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Abstract:  One of the hot topics in machine learning is the field of GNN. The 
complexity of graph data has imposed significant challenges on existing 
machine learning algorithms. Recently, many studies on extending deep 
learning approaches for graph data have emerged. This paper represents a 
survey, providing a comprehensive overview of Graph Neural Networks 
(GNNs). We discuss the applications of graph neural networks across various 
domains. Finally, we present an advanced field in GNNs: graph generation. 
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1. Introduction 
 

Embarking on the exploration of machine learning applied to graphs [1] invites us into a realm 

where graphs, representing connections between objects (nodes), become a universal language 

for deciphering complex systems [2]. For instance, in a social network graph, individuals are 

nodes, and friendships are edges. The power of this concept becomes evident in historical 

studies, like Wayne W. Zachary's analysis of a karate club's dynamics [3], predicting factional 

splits based on the graph structure. What makes graphs versatile is their ability to represent 

various interactions, be it in social networks, biology, or even telecommunications. 

Now, as we step into the world of machine learning, graphs become more than visual 

representations. They serve as a mathematical foundation enabling us to analyze and understand 

intricate relationships within real-world complex systems. With the surge in available graph-

structured data from sources like social networks, scientific initiatives, and interconnected 

devices, the challenge lies in unleashing the potential of this data. 

At the same time, the second part of our exploration looks at why people are paying a lot of 

attention to studying graphs with machine learning. Graphs, which are like maps showing 

connections between things, are powerful tools. They help us understand many different things 

like how people interact in social networks, how proteins work together, or how information is 

organized in knowledge graphs. The advent of Graph Neural Networks (GNNs), rooted in the 

history of neural networks for graphs and inspired by the success of convolutional neural 

networks (CNNs), has revolutionized graph analysis. GNNs collectively aggregate information 

from graph structures, enabling tasks like node classification [4] and link prediction [5]. 

This paper unfolds the motivations behind GNNs [6]. It explores the role of graph representation 

learning in enhancing traditional machine learning approaches. The review provides a 

comprehensive understanding of GNNs, categorizes them into different groups, and delves into 

their applications across various domains. It also identifies open problems for future research, 
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making this exploration a roadmap for understanding and advancing machine learning on 

graphs. 

2. Background survey 
 

2.1. Graph description 

 

Before we dive into talking about machine learning on graphs, let's first explain what we mean 

by "graph data" in simpler terms. A graph, formally represented as G = (V, E) as it shown in 

figure 1, is made up of nodes (V) and edges (E) connecting these nodes. An edge from one node 

(u) to another (v) is written as (u, v) ∈ E. Usually, we're dealing with straightforward graphs, 

where there's at most one connection between each pair of nodes, no self-connections, and all 

connections are two-way, meaning (u, v) ∈ E is the same as (v, u) ∈ E. 

We often use an adjacency matrix (let's call it A) to represent graphs [7]. This matrix, with 

dimensions |V|×|V|, helps us see which nodes are connected. If there's a connection between 

nodes u and v, A [u, v] equals 1; otherwise, it's 0. If the graph only has undirected connections, 

the matrix is symmetrical, but if the graph is directed connections, it might not be. Some graphs 

also have "weighted" edges, meaning the connections aren't just 0 or 1, but can be any real 

number. For instance, in a graph showing how proteins interact, a weighted edge could tell us 

how strong the connection is between two proteins. 

 

 
2.1.1 Graph type and scale  

 

Graphs with complex types could provide more information on nodes and their connections. 

Graphs are usually categorized as: 

 

 Directed/Undirected Graphs. Edges in directed graphs are all directed from one node 

to another, which provides more information than undirected graphs. Each edge in 

undirected graphs can also be regarded as two directed edges. 

 Homogeneous/Heterogeneous Graphs. Nodes and edges in homogeneous graphs have 

same types, while nodes and edges have different types in heterogeneous graphs. Types 

for nodes and edges play important roles in heterogeneous graphs and should be further 

considered. 

 Static/Dynamic Graphs. When input features or the topology of the graph vary with 

time, the graph is regarded as a dynamic graph. The time information should be 

carefully considered in dynamic graphs. 

 

These categories operate independently, allowing for combinations; for instance, a dynamic 

directed heterogeneous graph is one possible combination. Various other graph types, like 

hypergraphs and signed graphs designed for specific tasks, exist. Although not exhaustively 

listed here, the primary consideration lies in acknowledging the additional information offered 

by these graphs. 

Concerning graph scale, the determination of what qualifies as "small" or "large" lacks a fixed 

criterion. The definition evolved with advancements in computational devices, such as the speed 

Figure 1: Graph G = (V, E) 
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and memory of GPUs. In this paper, a graph earns the classification of large-scale when the 

device encounters challenges in storing and processing its adjacency matrix or graph Laplacian, 

which has a space complexity of        In such instances, methodologies like sampling may 

become necessary. 

*      : n represents the number of nodes in the graph, the space complexity indicating that the 

space required grows quadratically with the number of nodes in the graph   

 

2.2. Application area 

 

Exploring the application areas of graph-based machine learning unveils a spectrum of diverse 

domains where these techniques prove instrumental. Social network analysis [8] stands out as a 

primary application, employing graphs to represent relationships among individuals. This 

enables the discernment of communities, influential nodes, and patterns within social structures. 

In recommendation systems, graphs model user-item interactions, facilitating the provision of 

personalized content recommendations based on shared preferences. Within the realm of 

biology, graph-based models contribute to understanding molecular interactions, where nodes 

signify biological entities and edges convey relationships. Transportation and logistics benefit 

from graph algorithms, optimizing routes and enhancing network connectivity. Notably, in graph 

generation, these techniques play a pivotal role in creating realistic graph structures, such as 

generating realistic social networks or molecular structures, adding an innovative dimension to 

the field by creating synthetic yet representative data for various applications. This multifaceted 

applicability underscores the adaptability of graph-based machine learning, offering inventive 

solutions across a spectrum of disciplines. 

 
Table 1 : Application of graph neural networks 

Area Application 

Graph Mining Graph Matching 

Graph Clustering 

Physics Physical Systems Modeling 

Chemistry Molecular Fingerprints 

Chemical Reaction Prediction 

Biology Protein Interface Prediction 

Side Effects Prediction 

Disease Classification 

Knowledge Graph Knowledge Base completion 

Knowledge Graph alignment 

Generation Graph Generation 

Combinatorial Optimization Combinatorial Optimization 

Traffic Network Traffic State Prediction 

Recommendation Systems User-item Interaction Prediction  

Social Recommendation 

Others Stock Market 

Software Defined Networks 

AMR Graph to Text 

Image Social Relationship 

Understanding 

Image Classification 

Visual Question Answering 

Object Detection 

Interaction Detection 

Region Classification 

Semantic Segmentation 

Text Text Classification 

Sequence Labeling 
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Neural Machine Translation 

Relation Etraction 

Event Extraction 

Fact Verification 

Question Answering 

Relational Reasoning 

 

 

2.3. Dynamic operations 

 

In the exploration of dynamic operations [9], our attention turns to the temporal dimension of 

graphs, investigating how they evolve over time. Dynamic operations refer to the study and 

manipulation of graphs with changing structures, capturing variations in connections, entities, or 

attributes across different time points. This temporal layer adds complexity to traditional static 

graphs, offering insight into the dynamic nature of real-world systems, where relationships 

between entities can undergo transformations over time. Whether tracking shifts in social 

network interactions, observing changes in biological processes, or analyzing fluctuations in 

transportation networks, this section delves into the methodologies and considerations associated 

with dynamic graph operations. It aims to elucidate the mechanisms employed to navigate and 

comprehend the temporal evolution of graph structures within the context of complex systems. 

A dynamic graph model is defined as               where it outlines the state of the graph 

(comprising nodes and edges) at a specific time moment [10], denoted as t. Both directed and 

undirected dynamic graphs find representation in various existing models, be they discrete or 

continuous. In discrete models, periodic snapshots are taken at fixed intervals, such as every 30 

minutes, day, or week. This approach offers precise mappings at specific time points and allows 

approximations for states at other instances based on factors like time or changes. Conversely, 

continuous models meticulously track every change, presenting an accurate graph state for any 

given instant. The subsequent sections categorize the pertinent literature into four distinct types, 

providing a detailed description of each. 

 

3. General design pipeline of GNNs 

 
3.1. Graph learnings tasks: 

Graph learning tasks involve three main types: node-level tasks focus on individual nodes, edge-

level tasks examine connections between nodes, and graph-level tasks address the properties of 

the overall graph.  

 

 Node-level tasks in graph learning, such as classification, regression, and clustering, 

focus on categorizing nodes, predicting continuous values, and grouping similar nodes, 

respectively. 

 Edge-level tasks involve classifying edge types and predicting the existence of edges 

between specified nodes. 

 Graph-level tasks encompass graph classification, graph regression, and graph 

matching, requiring the model to learn representations for entire graphs. 

 

From a supervision standpoint, graph learning tasks can be categorized into three training 

settings: 

 

 Supervised setting utilizes labeled data for training. 

 Semi-supervised setting involves a mix of labeled and unlabeled nodes, often seen in 

tasks like node and edge classification. 

 Unsupervised setting relies solely on unlabeled data, suitable for tasks like node 

clustering. 
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3.2. Basic Design concept of GNN’s 

 

In graph-based learning, extracting meaningful representations as shown in figure 2 involves 

deriving a node feature vector and adjacency matrix. The node feature vector captures essential 

characteristics of individual nodes, serving as a condensed representation [11]. Simultaneously, 

the adjacency matrix encapsulates the relationships between nodes, reflecting the graph's 

connectivity structure. With these components in hand, embedding techniques can be applied to 

map nodes into a continuous vector space, facilitating efficient representation learning. Message 

passing algorithms [12], leveraging the adjacency matrix, then enable nodes to exchange 

information and refine their embeddings through iterative communication within the graph 

structure. 

 

 

 
 

Figure 2: Extracting adjacency matrix from a graph 

 
3.2.1 Adjacency Matrix(A): 

 

The adjacency matrix represents the connections between nodes in the graph. For a graph with N 

nodes, the adjacency matrix A is a matrix, where       if there is an edge between node (i) 

and node (j), and =0 otherwise. As shown in figure 3 

 
 

 

3.2.2 Node Embeddings (H): 

 

Node embedding is a pivotal concept in graph representation learning, aiming to transform 

individual nodes into continuous vector representations. By capturing the inherent structural and 

relational information within a graph using different computational modules as shown in figure 

Figure 3: mapping an adjacency matrix. 
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4, node embeddings facilitate the translation of complex network structures into a more 

interpretable and computationally efficient format. These embeddings serve as compact yet 

informative representations, enabling downstream tasks such as node classification, clustering, 

and link prediction in a variety of applications, from social networks to biological systems. 

 

                                

 
3.2.3 Message passing algorithm: 

 

The fundamental graph neural network (GNN) model can be explained in various ways. 

Researchers have derived this core GNN model as an extension of convolutions to non-

Euclidean data [Bruna et al., 2014], a differentiable version of belief propagation [Dai et al., 

2016], and through analogies to traditional graph isomorphism tests [Hamilton et al., 2017b]. 

Regardless of the specific motivation, a defining characteristic of GNNs is their use of neural 

message passing. In this approach, vector messages are exchanged between nodes and updated 

using neural networks [Gilmer et al., 2017]. 

In this paper, we delve into the foundational aspects of this neural message passing framework. 

Our focus will be on the message passing mechanism itself, while detailed discussions about 

training and optimizing GNN models are reserved for later. This chapter primarily explores how 

an input graph          along with a set of node features  ∈         can be utilized to 

generate node embeddings    for all nodes  ∈    Moreover, we will also explore how the GNN 

framework can be employed to generate embeddings for subgraphs and entire graphs. 

 

*  ∈        : Denotes a real-valued matrix of dimensions          h    “ ”     h  
number of features associated with each node and |V| is the number of nodes in the graph. 
 

During each iteration of message-passing within a Graph Neural Network (GNN), the hidden 

embedding   
   

[13] corresponding to every node u in the set V gets revised. This adjustment 

occurs based on information aggregated from the neighborhood      of node   in the graph (as 

illustrated in Figure 5). This iterative process of message-passing forms a crucial part of GNN 

operations. 

 

Figure 4: node embedding using message passing. 
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In Figure 5, we see how a single node in a graph aggregates messages from its nearby neighbors. 

For instance, node 1 collects messages from its immediate neighbors (nodes 5, 4, and 2). What 

makes this process interesting is that these neighboring nodes, in turn, aggregate messages from 

their respective neighbors, creating a recursive pattern of information exchange. This 

visualization showcases a two-layer version of the message-passing model, illustrating how 

information ripples through the graph. Additionally, the computation graph forms a tree 

structure as it unfolds around the target node, depicting the hierarchical nature of message 

aggregation in Graph Neural Networks (GNNs). 

Mathematically it could be expressed as follows:  

  
     

             
                    

   
   ∈        

             
   

      
   

 

 

In the Graph Neural Network (GNN) framework, the processes of updating [14] node 

embeddings involve two main steps: AGGREGATE and UPDATE. Here, these are flexible, 

differentiable functions, often implemented as neural networks. During each iteration k of the 

GNN, the AGGREGATE function processes the embeddings of nodes in u's neighborhood 

      creating a message)      
   

based on this collective neighborhood information. 

Subsequently, the UPDATE function combines this message      
   

with the prior embedding 

  
     

 of node u to generate the updated embedding   
   

 

Initially, at k=0, the embeddings are set to the input features for all nodes   
   

=  , where xu 

represents the features of node u. After running K iterations of GNN message passing, the final 

layer's output   
   

represents the embeddings for each node in the graph   =  
   

. This iterative 

process allows GNNs to capture complex relationships within graph-structured data. 

 

 

4. Computational modules 

In this part, we explore how node embeddings and message passing algorithms work together. 

We break down the mechanisms that these computer modules use to make graph-based learning 

powerful. They take raw data and turn it into important, detailed representations. By looking 

closely at these modules, we reveal the processes that make GNNs efficient and effective. This 

helps us understand better how GNNs can be useful in different areas. 

Some commonly used computational modules are: 

• Propagation Module: This module facilitates the flow of information between nodes, 

allowing the aggregated data to encompass both feature and topological details. Within 

propagation modules, the convolution and recurrent operators play key roles in gathering 

information from neighboring nodes, while the skip connection operation helps integrate insights 

Figure 5: Message passing algorithm applied for a node. 
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from historical node representations, addressing concerns like over-smoothing. 

 

• Sampling Module: For large graphs, the use of sampling modules becomes essential in the 

propagation process. These modules are typically integrated with the propagation module to 

ensure effective information dissemination across the graph. 

• Pooling Module: When the focus shifts to obtaining representations of higher-level subgraphs 

or entire graphs, pooling modules come into play. These modules are instrumental in extracting 

valuable information from nodes to construct meaningful representations. 

 

These computational modules form the building blocks of a typical Graph Neural Network 

(GNN) model, often combined to create the overall architecture. In the central portion of figure 

6.a common GNN model design is depicted. Each layer incorporates the convolutional operator, 

recurrent operator, sampling module, and skip connection for effective information propagation 

[15]. Following this, a pooling module is introduced to extract high-level information. The 

stacking of these layers is a standard practice to enhance the quality of representations. While 

this architecture generally applies to most GNN models. 

 
Figure 6: design pipeline for a GNN model 

 

In a Graph Neural Network (GNN) layer, several key operations come into play. The sampling 

module is employed, particularly in large graphs, to facilitate the propagation of information. 

Simultaneously, the convolutional operator plays a pivotal role in gathering insights from 

neighboring nodes, capturing both features and topological information. Additionally, the 

introduction of the pooling module allows for the extraction of high-level information, crucial 

when dealing with representations of larger subgraphs or entire graphs. These operations within 

a GNN layer work together to improve the model's capacity to comprehend intricate graph 

structures. 

 

5. Graph Generation 

 

The objective of graph generation is to construct models capable of producing realistic graph 

structures. [16] Conceptually, this task can be linked to the inverse of the graph embedding 

problem. Rather than assuming a given graph structure G = (V, E) as input, in graph generation, 

our aim is for the model's output to be a graph G. While generating any arbitrary graph is 

relatively straightforward, such as a fully connected or edgeless graph, the true challenge lies in 

generating graphs with specific desired properties. 
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5.1. Traditional Graph Generation 

Conventional methods for graph generation typically entail defining a generative process to 

describe the creation of edges within a graph. This generative process is often framed as 

establishing the probability or likelihood, denoted as P(A[u, v] = 1), of an edge existing between 

nodes u and v. The primary challenge lies in formulating a generative process that is both 

manageable and capable of producing graphs with non-trivial properties or characteristics. 

Manageability is crucial to facilitate sampling or analysis of the generated graphs. 

Simultaneously, we strive for these graphs to exhibit properties that align with real-world graph 

patterns. 

 

5.2. Deep Generative Models 

 

The conventional graph generation methods explored in the preceding chapter prove valuable 

across various scenarios. They excel in efficiently producing synthetic graphs with specified 

properties and offer insights into the potential emergence of certain graph structures in the real 

world. Nonetheless, a notable constraint of these traditional approaches lies in their dependence 

on fixed, manually designed generation processes. In essence, while these methods can generate 

graphs, they fall short in their capacity to autonomously learn a generative model from data [17].  

 

We will introduce a series of basic deep generative models for graphs. These models will adapt 

three of the most popular approaches to building general deep generative models: variational 

autoencoders (VAEs) [18], generative adversarial networks (GANs) [19], as shown in figure 7 

 

 

 

a standard VAE model applied to the graph setting. An encoder neural network maps the input 

graph           to a posterior distribution         over latent variables Z. Given a sample 

from this posterior, the decoder model         attempts to reconstruct the adjacency matrix. 

 

The initial objective is to adeptly interpret significant graphs from encoded latent 

representations, particularly when presented with training graphs. Meanwhile, the secondary 

objective serves as a regularization mechanism, guaranteeing our ability to interpret meaningful 

graphs even when latent representations are sampled from the prior distribution, denoted as 

      This second goal assumes paramount importance, especially in scenarios where the 

generation of new graphs is desired post-training. The generation process relies on sampling 

from the prior and inputting these latent embeddings into the decoder, functioning effectively 

only when the second goal is met. 

 

5.3. Evaluating Graph Generation 

 

In the previous section, we explored more advanced graph generation methods based on 

Figure 7: Comparison of two categories of generative models. 
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Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). While 

discussing these methods, we hinted at the effectiveness of some approaches compared to others 

and showcased examples of generated graphs in figure 8, illustrating the diverse capabilities of 

these approaches. However, determining which graph generation approach is superior poses a 

challenge. Unlike tasks with a clear notion of accuracy or error, evaluating generative models 

lacks a straightforward measure. 

 

For instance, we could compare reconstruction losses or model likelihoods on held-out graphs, 

but this is complicated by the absence of a consistent likelihood definition across different 

generation approaches. In the realm of general graph generation, the current practice involves 

analyzing various statistics of the generated graphs and comparing their distribution to a test set. 

 

Formally, let's assume we have a set of graph statistics denoted as                     Each of 

these statistics, represented as is              is assumed to define a univariate distribution 

over the real numbers. 

 

 

Figure 8: Examples of graphs generated by a basic graph-level VAE as well as the GRAN 

model. Each row corresponds to a different dataset. The first column shows an example of a real 

graph from the dataset, while the other columns are randomly selected samples of graphs 

generated by the corresponding model [Liao et al., 2019a] [20] 

 

 

 

 

 

Figure 8: Examples of graphs generated by VAE and GRAN 
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5.4. Python Libraries for GNN’s  

 

There are many open-source libraries that allow the creation of deep neural network in Python, 

without having to explicitly write the code from scratch. In this section, we'll discover three of 

the 

most popular: TensorFlow, Keras, and PyTorch. They all share some common features, as 

follows: 

 The basic unit for data storage is the tensor. Consider the tensor as a generalization of a 

matrix to higher dimensions. Mathematically, the definition of a tensor is more complex, 

but in the context of deep learning libraries, they are multi-dimensional arrays of base 

values. 

 Neural networks are represented as a computational graph of operations. The nodes of 

the graph represent the operations (weighted sum, activation function, and so on). The 

edges represent the flow of data, which is how the output of one operation serves as an 

input for the next one. The inputs and outputs of the operations (including the network 

inputs and outputs) are tensors. 

 
5.4.1 TensorFlow  

 

TensorFlow (TF) (https://www.tensorflow.org), is the most popular deep learning library. It's 

developed and maintained by Google. You don't need to explicitly require the use of a GPU, 

rather TensorFlow will automatically try to use it if you have one. If you have more than one 

GPU, you must assign operations to each GPU explicitly, or only the first one will be used. 

TensorFlow has a steeper learning curve, compared to the other libraries.  

 
5.4.2 Keras  

 

Keras is a high-level neural net Python library that runs on top of TensorFlow, CNTK 

(https://github.com/Microsoft/CNTK), or Theano., we'll assume that it uses TensorFlow on the 

backend. With Keras, you can perform rapid experimentation and it's relatively easy to use 

compared to TF. It will automatically detect an available GPU and attempt to use it. Otherwise, 

it will revert to the CPU. 

 
5.4.3 PyTorch: 

 

PyTorch (https://pytorch.org/) is a deep learning library based on Torch and developed by 

Facebook. It is relatively easy to use and has recently gained a lot of popularity. It will 

automatically select a GPU, if one is available, reverting to the CPU otherwise. 

 

6. Conclusion 
 

In conclusion, this paper navigates through the intricate landscape of Graph Neural Networks 

(GNNs), shedding light on their applications, design principles, and emerging trends. It 

emphasizes the principal role of graphs as a universal language for understanding complex 

systems and illustrates how GNNs revolutionize graph analysis. The exploration encompasses 

essential concepts such as graph description, types, and scales, providing a solid groundwork. 

Dynamic operations and the temporal dimension of graphs are also explored, and the design 

pipeline of GNNs have been discussed, revealing the significance of computational modules in 

graph-based learning. The paper concludes by digging into the fascinating realm of graph 

generation, evaluating methods, and offering an overview of prominent Python libraries for 

GNNs. In essence, this paper serves as a comprehensive guide, illuminating the transformative 

capabilities of GNNs in deciphering intricate relationships within diverse graph-structured data. 
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