx, coeff); % 1D trunc. Laplacian

 kernel = ...

 % 2nd partial with rspt. to x, as

 % 1D Laplacian by identity matrix (all truncated):

 kron(kernelX, ...

 spdiags([0; ones(Ny-2,1); 0], 0, Ny, Ny))...

 + ...

 % 2nd partial with respect to y, as

 % identity by 1D Laplacian matrix (all truncated):

 kron(spdiags([0; ones(Nx-2,1); 0], 0, Nx, Nx),...

 kernelY);

 precond = kron(precondX, precondY);

 otherwise

 error('Unsupported number of dimensions!')

end

end

