
Production Systems and Information Engineering

Volume 11 (1), pp. 85–101.

https://doi.org/10.32968/psaie.2023.1.7

EFFICIENCY AND PERFORMANCE EVALUATION

OF OPEN-SOURCE BACKUP TOOLS – AN EMPIRICAL

ANALYSIS OF STORAGE FOOTPRINT AND EXECUTION TIME

ÁRON KISS

University of Miskolc

Hungary Institute of Information Technology

aron.kiss@uni-miskolc.hu

KÁROLY NEHÉZ

University of Miskolc

Hungary Institute of Information Technology

karoly.nehez@uni-miskolc.hu

Abstract. Information is one of the most valuable assets in the

digital age, and regular, reliable backups are essential to protect

against hardware failures, malicious attackers, and human

mistakes. While deduplication and compression have well-known

advantages in data storage, a wide variety of open-source backup

solutions available in the market raises the question: do these

similar tools differ significantly in terms of backup time and

resource efficiency? This article aims to answer that question by

conducting experiments with diverse datasets and evaluating the

performance of 4 selected open-source backup tools by

examining runtime and storage requirements. Our analysis of

measurements provides insights to assist potential users in

making informed decisions about their backup architecture.

Keywords: information security, backup software, data dedupli-

cation, software evaluation, open-source software

1. Introduction

In the digital age, data is one of the most valuable assets for individuals and

organizations. With increasing volume and complexity of data, ensuring its

protection has become a primary concern. Among the myriad of strategies to secure

data, regular backups are standing as a fundamental pillar in the realm of data

protection. Backup solutions play a crucial role in preserving the integrity,

availability, and recoverability of data, serving as a safety net against many threats,

from hardware failures to cyberattacks and human mistakes [1, 2].

https://doi.org/10.32968/psaie.2023.1.7

86 Áron Kiss – Károlyi Nehéz

Efficient and reliable backup practices are a necessity in our data-driven world.

As digital services continue to expand, the storage of redundant or obsolete data

poses a substantial burden in terms of both storage capacity and costs. This is where

deduplication and compression technologies come into play, offering a promising

avenue to mitigate the storage footprint of backed-up data and economize the

associated costs. By eliminating redundancy and reducing the size of backups,

deduplication and compression optimize storage resources and deliver significant

economic benefits to organizations [3].

While the benefits of deduplication and compression are well recognized, the

landscape of open-source backup tools presents a broad and diverse array of options

[4]. As open-source solutions gain popularity for their cost-effectiveness, flexibility,

and transparency, organizations and individuals are faced with many choices.

However, this diversity raises a critical question:

“Do backup software with a similar purpose and architecture show significant

deviation in runtime or compression efficiency?”

This article addresses this pivotal question by conducting an empirical analysis of a

subset of open-source backup tools. We will evaluate the efficiency and performance

of various backup solutions, shedding light on their storage footprint and execution

time. Through this study, we pursue to assist users in making decisions that align

with their specific data protection needs.

In the following sections, we present the methodology, the experimental setup,

and the results of our empirical analysis, providing insights into open-source

backup tools’ landscape and diverse capabilities in effectively safeguarding and

managing data.

2. General steps of the backup process

In this chapter, we provide an overview of the general architecture of modern

software solutions designed for creating deduplicated backups, along with a

presentation of the most common steps involved in the backup creation process.

This process involves data deduplication, compression, and encryption. After

that, the data is uploaded to a repository with an arbitrary storage architecture.

2.1. Data deduplication

Deduplication is a method aimed at removing redundant data from storage,

comprising three distinct subprocesses: chunking, fingerprinting, and indexing:

 Chunking is the method of segmentation of information into discrete pieces

of data.

 Fingerprinting (or hashing) entails verifying whether a chunk is redundant; if

it’s new, the chunk is uploaded along with its fingerprint to the repository,

 Evaluation of Open-Source Backup Tools 87

whereas if it’s redundant, only the fingerprint is uploaded.

 Indexing revolves around the management and upkeep of fingerprints

associated with existing chunks.

Figure 1. Redundancy reduction by deduplication

Figure 1 shows the general idea of data deduplication. The colored squares on the

left represent chunks of the data to be backed up. When the data is redundant, it can

contain multiple chunks that store the same information. When a deduplicating

backup is made on this dataset, unique chunks must be saved. Chunks with dashed

line borders are only references to already saved chunks. Along this line of thinking,

a coarse-grained dataset compression can be reached.

Deduplication can occur either at a file or block level. File-level deduplication

operates by identifying and removing duplicate files, while block-level deduplication

operates at a more granular level, where it can eliminate duplicate blocks, which can

be either of a fixed or variable size. File-level deduplication offers the advantage of

being resource-efficient, however, its limitation lies in its inability to eliminate

smaller redundant data chunks that are smaller than an entire file. Block-level

deduplication excels at eliminating smaller data chunks, surpassing the capabilities

of file-level deduplication in this regard. Nevertheless, its drawback is its higher

resource demands.

Modern, general-purpose backup software typically provides block-level

deduplication by employing fixed-size or content-defined chunking algorithms.

2.1.1. Fixed-Size Chunking (FSC)

The data stream is divided into equal-sized pieces in the case of fixed-size chunking.

One significant advantage of this method is its low computational demand. However,

fixed-size chunking generally tends to achieve a lower deduplication ratio than

variable-sized methods.

The reason behind this is the boundary-shift problem, which causes the phenomenon,

that even the most negligible modification in a file leads to entirely new chunks [6].

88 Áron Kiss – Károlyi Nehéz

An example of this can be seen in Figure 2., the bits in the first row represent the

structure of the original file. The bits in the second row match those of the original

file, except that a new bit has been inserted at the beginning. This small change of

only one bit results in creating entirely new chunks that are then saved to the backup

repository.

Figure 2. The boundary-shift problem

2.1.2. Content-Defined Chunking (CDC)

In the case of Content-Defined Chunking, the data stream is not divided into fixed-

size portions but rather, the chunk sizes vary based on the content, only the maximal

chunk size can be defined. This approach requires more computational resources

than the fixed-size method, but it is not sensitive to the boundary-shift problem and

produces a higher deduplication ratio [5].

Most CDC algorithms process the data stream in a sliding window, generating

rolling hash values. Rabin’s fingerprint is one of the oldest and most efficient hash

functions, however it has a high computational overhead [9, 10].

An increasing number of optimized CDC algorithms are being published. [12]

proposes a novel method called Asymmetric Extremum (AE), which offers speed

advantages compared to traditional chunking solutions. [11] introduces an

innovative approach faster than AE, while achieving a deduplication ratio that

approaches or surpasses Rabin-based CDC. [7] proposes a cosine similarity-based

fuzzy interference system to identify similar chunks.

2.1.3. Fingerprinting

During fingerprinting, a hash value should be generated for each specified chunk.

This value uniquely identifies the content of the chunk. This is typically done using

collision-resistant cryptographic hash functions (e.g., SHA-256). These generated

fingerprints are then stored in a database and used for identifying duplicate chunks.

2.2. Compression

While deduplication does an efficient, coarse-grained compression of the data

stream, redundancy may occur in the content of the unique chunks generated as the

output of the deduplication process. Conventional compression algorithms are used

to carry out the fine-grained compression of these chunks.

Dictionary-based compression algorithms are commonly built upon the LZ77 and

LZ78 algorithms. In modern backup tools, variants of these algorithms are

 Evaluation of Open-Source Backup Tools 89

employed, such as DEFLATE and LZMA, which are focused on compression ratios,

while LZO and LZW algorithms offer significant improvements in compression

speed [14].

Novel algorithms are also present in backup products. Zstandard developed in

2015 by Yann Collet was created to achieve compression ratios like the DEFLATE

algorithm but with a focus on speed, particularly during decompression [13].

2.3. Encryption

By leveraging cloud-based storage capabilities, organizations and individuals are

confronted with security issues related to their data. One such problem is the lack of

transparency in infrastructure operations. While a breach of such an incident would

undoubtedly lead to a negative business impact for the operator, there is usually no

guarantee that administrators cannot access the content of the storage.

Another significant problem is that multiple tenants share a typical cloud-based

storage service. Since users do not have precise insights into the circumstances of

infrastructure management, they cannot be entirely certain that the isolation between

tenants is adequate, and that malicious intruders cannot compromise it.

To address these security concerns, most backup tools incorporate built-in

encryption solutions, often offering end-to-end encryption and data obfuscation to

prevent fingerprinting attacks. The most frequently applied encryption methods are

AES256 and GPG.

AES256 is a symmetric-key encryption algorithm and is considered highly

secure due to its robust encryption key size, making it computationally infeasible

by brute-forcing.

GPG is an open-source encryption software that utilizes a combination of

asymmetric and symmetric encryption techniques, allowing users to encrypt data

using the recipient’s public key, which can only be decrypted with the recipient's

corresponding private key. GPG provides a robust and trusted method for securing

sensitive information and ensuring data integrity.

2.4. Storage

Modern backup software stores deduplicated chunks in repositories. Ensuring rapid

access to these chunks is crucial during the backup and restore processes. This is

achieved through various indexing solutions [14].

The schematic structure of such a repository is depicted in Figure 3.

The repository includes a chunk storage component for storing individual chunks

and their corresponding fingerprints.

The repository also contains containers for restore points (often called snapshots,

archives or versions in actual software). Each restore point captures the current state

of the file system at the moment of the backup. Restore points store not only the

90 Áron Kiss – Károlyi Nehéz

paths of the saved files but also their actual content, referencing the identifiers of

chunks stored in the chunk storage.

As a result of this storage logic, the repository provides “synthetic full backups”,

instead of incremental or differential backups to the users. This means that each

restore point serves the entire state of the backup target directory, but identical

chunks are not stored multiple times for each restore point.

Figure 3. A general backup repository architecture

The underlying storage architecture of the backup repository is very diverse. Most

backup tools support not only traditional storage locations like local disks and

network-attached storage, but also remote storage accessible through standard

protocols (e.g., SSH, FTP, WebDAV) and provider-specific “Platform as a Service”

solutions (e.g., Amazon S3, Google Cloud Storage, Azure Blob Storage).

A widely used solution to achieve this cross-compatibility is Rclone, a software

designed for file management in the cloud, offering a robust alternative to the web

storage interfaces provided by various cloud vendors. It supports over 70 cloud

storage services, business and consumer file storage solutions, and standard transfer

protocols. [15]

3. Overview of the examined software

To examine the current backup landscape, we selected four popular tools that exhibit

partial differences in their characteristics and features. The most essential

information regarding these tools can be found in Table 1.

 Evaluation of Open-Source Backup Tools 91

Table 1

Main characteristics of the examined backup programs

 borg duplicati duplicity restic

First release 11-06-2015 01-06-2008 26-08-2002 14-09-2015

Last release 24-03-2023 25-05-2023 27-09-2023 31-07-2023

Git starrers 9.817 9.318 198 21.294

Language Python, C C# Python, C Go

Platform Linux

Mac

Windows

Linux

Mac

Linux

Mac

Windows

Linux

Mac

Repository

backends

Local

SSH

Local

SSH

FTP, SFTP

S3

Azure B. S.

Google C. S.

Swift

WebDAV

SharePoint

rclone

etc.

Local

SSH

FTP, SFTP

S3

Azure B. S.

Google C. S.

Swift

WebDAV

SharePoint

rclone

etc.

Local

SFTP

S3

Azure B. S.

Google C. S.

Swift

rclone

etc.

Chunking

(d = default)

CDCd

FSC

FSCd CDCd CDCd

Compression

(d = default)

LZ4d

ZStandard

zlib

LZMA

DEFLATEd

LZMA2

GZipd ZStandardd

Encryption

(d = default)

AES-256d AES-256d

GPG

GPGd AES-256d

Built-in

scheduling

No Yes No No

User interface CLI CLI + GUI CLI CLI

License BSD 3-Clause GNU LGPL GNU GPL BSD 2-Clause

We selected two mature and two relatively recent backup software solutions for the

study. duplicati and duplicity have been present in the backup product market for

over a decade, borg and restic, while having less extensive histories, have both

garnered large user bases.

92 Áron Kiss – Károlyi Nehéz

borg (formerly attic) was initiated in 2015. It is called a deduplicating backup

program, which optionally supports compression and authenticated encryption [22].

One of borg’s advantages over its competitors is its extensive customization options,

stemming from the ability to choose the chunking algorithm and compression

method. However, it only supports local disk and SSH as backends to store its

repository.

duplicati is a mature cross-platform backup solution that offers a high level of user-

friendliness with GUI support and built-in scheduling functionality [23]. In contrast

to its competitors, it employs fixed-size, rather than content-defined chunking during

data deduplication [24].

duplicity is the oldest among the examined backup tools. It secures directories by

creating encrypted tar-format volumes, which are then uploaded to a remote or

local file server. It is a part of the Fedora, Debian, and Ubuntu distributions of

GNU/Linux [25].

restic is a cross-platform backup program that is designed to be “fast, efficient and

secure”. It is a solution that prioritizes simplicity, ensuring that setting up and

restoring backups is effortless. It strongly emphasizes security, using encryption to

safeguard data [21]. It has the most significant number of followers among the

examined software, and also proved its robustness in “CERNBox”, the cloud

collaboration hub at CERN with more than 37,000 user accounts [20].

4. Design of the experiments

In this chapter, we introduce the experimental setup and methodology used to

perform measurements and describe the properties in detail of the data sets used to

run experiments.

4.1. Experiment methodology

We executed separate initial, “complete” backups of the datasets using the software

tools under examination. For these evaluations, we utilized the most recent software

versions available as of the date specified in the “Last release” column of Table 1.

During the evaluation process, we focused on measuring two primary factors: the

total execution time and the efficiency of deduplication and compression. We refer

to this efficiency as the “optimization ratio”, and calculated it as follows:

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝐷𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

For the test runs, we configured a maximum chunk size of 4 MB. For each execution,

we applied the examined software’s default chunking algorithm, encryption method,

and compression technique. The backups were created to the local file system.

 Evaluation of Open-Source Backup Tools 93

4.2. Testbed

The experiments are executed in a VM with the following parameters:

CPU: Intel Core i7-12700H

14 cores, 14 threads

RAM: 16 GB

Storage: Kingston SNV2S/1000G SSD

80 GB VDI virtual disk image, ext4 filesystem

OS: Ubuntu 22.04.3 LTS

To ensure the reliability of our results, we repeated these measurements three times

for each combination of dataset and software. Our analysis will rely on the averages

derived from these measurements as the basis for our assessment.

4.3. Document archive (DS1)

Our first dataset was a document archive. In archives of this kind, one can typically

find a substantial volume of files, which tend to be relatively large in size

(compared to Linux system binaries), and many of them may already be

compressed to some extent.

These archives’ size results from the sheer quantity of content and the inclusion

of high-resolution multimedia elements. Due to the prevalence of compression

techniques, such as LZW and DEFLATE algorithms, which are used in the popular

PDF and DOCX file formats, these files are stored in relatively space-efficient

before the deduplication [16, 17].

As a basis of this dataset, we downloaded all the issues of Magyar Közlöny and

its appendix Hivatalos Értesítő published between 01-01-2013 and 14-09-2023.

The dataset contains 3141 PDF files, the overall size of the dataset is approx. 4178

MB. The distribution of file sizes are presented in Figure 4. Average file size is

1.33 MB, the median size is 0.73 MB and the standard deviation is 2.88 MB.

Figure 4. Distribution of file sizes in DS1

94 Áron Kiss – Károlyi Nehéz

4.4. Clean server environment (DS2)

Our second dataset contains several clean system environments with files that

define the initial state of the system for running specific applications. These files

are instrumental in establishing the baseline configurations required for the smooth

operation of individual applications. In essence, they encapsulate the essential

settings, binary dependencies, source codes and other prerequisites necessary to

initialize and run these applications effectively within a given system environment.

We collected data for this dataset by installing a fresh Docker daemon on a

machine and pulling 30 of the most popular Docker images to the system. Following

that, we backed up all files belonging to the Docker ecosystem, including all the

contents of /var/lib/docker/.

The distribution of files based on their formats is illustrated in Table 2. The

examined dataset contains an array of uncompressed textual files (including PHP,

Python, JavaScript code files, JSON data, and plain text documents), offering many

possibilities for redundancy reduction [18, 19]. However, in addition to these

predominantly uncompressed formats, the dataset also features a presence of less

redundant, compressed file formats such as PNG and GZ. This diverse mix of file

types indicates higher redundancy than DS1.

Table 2

Distribution of files by format in DS2

of files File format # of files File format

26443 .php 4151 .pm

18837 .h 3795 .so

16880 .py 2973 .txt

11063 .js 2535 .mo

9398 .go 1787 .css

9386 .pyc 1737 .beam

9337 .json 1595 .png

5383 .pl 34145 other files with extension

5300 .gz 33972 other files without extension

The distribution of file sizes is presented in Figure 5. This dataset contains 198,717

files, the overall size of the dataset is approx. 9,761 MB. The average file size is

49.12 KB, the median size is 2.47 KB, and the standard deviation is 1.13 MB.

 Evaluation of Open-Source Backup Tools 95

Figure 5. Distribution of file sizes in DS2

4.5. Live server environment (DS3)

Our third dataset is a replication of a real server environment. It runs on Ubuntu

operating system, and several JavaScript-based applications are in use.

A significant distinction from DS2 is that this dataset contains not only the

binaries, source code, and initial configuration of the running applications but also a

wide array of user data, log files, caches, and databases.

That dataset is a snapshot of a server’s activity and interactions beyond just the

core application components. This additional data differentiates from DS2,

indicating a higher level of redundancy.

It can be seen in Table 3, that this sample predominantly contains files in

uncompressed textual formats. These include source code files, logs, documentation

files, vector graphic images, configuration files, etc.

Table 3

Distribution of files by format in DS3

of files File format # of files File format

91508 .js 2993 .h

37801 .log 2311 .py

27542 .ts 2116 .pyc

15008 .map 1778 .txt

11060 .pem 1655 .rst

10406 .json 1368 .vim

10198 .md 1286 .yml

4799 .gz 27361 other files with extension

3180 .svg 32153 other files without extension

96 Áron Kiss – Károlyi Nehéz

As indicated in Figure 6, the distribution of file sizes in this dataset is similar to DS2.

The dataset comprises 284,523 files with a total size of approx. 10,050 MB. The

average file size is 35.32 KB, the median is 1.29 KB, and the standard deviation is

1.08 MB.

Figure 6. Distribution of file sizes in DS3

5. Results and evaluation

In this chapter, we present the results of our empirical analysis. Following the

methodology outlined earlier, we measured each dataset – software pair.

The basis for our analysis includes the time required for creating the initial

complete backup and the total size of the backup repository, as previously described.

Figure 7. Overall runtimes of the backup tools on DS1-3 (the shorter, the better)

 Evaluation of Open-Source Backup Tools 97

The average durations required for creating individual backups are illustrated in

Figure 7.

In the case of DS1, there was an insignificant difference in the runtime of the various

tools, which is likely attributed to the small size of the dataset and the partial

compression applied to the content due to the PDF format.

In the case of DS2, the durations are also close to each other, with an extreme

spike observed in the case of duplicati.

For the DS3 dataset, the same observations prove to be true, with the difference

that duplicati exhibits an even larger deviation in the time required for backup

execution. It took approximately 8.2 times longer to complete the task compared to

the fastest tool, borg, while also approximately 4.9 times slower, than the second

slowest duplicity.

In Figure 8, one can observe the optimization ratios achieved by the examined

tools on datasets with varying levels of redundancy. A higher ratio indicates that the

respective tool was able to compress the dataset to a smaller size in proportion to its

original size. This is a measure of the efficiency of deduplication and compression

processes.

Figure 8. Optimization ratios reached by the backup tools on DS1-3

(the higher, the better)

In the case of DS1, the examined software performed nearly identically. This can be

attributed to the balanced nature of the dataset and the compression inherent to the

PDF format.

In DS2, restic and duplicati achieved nearly the same compression efficiency,

while borg falls significantly behind them, and duplicity performs less efficiently.

The top-ranked restic has nearly 60% advantage over the fourth-ranked duplicity.

In the case of DS3 the tools can be grouped into two categories: restic leading the

way, followed closely by duplicati. borg and duplicity achieved similar results to

each other but lagged behind the first-ranked tools.

An evaluation of the software can be fair when don’t just the individual features

are highlighted in isolation, but instead a more holistic approach be taken by

98 Áron Kiss – Károlyi Nehéz

examining the measured results. In this regard, Figure 9 illustrates the trade-offs

between storage requirements and execution speed in case of the examined tools.

Figure 9. Trade-off between backup execution time and storage space

of the final backup repository

This plot shows the relationship between runtime and storage footprint. Points on the

left side of the diagram indicate shorter runtimes, while those on the right side

indicate longer ones. Points in the upper part are associated with higher compression

efficiency, while those in the lower part are associated with weaker redundancy

reduction.

In the case of DS1, significant differences are not observed among the tested

software. However, based on the measurements conducted on the DS2-3 datasets,

the overall efficiency of individual tools can be distinguished.

In the case of duplicati, there is a significant increase in runtime, while the level

of compression is nearly identical to the values measured with restic. However, user-

friendliness can also play a significant role in the decision between these software

options. While restic lacks an official GUI application and does not natively support

backup scheduling, duplicati offers these features as a turnkey solution, potentially

better meeting the needs of users with less technical knowledge, all while achieving

one of the highest compression rates.

duplicity didn’t achieve the best, but an acceptable compression rate, although it

doesn’t offer a time advantage and is less customizable compared to other solutions.

borg’s optimization rate is also acceptable and, in terms of runtime it outperformed

the other software in the study. In the case of borg, further experiments could be

executed with fine-tuning of the backup process (e.g. using the ZStandard algorithm

for compression). However, this study aims to measure the “as-is” performance,

rather than detailed tuning.

 Evaluation of Open-Source Backup Tools 99

restic’s time requirement is slightly higher than borg's, but its optimization ratio is

significantly above the others.

Based on its characteristics, we recommend restic among the examined backup

software for general use cases where system administrators want to avoid precise

fine-tuning of the backup tools.

6. Conclusion

In this study, we evaluated the performance of four open-source backup tools,

namely borg, duplicati, duplicity, and restic; across three diverse datasets. We

focused on execution time and deduplication-compression efficiency, measured as

the “optimization ratio”.

Taking every measured value into consideration, restic emerged as a

recommended choice for general use cases. duplicati, while achieving similar

compression over a significantly longer period of time, offers user-friendliness with

GUI support. borg showed potential for fine-tuning, and duplicity, while not the best

in compression, provided an acceptable optimization ratio also.

In conclusion, restic is the most solid choice for users seeking an efficient open-

source backup tool. However, the selection should consider user preferences,

technical expertise, and specific use cases.

In the future, an interesting research direction could involve more in-depth

quantitative software analysis, including incremental backups and file restoration.

There are also prospects for further research in the optimization of backup tools,

where different combinations of chunking algorithms, compression methods, and

encryption techniques can be explored. Additionally, it is worth considering a

comparison of the latest CDC algorithms as another potential direction for

investigation.

References

[1] Wolff, J. (2023). Trends in Cybercrime During the COVID-19 Pandemic. In: Beyond

the Pandemic? Exploring the Impact of COVID-19 on Telecommunications and the

Internet. Emerald Publishing Limited, pp. 2015–227.

https://doi.org/10.1108/978-1-80262-049-820231010

[2] Tekin, S. et al. (2023), Optimal data backup policies for information systems subject

to sudden failure. Journal of Quality in Maintenance Engineering, Vol. 29, No. 2, pp.

338–355. https://doi.org/10.1108/JQME-01-2022-0009

[3] Qin, A., Xiao, M., Huang, B. & Zhang, X. (2022). Maze: A Cost-Efficient Video

Deduplication System at Web-scale. In: Proceedings of the 30th ACM International

Conference on Multimedia. https://doi.org/10.1145/3503161.3548145

https://doi.org/10.1108/978-1-80262-049-820231010
https://doi.org/10.1108/JQME-01-2022-0009
https://doi.org/10.1145/3503161.3548145

100 Áron Kiss – Károlyi Nehéz

[4] Prajapati, P. & Shah, P. (2022). A Review on Secure Data Deduplication: Cloud

Storage Security Issue. Journal of King Saud University – Computer and Information

Sciences, 34 (7), pp. 3996–4007. https://doi.org/10.1016/j.jksuci.2020.10.021

[5] Appaji Nag Yasa, G. & Nagesh, P. C. (2012). Space savings and design considerations

in variable length deduplication. ACM SIGOPS Operating Systems Review, 46 (3), pp.

57–64. https://doi.org/10.1145/2421648.2421657

[6] Yoon, M. (2019). A constant-time chunking algorithm for packet-level deduplication.

ICT Express, 5 (2), pp. 131–135. https://doi.org/10.1016/j.icte.2018.05.005

[7] Rajkumar, K. & Dhanakoti, V. (2022). Fuzzy-Dedup: A secure deduplication model

using cosine-based Fuzzy interference system in cloud application. Journal of

Intelligent & Fuzzy Systems, 43(3), 2819-2832. https://doi.org/10.3233/jifs-210511

[8] Jiang, T. et al. (2023). FuzzyDedup: Secure Fuzzy Deduplication for Cloud Storage.

IEEE Transactions on Dependable and Secure Computing, 20 (3), pp. 2466–2483.

https://doi.org/10.1109/tdsc.2022.3185313

[9] Rabin, M. O. (1981). Fingerprinting by Random Polynomials. Center of Research in

Computer Technology, Technical Report.

[10] Xiaowei, M., Ketai, H., Xu, X. & Aijun, L. (2023). Research on an Incremental

Backup Method Based on CAD Engineering Data File. In 2023 IEEE 18th Conference

on Industrial Electronics and Applications (ICIEA).

https://doi.org/10.1109/iciea58696.2023.10241897

[11] Zhou, P., Wang, Z., Xia, W. & Zhang, H. (2022). UltraCDC: A Fast and Stable

Content-Defined Chunking Algorithm for Deduplication-based Backup Storage

Systems. In 2022 IEEE International Performance, Computing, and Communications

Conference (IPCCC). https://doi.org/10.1109/ipccc55026.2022.9894295

[12] Zhang, Y. et al. (2016). A Fast Asymmetric Extremum Content Defined Chunking

Algorithm for Data Deduplication in Backup Storage Systems. IEEE Transactions on

Computers, 1-1. https://doi.org/10.1109/tc.2016.2595565

[13] RFC 8878. Zstandard Compression and the ‘application/zstd’ Media Type. https://da

tatracker.ietf.org/doc/html/rfc8878

[14] Xia, W. et al. (2016). A Comprehensive Study of the Past, Present, and Future of Data

Deduplication. Proceedings of the IEEE, 104 (9), pp. 1681–1710.

https://doi.org/10.1109/jproc.2016.2571298

[15] Rclone. https://rclone.org/ (Accessed 09-10-2023).

[16] ISO 32000-2:2020 (PDF 2.0).

[17] DOCX Transitional (Office Open XML), ISO 29500:2008-2016, ECMA-376, Editions

1-5. https://www.loc.gov/preservation/digital/formats/fdd/fdd000397.shtml

[18] Sakamoto, Y. et al. (2015). Empirical study on effects of script minification and HTTP

compression for traffic reduction. In 2015 Third International Conference on Digital

Information, Networking, and Wireless Communications (DINWC). IEEE.

https://doi.org/10.1109/dinwc.2015.7054230

https://doi.org/10.1016/j.jksuci.2020.10.021
https://doi.org/10.1145/2421648.2421657
https://doi.org/10.1016/j.icte.2018.05.005
https://doi.org/10.3233/jifs-210511
https://doi.org/10.1109/tdsc.2022.3185313
https://doi.org/10.1109/iciea58696.2023.10241897
https://doi.org/10.1109/ipccc55026.2022.9894295
https://doi.org/10.1109/tc.2016.2595565
https://doi.org/10.1109/jproc.2016.2571298
https://rclone.org/
https://www.loc.gov/preservation/digital/formats/fdd/fdd000397.shtml
https://doi.org/10.1109/dinwc.2015.7054230

 Evaluation of Open-Source Backup Tools 101

[19] Król, K. (2020). Comparative Analysis of Selected Online Tools for JavaScript Code

Minification: A Case Study of a Map Application. Geomatics, Land Management and

Landscape, 2, pp. 119–129. https://doi.org/10.15576/gll/2020.2.119

[20] Valverde Cameselle, R., & Gonzalez Labrador, H. (2021). Addressing a billion-

entries multi-petabyte distributed file system backup problem with cback: From files

to objects. EPJ Web of Conferences, 251, 02071.

https://doi.org/10.1051/epjconf/202125102071

[21] Restic Documentation. https://restic.readthedocs.io/en/latest/index.html (Accessed

09-10-2023).

[22] Borg Documentation. https://borgbackup.readthedocs.io/en/stable/ (Accessed 09-10-

2023).

[23] GitHub. duplicate/duplicate. https://github.com/duplicati/duplicati (Accessed 09-10-

2023).

[24] Duplicati. Choosing sizes in Duplicati. https://duplicati.readthedocs.io/en/latest/

appendix-c-choosing-sizes-in-duplicati/ (Accessed 09-10-2023.

[25] Duplicity: Encrypted bandwidth-efficient backup. https://duplicity.us/ (Accessed 09-

10-2023).

https://doi.org/10.15576/gll/2020.2.119
https://doi.org/10.1051/epjconf/202125102071
https://restic.readthedocs.io/en/latest/index.html
https://borgbackup.readthedocs.io/en/stable/
https://github.com/duplicati/duplicati
https://duplicati.readthedocs.io/en/latest/%20appendix-c-choosing-sizes-in-duplicati/
https://duplicati.readthedocs.io/en/latest/%20appendix-c-choosing-sizes-in-duplicati/
https://duplicity.us/

