

Production Systems and Information Engineering

Volume 11 (3), pp. 27�50
doi: 10.32968/psaie.2023.3.3

27

PRACTICAL GUIDE TO IMPLEMENT A SIMPLE 2D

GAME ENGINE

Péter Mileff

University of Miskolc, Hungary
Department of Information Engineering

mileff@iit.uni-miskolc.hu

Abstract. Computer visualization now represents a very important
area in people's lives. It has appeared in practically every area, and is
now essential. Within the �eld, game development has grown to become
a huge industry. Creating a high-quality 2D or 3D game today requires
extremely serious development work. Although many platforms, devel-
oper APIs, and game engines have emerged over the years to greatly
assist developers in their work, there are many people who want to un-
derstand how the technology behind games works. Therefore, they build
the speci�c software components themselves, from which they build a
complex system and write the algorithms necessary for image synthesis
and other areas. This publication focuses on this area. Its purpose is
to present the basic elementary components that are necessary to imple-
ment a two-dimensional game, as well as to serve as a good basis for the
creation of additional higher-level structures.

Keywords: Game development, virtual world, game engine

1. Introduction

Two-dimensional visualization plays an important role in addition to today's
modern three-dimensional rendering. It can be said that although the world
has moved in the direction of 3D in the �eld of visualization in recent years,
two-dimensional solutions have always been present as an additional technique
and will continue to be so in the future. Several layers of computer applica-
tions belong here. Any software that has some kind of graphical interface or
windowing system, and two-dimensional computer games are big representa-
tives of the �eld. From the point of view of the menu system, there are always
attempts to make these subsystems more visual in three-dimensional space,
although they work, but mostly these solutions return to 2D rendering.

For these systems, rendering speed is not critical compared to today's systems
performance. Mostly they use a small number of static images, but other

http://doi.org/10.32968/psaie.2023.3.3

28 P. Mileff

transformations (rotate, scale) are not very typical. However, the opposite is
true for computer games. In the case of such software, it is usually necessary
to rasterize a large amount of continuously changing objects, which requires
signi�cant resources, changed dynamically depending on the moved elements.
A typical feature of today's systems is the dynamic application of a large
set of textures, animations and transformations in order to achieve a higher
user experience. In accordance with the requirements, the use of high-quality
textures with a large screen resolution is now essential, which further increases
the required performance [20].

The popularity of the gaming industry has grown steadily over the last 20 years
and this process is still unbroken. One of the driving forces behind this is the
rapid technological evolution. Today, a mid-range mobile device/tablet can
perform better than, an old Pentium 4 or a Dualcore Pentium. However, these
devices are reaching many more people than before. The leap-like evolution
of technology is followed by games as well. The development is clearly visible
both in terms of visuals, complexity and gaming experience. Expectations
are getting higher and higher, and developing hardware provides a good basis
for this. Game development and modern visualization appeared on several
platforms. For example, HTML5-based solutions. As a result, the number of
active (underage) players has increased in recent years.

There are several opportunities for developing games:

Development with a game editor: today there are many software available
that essentially ful�ll the role of a game editor (Roblox, Unity, Game Editor,
Construct 3, GDevelop, etc). The most important goal here is to develop
software editors of a level that can be used to visually assemble the game. Of
course, these editors leave the opportunity that the developers can implement
unique functions that is not directly supported by the editor. The common
solution for these is usually that to create a code or script written in some
programming language (e.g. Javascript, C#, etc.) for the components and
objects in question. Although the development of this kind of approach is a
natural part of evolution, for many programmers the approach when we do
not see the entire code base at once is strange, and it loses a little of its charm
among classic game developers.

Development with a game engine: game engines have existed almost since
the beginning of the PC era of computer visualization. Their task is to
help the game development process to a great extent by o�ering ready-made,
framework-level solutions for many things. Many professional game engines
are now available, which integrate a lot of knowledge and work. It can be
safely declared that most of them o�er high quality visualization and opti-
mized performance. That is why it is no coincidence that many engines are

Practical guide to implement a simple 2D game engine 29

not available for free. The price of a really good game engine can even be very
high. Game engines provide API level support. These libraries can be linked
to the program to access their functions. Another characteristic - especially
for three-dimensional engines - is that they have some kind of editor (2D or
3D). These interfaces do not play the role of the game editor, rather they are
additional tools for editing tracks, setting material properties, or even other
things.

Native development: the last category includes those developments where
we do not explicitly use any external game engine, instead the developers
create (almost) everything themselves in-house. Naturally, this requires the
most complex knowledge and development. However, in return, the developers
gain knowledge that will help them understand the details of the visualization.
For this kind of development they often build their own game engine over
time, which already provides a high level of experience from the point of view
of software design and development.

The two-dimensional computer game world is made up of various elements.
In practice, at the implementation and planning level, there can be many
implementations of these, but it is a basic requirement that the elements of
the world can be implemented relying on some reusable elements. This kind of
implementation will make it possible for the programmers to be able to progress
productively with the development of the game with the help of e�cient and
dynamic development.

In this paper, we examine the structure of the game world in detail. What are
the important elements that are absolutely necessary and can be relied on when
creating a more complicated game or even a game engine. We present a pro-
posed design structure that can o�er a functional, e�cient and good basis for a
more complex game engine in the future. The detailed structure is based on na-
tive development, apart from OpenGL or DirectX, there are no additional API
layers that would support visualization or game creation with extra functions.
Furthermore, the paper only deals with the higher-level structures required for
visualization, it assumes that the lower-level building blocks (existence of a 2D
texture drawing shader, matrices, image loading, input management) that are
necessary for operation and visualization are available.

2. Basic elements of the virtual world

Anyone who has ever worked with computer game development knows that the
�rst milestone for graphic applications is always being able to draw something
on the screen. (Assuming that we are talking about native development). To-
day, in many cases, this is not even trivial, because the entry level of computer

30 P. Mileff

visualization has increased signi�cantly. Today, creating an API-level "Hello
World" application is not easy either, since developers have to deal with geom-
etry, matrices, shaders and other tasks even in the case of a primitive demo,
and the two-dimensional visualization is no exception.

In the following, we present the basic elements of the 2D virtual world, which
can serve as a basis for the development of a two-dimensional game engine.
The presented sample codes are implemented in C++ language.

2.1. Simple Texture Object

Graphics APIs work with so-called textures. For us, this means a two-dimensional
(usually with alpha channel) image. The image must be loaded into main mem-
ory before use and then into GPU memory. Of course, the size of the GPU
memory is limited, so we cannot usually load everything there. In most cases,
this is why the games only load the graphical data for the di�erent levels into
the GPU memory when they are used (e.g. before each level). If w want to
store a lot of graphical data in the GPU memory, we can use texture compres-
sion or GPU Level streaming.

A graphical application requires static elements in many places. Examples
include a background image, a moving cloud, or even menu buttons. One of
the basic elements of the game engine is therefore a static object on which more
complex elements can be built later. A simple static object, if polygon-based
rasterization is used, is usually made up of two triangles (Figure 1). Because
it is stored in the GPU, an API speci�c part is needed to handle this. For
OpenGL, this is the Vertex Array Object. In the sample code we refer this part
as CVAOobject, which is a class for supporting those VAO related function.

Figure 1. A common triangle-based form of handling for two-
dimensional images

Practical guide to implement a simple 2D game engine 31

When entering the vertex data, two main approaches were developed, depend-
ing on what the anchor point of the image should be. Figure 2. shows the two
most commonly used forms.

Figure 2. Popular coordinate systems

Both solutions have their advantages and disadvantages. The placement a�ects
the drawing logic. In the �rst case, if we expose the object to a coordinate, the
drawing will take place to the right and upwards from the point indicated by
the origin of the drawing's coordinate system. In the second case, the speci�ed
position will be the center of the object. The anchor point also a�ects the
rotation of the object, namely in such a way that the anchor point becomes
the center of rotation. Of course, if we choose the solution on the left, even
in the case of rotation, we can de�ne the center of rotation and perform the
calculation.

class CTexture {

CVector2 mPosition ; // pos i t i on of the t ex ture

CVector2 mRotation ; // or ien ta t ion of the t ex ture

CVector2 mScale ; // sca l e of the t ex ture

bool bVi s i b l e ; // Texture i s v i s i b l e or not

f loat m_WidthOriginal ; // Orig ina l width of the t ex ture

f loat m_HeightOriginal ; // Orig ina l he igh t of the t ex ture

CVAOobject∗ mTextureVAO ; // Holds Vertex , Texture and Color

sColor sColor ; // Color information

s t r i n g mFilename ; // Holds the fi lename of the t ex ture

s t r i n g mName; // Material name

f loat mWidth ; // Width of the t ex ture

f loat mHeight ; // Height of the t ex ture

unsigned int mTextureID ; // Holds the t ex ture ID

unsigned int mID; // Global (engine) ID of the t ex ture

public :
CTexture () ;
// Overloaded operator

CTexture& operator= (const CTexture& _texture) ;
Draw (. . .) ;
[. . .]

} ;

32 P. Mileff

The constructed class contains the most important basic properties required
for displaying a two-dimensional image/texture. It will be just as suitable for
displaying the image of a game object as it is for a menu item. In addition
to the basic elements, it is advisable to have a place for a "copy function".
Due to the C++ nature of the code, here we assign this role to an overloaded
equals operator, which is necessary to be able to pass the data of a CTexture
class to another class with a series of calls. A speci�c example can be the
shooting process that appears in arcade games. When objects �re projectiles,
we create a new projectile class instance (possibly choosing from a pre-created
pool of projectiles). This new projectile can be �lled with data very easily
if we copy an existing one (the mother object). Without rede�ning the copy
constructor/operator, the data would have to be transferred one by one to the
new class, which would reduce the quality of the code.

2.2. Collision detection

An essential element of games is the object interaction: i.e. the detection
when two objects collide with each other. In fact, this is not only speci�c to
the world of games, but the same principles are also applied when, for example,
we move the mouse towards a menu item. Of course, in computer games, the
proper and exact level of collision detection plays a dominant role, since the
game experience is formed as a result of these interactions.

In a very simpli�ed way, the essence of collision detection is to somehow algo-
rithmically detect whether the two-dimensional images of two or more objects
overlap each other. To be more precise, the problem is a bit more complicated
than that: it means whether an object has a pixel that overlaps a pixel of
another object.

During the development of a game, there will surely come an important mo-
ment when we have to decide what collision detection system and model to use.
The decision is not always easy and straightforward. There are some types of
games where the interactions can be very complex, and often not all problems
can be seen in advance. Nevertheless, the applied model is important, as it
has a great impact on the development time and the game experience itself.
Basically, collision detection systems can be classi�ed into the following two
groups:

• Pixel-based collision detection: detects the overlap of the pixels of
the images belonging to the collided objects. It can detect a precise,
real collision.

Practical guide to implement a simple 2D game engine 33

• Enclosing shape-based collision detection: The overlapping of ob-
jects is not determined at the pixel level, but at the level of some enclos-
ing object(s) (box, circle, polygon, etc.). It usually doesn't allow precise
collision.

Pixel-based collision detection can be computationally intensive and compli-
cated, depending on the complexity of the texture associated with the object.
Moreover, the texture of the object is stored in the GPU, so a proper pixel level
collision implementation is not simple. For this reason, where possible, game
developers try to enclose the moved elements into some object(s) and perform
the collision analysis on this. The most common objects are the circle and the
box, because they are very simple elements. The subsequent calculations with
them (collision test, rotation, translate, scale, etc.) are not nearly as compu-
tationally intensive as, for example, in the case of an enclosing polygon or the
pixel-level test. Although they do not approximate the object well, they are
still e�ective and can be used well in practice.

2.2.1. Bounding box based collision

One of the simplest, yet most popular forms of collision detection is the bound-
ing box-based solution (rectangular collision detection). In this case, the object
is surrounded by a "box", i.e. a square or rectangle. If the shape aligned to
the base axes of the scene, it is called the Axis-aligned Bounding Box (ABB).

Figure 3. Best-�t containment box. There are apparently no empty
pixels between the outermost points of the shape and the sides of the

box

In the simplest case, the bounding box is determined by the object's two-
dimensional image and texture. This can be calculated very simply during
their load process: the width and height of the texture image will determine

34 P. Mileff

the box. When de�ning the box, they usually try to determine or specify the
best �t rectangle. The reason for this is to reduce/avoid false collisions. That
is why so important to draw the Sprite correctly and to avoid unnecessary
transparent pixels on the edges. Just think about the fact that if we increased
the size of the box along the x axis in the case of the above object, it would
result for us sensing a collision even when we have not yet reached the wall.

The following code snippet shows a possible bounding box implementation:

class CboundingBox2D {

CVector2 minpoint ; // Box minpoint

CVector2 maxpoint ; // Box maxpoint

CVector2 bbPoints [4] ; // bounding box points

f loat boxHalfWidth ; // box ha l f width

f loat boxHalfHeight ; // box ha l f he i gh t

matr ix4x4f tMatrix ; // Transformation matrix

bool mEnabled ; // BB i s enabled or not

public :
. . .
} ;

In two dimensions, a bounding box can be speci�ed with the four corner points
(bbPoints[4]), but in order to speed up later calculations, it is advisable to store
the minimum (minpoint) and maximum point (maxpoint) relative to the screen
coordinate system. In the �gure above, this means the lower left and upper
right points. On top of all that, the calculations will require a matrix class
that performs the transformation, and for performance considerations, it is
worth storing the half width and half height of the box. Because we use the
left-bottom point of the image as the origo of the texture coordinate space,
these values are necessary during the center based rotation. When moving the
object (translate, rotate, scale), the coordinates of the box need also to be
transformed. We need to do this when we calculate the new position of the
object when it moves. Another solution could be to calculate the points of the
box when the program will use it (e.g. collision detection, visibility test, etc.),
but in this case more resources are needed for multiple calculations.

The collision determination algorithm is very simple to formulate: when two
bounding boxes of the objects overlap each other, the objects collide. Figure
4. illustrates this.

It is clearly visible that the fact of the collision can be clearly determined from
the overlap of the enclosing boxes. From the point of view of implementation,
to save the CPU from unnecessary calculations, a more common solution is to
detect when there are no collisions:

boolean CheckBoxOverLap (CBoundingBox2D box1 , CboundingBox2D box2) {

Practical guide to implement a simple 2D game engine 35

Figure 4. AABB collision

i f (box1 . maxpoint . x < box2 . minpoint . x | |
box1 . minpoint . x > box2 . maxpoint . x){

return fa l se ;
}

i f (box1 . maxpoint . y < box2 . minpoint . y | |
box1 . minPoint . y > box2 . maxpoint . y){
return fa l se ;

}
return true ;

}

This paper does not cover the rotation of the bounding box. While the OBB
(Oriented Bounding Box) type solution gives really good results [7], in prac-
tice the AABB-based rotation is also satisfactory in most cases. In the case
of AABBs, the box (its corners) must also be rotated and calculated during
rotation. And from the new four corner points, an AABB can again be built
around the object. The downside is that the size of the box changes, therefore
it a�ects the accuracy of the collision test.

2.3. Sprite animation

Animation plays an important role in computer visualization. This makes the
application really "live", be it the animation of a menu, window or a jumping
�gure. In the case of computer games, a lot of emphasis is placed on the
development of continuous, high-quality movements. The classic, well-known
solution to creating an animation is essentially nothing more than alternating
the set of images (phases) that make up the animation in a speci�ed sequence
and speed. Images can be called an array of textures loaded into memory,

36 P. Mileff

which contains each phase of the animation. Many people call this texture
object a Sprite. The more phases the array contains, the more continuous the
object's animation will be when displayed. In the �le system, the images of
the animation can be stored in several ways. The most common solution is
to store individual frames next to each other in a larger image (spritesheet).
Figure 5. illustrates this:

Figure 5. Sample spritesheet

Creators choose a uniform background color and store the animations next
to each other. When loaded, these are split into separate texture objects.
Two-dimensional images of this kind are collectively called "Pixel Art" (Pixel
graphics), because they are mostly made by hand, drawn pixel by pixel. Al-
though modern three-dimensional graphics have greatly transformed computer
visualization, many pixel graphics games are still being made today.

class CSprite {

vector<CSpriteFrame∗> mFrames ; // Frames vector

CVector2 mPosition ; // Posi t ion of the s p r i t e

CVector2 mScale ; // Scale of the s p r i t e

int mNumFrames ; // Number of frames

int mActualFrame ; // Actual frame

unsigned int mLastUpdate ; // The l a s t time the animation was update

unsigned int mFps ; // The number of frames per second

f loat mRotationZ ; // Z oriented Orientation of the s p r i t e

s t r i n g mName; // Name of the Spr i t e

bool mLoopAnimation ; // Loop animation

public :

. . .
} ;

As you can see from the code, the CSprite class is nothing but a unit that stores
the frames and the properties belonging to the class. Each animation phase is
represented by a CSpriteFrame, which will be described in more detail later.

Practical guide to implement a simple 2D game engine 37

The additional data stores important properties such as the sprite's position
(mPosition), size (mScale), name (mName), number of frames, as well as other
data that will be needed to actually move the phases one after the other. The
name is important because it is much easier to refer to an animation phase
by name in a program, it makes it user-friendly. For example, request the
"running" phase from the engine.

It is clear that the animation phases are not stored directly in a CTexture2D-
based vector, but are implemented through a CSpriteFrame class. The question
may arise, why is this actually necessary? The answer has to do with bounding
boxes. The phases of the game objects can be of di�erent sizes (e.g. the main
character falls to the ground, jump, shoot). It goes without saying that the
collision detection will have to be done accordingly. Since the CTexture2D
class is a basic unit, it is not advisable to endow it with some enclosing object
that helps collision detection. This task is performed by the CSpriteFrame
class, whose simple structure is as follows:

class CSpriteFrame {

CTexture2D∗ mFrame ; // Frame tex ture

s t r i n g mName; // Name of the frame

CBoundingBox2D∗ mBBoxOriginal ; // Orig ina l Bounding box

CBoundingBox2D∗ mBBoxTransformed ; // Transformed Bounding box

public :
CSpriteFrame () ;

CSpriteFrame& operator= (const CSpriteFrame& _spriteFrame) ;
. . .
}

The CSpriteFrame class is therefore responsible for storing di�erent frames.
The image is stored in a class of type CTexture2D. It is also advisable to
store the name of the frame, it may be needed in certain situations. The last
important piece of data is the frame's bounding box, which will be needed
during the collision test. We store two versions of the box: one is the original
and the other is the transformed one. The importance of storing both is to be
found in performance. The game engine needs the box of the object multiple
times. Since the object can rotate, the box will also transform with it. For
this reason, it is advisable to store the current transformed result as well.

Although until now only animations of game objects have been in the fore-
ground, the Sprite class itself is just as suitable for describing moving GUI
elements. A good example of this is a button that changes when the mouse
hovers over it. A Button class can essentially be an element based on a Sprite
object with two (or more) animation phases.

38 P. Mileff

2.3.1. Animation description �le

The sprite loading process should be designed and supported based on a de-
scription �le. This approach supports the previously emphasized �exible pro-
gramming API design concept. As a basis for the format, it is advisable to
choose some well-known storage format such as JSON or XML. An e�ective
sample format can be the following XML form:

<?xml ve r s i on=" 1 .0 " encoding="utf−8"?>
<animation name="Yoshi_anim">

<sp r i t e numofframes="4">
<frame name="Yoshi_Anim_Start" f i l e=" yosh i1 . tga ">

<aabb minx="0" miny="0" maxx="64" maxy="64" />
</frame>
<frame name="Yoshi_Anim_Start" f i l e=" yosh i2 . tga ">

<aabb minx="0" miny="0" maxx="64" maxy="64" />
</frame>
<frame name="Yoshi_Anim_Start" f i l e=" yosh i3 . tga ">

<aabb minx="0" miny="0" maxx="64" maxy="64" />
</frame>
<frame name="Yoshi_Anim_Start" f i l e=" yosh i4 . tga ">

<aabb minx="0" miny="0" maxx="64" maxy="64" />
</frame>

</sp r i t e >
</animation>

The example shows an XML based description format. The format is appar-
ently simple: we can de�ne any number of frames, to which we can associate
an enclosing box and a name. However, do not forget that the descriptor alone
will not be su�cient to store the animations of a more complex object, since
it can only store one phase of the object.

2.4. The Game Object

The Sprite class alone is not enough for everything. In order to be able to
comfortably describe the game elements and objects with high-level elements
during the programming of a game, it is necessary to introduce a "game object"
class. The Sprite class is still needed, as we can use it for example to create
GUI elements (e.g. animated buttons, etc.) or whatever we want, as a basis
for the actual game objects. In a two-dimensional computer game, a game
object has not only one animation phase, but as many states as it can take.
For example, the main character can run, throw, jump, etc. If we think about
it, we need a higher level class that contains an array of Sprites, and depending
on the state of the object (walking, crouching, etc.) they can be changed. In
addition to all this, it is of course also necessary to introduce additional state
variables and methods. An example game object implementation can be:

class CGameObject2D {

Practical guide to implement a simple 2D game engine 39

s t r i n g mName; // Enti ty Name

CVector2 mPosition ; // Posi t ion of the ob j ec t

CVector2 mDirection ; // Direct ion of the movement

CVector2 mScale ; // Size value

vector<CSprite∗> mAnimations ; // Animation

f loat mSpeed ; // Speed of the ob j ec t

f loat mRotation ; // Rotation value

bool mVisible ; // Vi s i b l e or not

bool mCol l idable ; // Object i s c o l l i d a b l e or not

bool mInFrustum ; // Object i s in screen frustum or not

unsigned int mCurrentAnim ; // Current Animation Frame

unsigned int mNumberOfFrames ; // Number of Animations

unsigned int mID; // ID of the Object

int mZindex ; // z index of the ob j ec t

C2DGraphicsLayer∗ mParentLayer ; // Parent layer of the ob j ec t

public :
. . .
} ;

The �rst and most important thing that a GameObject class needs is the
name (mName) and identi�er (mID), because we will be able to refer to it
with these. The mID alone would be enough, but from a convenience point
of view, it is better if we can also refer to the object by name. Of course, an
object needs position, direction, and properties that determine its dimensions.
The direction can be used to implement a kind of automatic movement. So the
user provides the direction and speed (mSpeed) and the game engine does the
job of getting the object to the target. The animation phases belonging to the
object are stored in the array of sprites (mAnimations), and the rotation of the
object is stored in mRotation. Although the optimization of the visualization
is not part of this article, from the point of view of visibility, two useful data
are also displayed here. With mVisible, the programmer can control whether
the given object should be drawn or not. And the mInFrustum data member
is an internal variable reserved for the purpose of storing the information that
the engine determines if the object is within the screen range. It needs to be
calculated after updating the position of the object and before the drawing
occurs.

A particularly useful data member is the mZindex, which can be used to deter-
mine the order in which objects are drawn. In certain situations, the objects
can overlap each other, which usually means an order determined by some
programming logic. There are objects (e.g. cloud) that are drawn on top of,
for example, the location object. The implementation of this requires the in-
troduction of a numerical value (e.g. z value) which is meant to represent this
sequence. An implementation logic could be the following: the smaller the z
value of the object, the closer it is to the viewer, i.e. the later it is drawn. How-
ever, the implementation requires an additional addition, according to which

40 P. Mileff

the objects must be sorted based on the z value before drawing. The correct
order of drawing can be ensured in this way.

3. The layering system

If we observe several popular 2D games, we can discover that certain parts
of the screen, the background, and possibly some non-game objects move at
di�erent speeds. In practice, we can say that the elements are organized into
so-called logical layers. It cannot be said that all games work this way, but the
fact is that the introduction of logical layers greatly helps the construction of
game worlds, moving objects, etc. The most common division in the case of a
simpler game is to separate a layer for the background of the level (e.g. super
mario), a layer for the real game objects (e.g. mario, turtles, etc.) and possibly
a layer for the things that are moved in the foreground. Of course, any number
of layers can be speci�ed, thus increasing the visual appearance of the game.
In the image below, we can see three logical layer-based implementations:

Figure 6. A game scene that implements three layers

Based on these, a class capable of storing and managing layers can be designed.
The implementation of the class can be as follows:

class C2DGraphicsLayer {

vector<CGameObject2D∗> mObjectList ;
vector<CTexture2D∗> mTextures ;
bool mVisible ; // Is layer v i s i b l e or not

bool mEnableCol l i s ion ; // Enable Co l l i s i on on Layer

CCamera2D ∗mCamera ; // Camera for the layer

s t r i n g mName; // Layer name

int mID; // Layer ID

C2DScene∗ mParentScene ; // Parent Scene

Practical guide to implement a simple 2D game engine 41

public :
. . .
} ;

Its interpretation is very simple: a list (mObjectList) is needed for storing the
game objects. In addition to all of this, we also consider it advisable to intro-
duce a list (mTextures) that only stores 2D textures. These are simple images
such as game backgrounds, clouds, etc. that are not animated. Although
the game object itself would be able to store them as a so-called single-phase
Sprite, storing the simple textures themselves is simpler and more e�cient.
Since the purpose of the layer is to be able to store virtually any element that
can appear in the 2D world, the class can be optionally extended later with
elements such as Tilemaps, Particles, etc. The class contains the reference to
the scene (mParentScene) to which the layer itself will belong (see later). In
addition, the property that switches visibility on and o� (mVisible), the name
of the layer (mName) and its identi�er (mID) are absolutely necessary.

With the above layering technique, the so-called parallax scrolling e�ect, which
is popularly used in two-dimensional games in order to increase the visual
experience, can be realized. The basic idea is to divide the game world into
layers and then move the layers at di�erent speeds. Moving the layers does not
mean to change the coordinate of every layer object. A common solution for
this movement is to use a camera (CCamera2D) implementation, which uses
the view matrix to achieve the movement. Similar to any 2D platformer and
strategy games where the map can be traversed (Warcraft, etc.) by moving
the mouse.

Another problem appears with the introduction of the camera. Since the ac-
tual coordinate of the object (mPosition) does not change, it is only moved
to a di�erent location by the view matrix when drawing, so a method that
can calculate the virtual spatial location of the object for CPU tasks such as
collision detection must be introduced. For example, in the case of platformer
games, the main character always stays in the range of the screen, while he
has already gone several screens away in the world.

4. The level scene

The introduction of layers helps a lot to really be able to handle a more complex
game world. However, this is not the end, as it is advisable to include the
layers in some structure. A possible implementation of these is the game scene
(Scene). If we want to de�ne it, then the scene includes a detail taken out
of the current game world. This can be a complete track, or even a part of
it. If we remember the classic super mario game, we could see that we could

42 P. Mileff

slide down underground on certain pipes. The easiest way to achieve this is
to create the current level from several scenes: one for the regular level and a
separate scene for each underground part.

The implementation of the scene is very simple, because it actually acts as an
enclosing logical structure. The following code shows such a sample:

class C2DScene {

CVector<C2DGraphicsLayer∗> mLayers ; // Layer for ob j e c t s

s t r i n g mName; // Name of the scene

bool mVisible ; // V i s i b i l i t y f l a g

CCamera2D ∗mSceneCamera ; // Global camera for the whole scene

public :
. . .
}

The scene class includes di�erent layers (mLayers) so that di�erent parts of the
game can also enjoy the bene�ts of layered implementation. We need to store
the name of the scene (mName), which, like before, has practical reasons. To
turn the scene on, a data member must be introduced (mVisible). Don't forget
that because super mario was jumping in the upper part of the track, actually
the underground part was also in the memory, just not visible. Finally, it is
advisable to introduce a scene-level camera (mSceneCamera). Although each
layer has its own camera, in many cases the need arises to move the entire
scene together.

The class should not be strong in data members, but rather in the provided
services and methods. We need to be able to add, delete and query layers.
The class should provide high-level services such as getting the reference of the
game objects on whatever layer they are, freeing them if, for example, we need
to delete a projectile, handling camera movements, z -based sorting, etc. These
do not mean a complicated implementation, rather they just put the proper
interface to the hands of the programmer. The use of this interface, the class
itself, will be e�ective if it provides convenient access to the layers included in
it.

4.1. Scene manager

The realization of the scene becomes complete when we can manage them. And
for this, an additional enclosing class is needed. Its role is practically storing
the scenes (mScenes) and providing a number of convenience functions and
interfaces with which we can access the stored scenes or game objects either
by id or by name. An example implementation is:

class C2DSceneManager {

Practical guide to implement a simple 2D game engine 43

vector<C2DScene∗> mScenes ;
bool mDrawBoundingBox ; // Draw BB or not

sColor mBoundingShapeColor ; // Color of the bounding shape

public :
. . .

C2DScene∗ LoadSceneXML(s t r i n g sceneFi lename) ;
void Reg i s te rScene (C2DScene∗ scene) ;
void Render () ;
CGameObject2D∗ GetObjectByName (s t r i n g name) ;
C2DScene∗ GetScene (u32 sceneID) ;
C2DScene∗ GetSceneByName(s t r i n g name) ;
void FreeObject (u32 id) ;
void FreeObjects () ;
void Clear () ;
void FreeAScene (s t r i n g name) ;
void FreeASceneByID (u32 sceneID) ;
. . .

}

The implementation of the class will not be complicated, its role is more limited
to the service functions. The most important of these have been shown in this
sample.

4.2. Storing of the virtual world

Even in the case of the simplest computer game, there is a need for the virtual
world not to be burned in and stored in the various classes, but for some
solution to be created to manage it e�ectively. It is obvious to store the
di�erent "levels" in the �le system. The two common ways to achieve this are
the binary and text storage forms. For beginners, the text format is absolutely
recommended, since when there is no mature game idea or code to drive the
game development, the text �le-based storage greatly facilitates continuous
modi�cations and experiments, as it can be edited with a simple text editor.

Below is an XML description of a sample virtual world:

<?xml ve r s i on=" 1 .0 " encoding="utf−8"?>
<scene name="Platformer_Demo_Scene" l a y e r s="4" >

<laye r id="0" name="Sky_layer">
<texture id="0" x="0" y="0" f i l e="sky . pcx" />

</layer>
<laye r id="1" name="Mountain_Layer">

<texture id="1" x="0" y="0" f i l e="mountain . tga " />
</layer>
<laye r id="2" name="Ground_Layer">

<texture id="2" x="0" y="0" f i l e="ground . tga " />
</layer>
<laye r id="3" name="Character_layer ">

<gameobject id="777" name="Liza " c o l l i d a b l e="1" zindex="0">
<sp r i t e f i l e=" g i r l . an i " />
<po s i t i o n x="450" y="565" />

44 P. Mileff

<d i r e c t i o n x="1" y="0" />
<s c a l e x="1" y="1" />
<speed value="0" />
<ro ta t e value="0" />

</gameobject>
</layer>

</scene>

The sample describes a simple world with three layers and one movable char-
acter. The girl.ani in the description describes an animated character whose
format is the XML animation descriptor outlined above. Of course, the world
description above contains only the most important elements, and can be easily
extended with new features as needed.

5. The heart of the engine

The logical structure of a software must always be designed and built based
on software technology aspects. The structural arrangement, the relations of
the classes (provided they are written in OO language) cannot be approached
exactly. Since there are many design patterns and subjective factors can greatly
in�uence the structure, there is no uniform direction or system of rules that
need to be followed in any way when designing the structure of our software. Of
course, it is always worth looking around, as there are well-established patterns
that may di�er depending on the language and the frameworks used.

Properly designing the basics of the software can require serious knowledge in
this direction, especially when it comes to your own game engine. Creating
the right environment helps a lot in making the development of game classes
to be easy. A typical indicator of an inadequate design is when the developer
needs to spend a lot of time in the program code to �nd where the given
information comes, what calls the method and where certain elements of the
logic are located.

The following simple C++ code shows an example of the structural basics,
which is enough to start creating a program on it. Game softwares today
is typically developed in an object-oriented manner, so they follow similar
patterns in structure. Somewhere deep in the software, a pattern like the one
below is often applied:

/// Universal Appl icat ion Class

class App {

protected :
CEngine ∗mEngine ; // Engine Class as member var i a b l e

public :
App () ;
virtual ~App () ;

Practical guide to implement a simple 2D game engine 45

virtual void Startup () = 0 ;
virtual void Run() = 0 ;
virtual void Shutdown () = 0 ;
virtual void ResizeWindow (int width , int he ight) = 0 ;
} ;

The above class provides a general framework for our future application. Since
the methods are apparently pure virtual, they will be implemented by the child
class. And the instantiation placed in the constructor enables the automatic
initialization of the (game) engine, and the destructor performs its release:

CApp : : CApp(){
mEngine = nu l l p t r ;

// Al locate Memory for the ENGINE

mEngine = new CEngine () ;

i f (mEngine == nu l l p t r) {
p r i n t f ("\nError : cannot a l l o c a t e memory f o r Engine ! ") ;

}
}

CApp: : ~CApp() {
i f (mEngine != nu l l p t r)

delete mEngine ;
}

It is obvious that because the methods are pure virtual, they will be imple-
mented by the child class. So, in order to use the above class, a speci�c class
(a game class) should be created by inheriting it from the CApp class. With
the inheritance, our main game class will get the mEngine reference directly,
which is an e�ective way to handle engine functions. An example game class:

MyGame.h

class MyGame : public CApp {

public :
MyGame() ;
~MyGame() ;

void Startup (void) ;
void Run(void) ;
void Shutdown (void) ;
void ResizeWindow (int width , int he ight) ;

} ;

In the example, the child class "MyGame" implements the corresponding meth-
ods of the App parent class. "Startup" is intended to handle the initialization
parts required after the direct start of the application. For example, opening
the window, creating a graphic context, and everything else that is intended
here. The "Run" method will be responsible for the implementation of the

46 P. Mileff

"game loop", for continuous running, and the "Shutdown" is reserved for per-
forming follow-up work before the application stops. For example, freeing
memory areas, eliminating graphics context, freeing resources, etc. Another
inherited method is "ResizeWindow", whose task would be to respond to the
resize event of the application window.

Finally, the code that includes the missing main function:

main.cpp

#inc lude "App . h"

int main (int argc , char ∗argv []) {

MyGame app l i a t i on ; // My app l i ca t i on

app l i a t i on . Startup () ;
app l i a t i on .Run () ;
app l i a t i on . Shutdown () ;

return 0 ;
}

Although the sample presented in this form is already suitable for the develop-
ment of applications, in the case of more complex software and graphic engines,
it is of course necessary to expand it in several directions. Therefore, in the
following, we will review the extension of the above code with subsystems, for
example, we can �nd out why it is important to assign the "virtual" quali�er
to the mentioned methods of the parent class.

5.1. Subsystems and components

A computer game or game engine can consist of many di�erent subsystems
and components that communicate with each other. When the engine starts,
each subsystem must be initialized, usually in a predetermined order. Certain
components can also depend on each other. For example, if subsystem B de-
pends on subsystem A, subsystem A must be started and con�gured �rst. And
in the event of a shutdown, the reverse of this often has to happen. Correct
implementation of such complex software requires the use of design patterns.
In practice, several patterns (Command, Flyweight, Observer, Prototype, Sin-
gleton, State) are used as a basis for creating the structure. A game or engine
usually uses several patterns depending on the needs to be served. In the
following, we will show through a short example how the above example can
be supplemented into a more e�cient, somewhat engine-like, more complex
structure.

It is a general expectation that the logical parts of the software should be de-
signed in such a way that they appear in the form of independent components,

Practical guide to implement a simple 2D game engine 47

minimizing the dependence on other parts. During planning, it is advisable to
�rst proceed from the higher level units to the smaller units. So, �rst of all, the
subsystems must be clari�ed, and then a comprehensive operating framework
in which the subsystems are embedded is necessary for their use.

First, let's examine the principles by which a subsystem can be built.

class CComponent {

protected :

int mID; // Unique id of the component

s t r i n g mName; // Name of the component

public :

CComponent () ;
virtual ~CComponent () ;
int getID (void) ;
void setID (int id) ;
void setName (s t r i n g name) ;
s t r i n g getName (void) ;
virtual void Startup (void) = 0 ;
virtual void Update (void) = 0 ;
virtual void Shutdown (void) = 0 ;
virtual void HandleMessage (void) = 0 ;

} ;
}

There are common points in the structure of the subsystems, so it is advisable
to highlight them in a separate class. In the present example, CComponent
provides us those (currently minimal) elemental functions that all subsystems
should know based on our �rst approach. Each class that will derive from it will
have an ID (mID) and a name (mName) and their getter and setter methods.
In addition to the data members, initialization (Startup), data updating (Up-
date), shutdown (Shutdown) and message handling (HandleMessage) methods
are also needed, which are apparently pure virtual and without a body part, so
these will have to be implemented in the child class. This will make it possible
to manage (start, stop) all compensations uniformly in the future.

After the proper design of the parent class, the design of the subsystems follows.
The following sample shows an example for de�ning subsystems:

#include "CComponent . h"

class CSampleSubsystem : public CComponent {

public :
CSampleSubsystem () ;
~CSampleSubsystem () ;
// Component inher i t ed tasks

void Startup (void) ;
void Update (void) ;
void Shutdown (void) ;

48 P. Mileff

void HandleMessage (void) ;
} ;

The structure of the subsystem is similarly simple at the current level. During
the implementation, it is mandatory to implement the inherited virtual meth-
ods, which will be needed in the later control class that unites the subsystems,
as well as those methods that will already be subsystem speci�c (e.g. graphic
context initialization, sound system con�guration, etc.). There is no speci�c
part in the current sample.

The next step is to design at least one central element or class, which will
serve as the central element of the entire software structure. It unites the
subsystems and provides additional important functions such as the initializa-
tion and shutdown of the subsystems and providing the so-called "main loop"
(game loop). In our approach, this will be the CEngine class.

class CEngine
{

// Lis t of subsystems

vector<CComponent∗> mComponents ;

public :

stat ic GraphicsManager∗ gGraphicsManager ; // Graphics Manager Subsystem

stat ic CInputManager∗ gInputManager ; // Input Manager subsystem

stat ic CShaderManager∗ gShaderManager ; // Shader Manager subsystem

stat ic CTexture2DManager∗ gTextureManager ; // Texture Manager

stat ic C2DSceneManager∗ g2DSceneManager ; // 2D Scene Manager

[. . .]

CEngine () ;
~CEngine () ;

void Shutdown () ; // Shutdown

void MainLoop () ; // Main loop of the engine

void RegisterSubSystem (CComponent ∗ system) ;

private :

bool InitSubSystems () ; // In i t a l l b u i l t in subsystem

} ;

The CEngine class is a very important part of the program. Its task is to
bring together and control the available components. Here is the so-called
Main Loop / Game loop, which is an in�nite loop interpreted under condi-
tions. This is where basic functions such as input handling, updating states,
measuring elapsed time, drawing and moving objects, updating the screen, etc.
are performed. In practice, due to the direct reference in a real application,
it is advisable to treat the subsystems as separate, static units. Their static
nature makes referencing them anywhere in the code very easy. For example,
to access the graphics manager: CEngine::gGraphicsManager. This approach

Practical guide to implement a simple 2D game engine 49

practically corresponds to the well-known "Singleton" design pattern, accord-
ing to which only one instance of the given class can exist.

6. Conclusion

Computer game development is a process that requires complex knowledge,
which also requires expertise in software design, algorithmization and graphics.
Game engines try to collect and organize this huge knowledge, thus putting an
e�ective tool in the hands of the developers. However, if we want to understand
the real operation in the background, there is no other way than to build the
basic components by yourself, with which certain games can already be made.
On this path, we can gain a degree of programming and other experience in
building more complex software systems, which is not possible in any other
way. It would be advisable for all game developers to start by going down this
path, and only later turn to the world of game engines.

References

[1] Akenine-möller, T., Haines, E.: Real-Time Rendering. A. K. Peters. 3nd
Edition, 2008.

[2] MARÍN-LORA, C.; CHOVER, M.; REBOLLO, C., REMOLAR, I.: A
game development environment to make 2D games, Communication Papers, Vol.9
� No18, pp. 7-23, 2020.

[3] Charles Kelly.: Programming 2D Games, A K Peters/CRC Press; 1st edition,
2012.

[4] Jason Gregory: Game Engine Architecture, A K Peters/CRC Press; 3rd edi-
tion, 2018.

[5] Eric L.: Foundations of Game Engine Development, Terathon Software LLC,
2019.

[6] Nicolas A. B.: Hands-On Unity 2022 Game Development: Learn to use the
latest Unity 2022 features to create your �rst video game in the simplest way
possible,Packt Publishing; 3rd edition., 2022.

[7] Steven J. V.: 2D Collision Detection Focus on OOBB/Point Collisions, Inde-
pendently published, 2019.

[8] Ga�er On Games, https://gafferongames.com/post/fix_your_timestep/,
2023.

[9] David G.: Core HTML5 2D Game Programming, Pearson, 2014.

[10] Alan Thorn: Game Engine Design and Implementation, Dave Pallai, 2010.

[11] Anis Zarrad: Game Engine Solutions, Simulation and Gaming, InTech, pp
75-85., 2018

[12] Game Maker, https://gamemaker.io/, 2023.

50 P. Mileff

[13] Unity Engine, https://unity.com, 2023.

[14] Roblox Game Platform, https://www.roblox.com, 2023.

[15] Constructs 3, https://www.construct.net, 2023.

[16] GDevelop, https://gdevelop.io, 2023.

[17] Phaser HTML5 game engine, https://phaser.io, 2023.

[18] Cocos game engine, https://www.cocos.com, 2023.

[19] Godot engine, https://godotengine.org, 2023.

[20] P. Mileff, J. Dudra: The Past and the Future of Computer Visualization,
Production Systems and Information Engineering, Volume 10, No 1, pp. 16-29.,
2022. http://doi.org/10.32968/psaie.2022.1.2.

[21] Eleftheria Christopoulou, Stelios Xinogalos: Overview and Compar-
ative Analysis of Game Engines for Desktop and Mobile Devices, International
Journal of Serious Games, pp 21-36,m 2017. http://dx.doi.org/10.17083/
ijsg.v4i4.194

http://doi.org/10.32968/psaie.2022.1.2.
http://dx.doi.org/10.17083/ijsg.v4i4.194
http://dx.doi.org/10.17083/ijsg.v4i4.194

	1. Introduction
	2. Basic elements of the virtual world
	2.1. Simple Texture Object
	2.2. Collision detection
	2.3. Sprite animation
	2.4. The Game Object

	3. The layering system
	4. The level scene
	4.1. Scene manager
	4.2. Storing of the virtual world

	5. The heart of the engine
	5.1. Subsystems and components

	6. Conclusion
	References

