
Production Systems and Information Engineering

Volume 11 (1), pp. 62–76

https://doi.org/10.32968/psaie.2023.1.5

GRAPHS UNVEILED: GRAPH NEURAL NETWORKS AND

GRAPH GENERATION

LÁSZLÓ KOVÁCS

University of Miskolc

Hungary Institute of Information Technology

kovacs@iit.uni-miskolc.hu

ALI JLIDI

University of Miskolc

Hungary Institute of Information Technology

jlidi.ali@student.uni-miskolc.hu

Abstract. One of the hot topics in machine learning is the field

of GNN. The complexity of graph data has imposed significant

challenges on existing machine learning algorithms. Recently,

many studies on extending deep learning approaches for graph

data have emerged. This paper represents a survey, providing a

comprehensive overview of Graph Neural Networks (GNNs).

We discuss the applications of graph neural networks across

various domains. Finally, we present an advanced field in

GNNs: graph generation.

Keywords: GNN, Graph generation

1. Introduction

Embarking on the exploration of machine learning applied to graphs [1] invites us

into a realm where graphs, representing connections between objects (nodes), become

a universal language for deciphering complex systems [2]. For instance, in a social

network graph, individuals are nodes, and friendships are edges. The power of this

concept becomes evident in historical studies, like Wayne W. Zachary’s analysis of a

karate club’s dynamics [3], predicting factional splits based on the graph structure.

What makes graphs versatile is their ability to represent various interactions, be it in

social networks, biology, or even telecommunications.

Now, as we step into the world of machine learning, graphs become more than

visual representations. They serve as a mathematical foundation enabling us to

analyze and understand intricate relationships within real-world complex systems.

With the surge in available graph-structured data from sources like social networks,

scientific initiatives, and interconnected devices, the challenge lies in unleashing the

potential of this data.

https://doi.org/10.32968/psaie.2023.1.5
mailto:kovacs@iit.uni-miskolc.hu
mailto:jlidi.ali@student.uni-miskolc.hu

 Graphs unveiled: graph neural networks and graph generation 63

At the same time, the second part of our exploration looks at why people are

paying a lot of attention to studying graphs with machine learning. Graphs, which

are like maps showing connections between things, are powerful tools. They help us

understand many different things like how people interact in social networks, how

proteins work together, or how information is organized in knowledge graphs. The

advent of Graph Neural Networks (GNNs), rooted in the history of neural networks

for graphs and inspired by the success of convolutional neural networks (CNNs), has

revolutionized graph analysis. GNNs collectively aggregate information from graph

structures, enabling tasks like node classification [4] and link prediction [5].

This paper unfolds the motivations behind GNNs [6]. It explores the role of graph

representation learning in enhancing traditional machine learning approaches. The

review provides a comprehensive understanding of GNNs, categorizes them into

different groups, and delves into their applications across various domains. It also

identifies open problems for future research, making this exploration a roadmap for

understanding and advancing machine learning on graphs.

2. Background survey

2.1. Graph description

Before we dive into talking about machine learning on graphs, let’s first explain what

we mean by “graph data” in simpler terms. A graph, formally represented as G = (V, E)

as it shown in Figure 1, is made up of nodes (V) and edges (E) connecting these

nodes. An edge from one node (u) to another (v) is written as (u, v) ∈ E. Usually,

we’re dealing with straightforward graphs, where there’s at most one connection

between each pair of nodes, no self-connections, and all connections are two-way,

meaning (u, v) ∈ E is the same as (v, u) ∈ E.

Figure 1. Graph G = (V, E)

We often use an adjacency matrix (let’s call it A) to represent graphs [7]. This matrix,

with dimensions |V|×|V|, helps us see which nodes are connected. If there’s a

connection between nodes u and v, A [u, v] equals 1; otherwise, it’s 0. If the graph

only has undirected connections, the matrix is symmetrical, but if the graph is

directed connections, it might not be. Some graphs also have “weighted” edges,

64 L. Kovács and Ali Jlidi

meaning the connections aren’t just 0 or 1, but can be any real number. For instance,

in a graph showing how proteins interact, a weighted edge could tell us how strong

the connection is between two proteins.

2.1.1 Graph type and scale

Graphs with complex types could provide more information on nodes and their

connections. Graphs are usually categorized as:

 Directed/Undirected Graphs. Edges in directed graphs are all directed from

one node to another, which provides more information than undirected graphs.

Each edge in undirected graphs can also be regarded as two directed edges.

 Homogeneous/Heterogeneous Graphs. Nodes and edges in homogeneous

graphs have same types, while nodes and edges have different types in

heterogeneous graphs. Types for nodes and edges play important roles in

heterogeneous graphs and should be further considered.

 Static/Dynamic Graphs. When input features or the topology of the graph

vary with time, the graph is regarded as a dynamic graph. The time

information should be carefully considered in dynamic graphs.

These categories operate independently, allowing for combinations; for instance, a

dynamic directed heterogeneous graph is one possible combination. Various other

graph types, like hypergraphs and signed graphs designed for specific tasks, exist.

Although not exhaustively listed here, the primary consideration lies in acknowledging

the additional information offered by these graphs.

Concerning graph scale, the determination of what qualifies as “small” or “large”

lacks a fixed criterion. The definition evolved with advancements in computational

devices, such as the speed and memory of GPUs. In this paper, a graph earns the

classification of large-scale when the device encounters challenges in storing and

processing its adjacency matrix or graph Laplacian, which has a space complexity

of 𝑂(𝑛2). In such instances, methodologies like sampling may become necessary.

*𝑂(𝑛2).: n represents the number of nodes in the graph, the space complexity

indicating that the space required grows quadratically with the number of nodes in

the graph.

2.2. Application area

Exploring the application areas of graph-based machine learning unveils a spectrum

of diverse domains where these techniques prove instrumental. Social network

analysis [8] stands out as a primary application, employing graphs to represent

relationships among individuals. This enables the discernment of communities,

influential nodes, and patterns within social structures. In recommendation systems,

graphs model user-item interactions, facilitating the provision of personalized

content recommendations based on shared preferences. Within the realm of biology,

graph-based models contribute to understanding molecular interactions, where nodes

signify biological entities and edges convey relationships. Transportation and

 Graphs unveiled: graph neural networks and graph generation 65

logistics benefit from graph algorithms, optimizing routes and enhancing network

connectivity. Notably, in graph generation, these techniques play a pivotal role in

creating realistic graph structures, such as generating realistic social networks or

molecular structures, adding an innovative dimension to the field by creating

synthetic yet representative data for various applications. This multifaceted

applicability underscores the adaptability of graph-based machine learning, offering

inventive solutions across a spectrum of disciplines.

Table 1

Application of graph neural networks

Area Application

Graph Mining Graph Matching

Graph Clustering

Physics Physical Systems Modeling

Chemistry Molecular Fingerprints

Chemical Reaction Prediction

Biology Protein Interface Prediction

Side Effects Prediction

Disease Classification

Knowledge Graph Knowledge Base completion

Knowledge Graph alignment

Generation Graph Generation

Combinatorial Optimization Combinatorial Optimization

Traffic Network Traffic State Prediction

Recommendation Systems User-item Interaction Prediction

Social Recommendation

Others Stock Market

Software Defined Networks

AMR Graph to Text

Image Social Relationship

Understanding

Image Classification

Visual Question Answering

Object Detection

Interaction Detection

Region Classification

Semantic Segmentation

Text Text Classification

Sequence Labeling

Neural Machine Translation

Relation Etraction

Event Extraction

Fact Verification

Question Answering

Relational Reasoning

66 L. Kovács and Ali Jlidi

2.3. Dynamic operations

In the exploration of dynamic operations [9], our attention turns to the temporal

dimension of graphs, investigating how they evolve over time. Dynamic operations refer

to the study and manipulation of graphs with changing structures, capturing variations in

connections, entities, or attributes across different time points. This temporal layer adds

complexity to traditional static graphs, offering insight into the dynamic nature of real-

world systems, where relationships between entities can undergo transformations over

time. Whether tracking shifts in social network interactions, observing changes in

biological processes, or analyzing fluctuations in transportation networks, this section

delves into the methodologies and considerations associated with dynamic graph

operations. It aims to elucidate the mechanisms employed to navigate and comprehend

the temporal evolution of graph structures within the context of complex systems.

A dynamic graph model is defined as 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡), where it outlines the state of

the graph (comprising nodes and edges) at a specific time moment [10], denoted as

t. Both directed and undirected dynamic graphs find representation in various

existing models, be they discrete or continuous. In discrete models, periodic

snapshots are taken at fixed intervals, such as every 30 minutes, day, or week. This

approach offers precise mappings at specific time points and allows approximations

for states at other instances based on factors like time or changes. Conversely,

continuous models meticulously track every change, presenting an accurate graph

state for any given instant. The subsequent sections categorize the pertinent literature

into four distinct types, providing a detailed description of each.

3. General design pipeline of GNNs

3.1. Graph learnings tasks:

Graph learning tasks involve three main types: node-level tasks focus on individual

nodes, edge-level tasks examine connections between nodes, and graph-level tasks

address the properties of the overall graph.

 Node-level tasks in graph learning, such as classification, regression, and

clustering, focus on categorizing nodes, predicting continuous values, and

grouping similar nodes, respectively.

 Edge-level tasks involve classifying edge types and predicting the existence

of edges between specified nodes.

 Graph-level tasks encompass graph classification, graph regression, and

graph matching, requiring the model to learn representations for entire graphs.

From a supervision standpoint, graph learning tasks can be categorized into three

training settings:

 Supervised setting utilizes labeled data for training.

 Semi-supervised setting involves a mix of labeled and unlabeled nodes,

often seen in tasks like node and edge classification.

 Unsupervised setting relies solely on unlabeled data, suitable for tasks like

node clustering.

 Graphs unveiled: graph neural networks and graph generation 67

3.2. Basic Design concept of GNN’s

In graph-based learning, extracting meaningful representations as shown in Figure 2

involves deriving a node feature vector and adjacency matrix. The node feature

vector captures essential characteristics of individual nodes, serving as a condensed

representation [11]. Simultaneously, the adjacency matrix encapsulates the

relationships between nodes, reflecting the graph’s connectivity structure. With these

components in hand, embedding techniques can be applied to map nodes into a

continuous vector space, facilitating efficient representation learning. Message

passing algorithms [12], leveraging the adjacency matrix, then enable nodes to

exchange information and refine their embeddings through iterative communication

within the graph structure.

Figure 1. Extracting adjacency matrix from a graph

3.2.1 Adjacency Matrix(A):

The adjacency matrix represents the connections between nodes in the graph. For a

graph with N nodes, the adjacency matrix A is a matrix, where 𝐴𝑖𝑗 = 1 if there is an

edge between node (i) and node (j), and = 0 otherwise. As shown in Figure 3.

Figure 2. mapping an adjacency matrix

68 L. Kovács and Ali Jlidi

3.2.2. Node Embeddings (H)

Node embedding is a pivotal concept in graph representation learning, aiming to

transform individual nodes into continuous vector representations. By capturing the

inherent structural and relational information within a graph using different

computational modules as shown in Figure 4, node embeddings facilitate the translation

of complex network structures into a more interpretable and computationally efficient

format. These embeddings serve as compact yet informative representations, enabling

downstream tasks such as node classification, clustering, and link prediction in a

variety of applications, from social networks to biological systems.

New Embeddings = adj_matrix × X

Figure 4. Node embedding using message passing

3.2.2 Message passing algorithm

The fundamental graph neural network (GNN) model can be explained in various

ways. Researchers have derived this core GNN model as an extension of

convolutions to non-Euclidean data [Bruna et al., 2014], a differentiable version of

belief propagation [Dai et al., 2016], and through analogies to traditional graph

isomorphism tests [Hamilton et al., 2017b]. Regardless of the specific motivation, a

defining characteristic of GNNs is their use of neural message passing. In this

approach, vector messages are exchanged between nodes and updated using neural

networks [Gilmer et al., 2017].

In this paper, we delve into the foundational aspects of this neural message

passing framework. Our focus will be on the message passing mechanism itself,

while detailed discussions about training and optimizing GNN models are reserved

for later. This chapter primarily explores how an input graph 𝐺 = (𝑉, 𝐸), along with

a set of node features 𝑋 ∈ 𝑅𝑑 ×∣ 𝑉 ∣, can be utilized to generate node embeddings

𝑧𝑢 for all nodes 𝑢 ∈ 𝑉. Moreover, we will also explore how the GNN framework

can be employed to generate embeddings for subgraphs and entire graphs.

* 𝑋 ∈ 𝑅𝑑 ×∣ 𝑉 ∣,: Denotes a real-valued matrix of dimensions 𝑑 × |𝑉| . where “d”
is the number of features associated with each node and |V| is the number of
nodes in the graph.

 Graphs unveiled: graph neural networks and graph generation 69

During each iteration of message-passing within a Graph Neural Network (GNN),

the hidden embedding ℎ𝑢
(𝑘)

 [13] corresponding to every node u in the set V gets

revised. This adjustment occurs based on information aggregated from the

neighborhood 𝑁(𝑢) of node 𝑢 in the graph (as illustrated in Figure 5). This iterative

process of message-passing forms a crucial part of GNN operations.

Figure 5. Message passing algorithm applied for a node

In Figure 5, we see how a single node in a graph aggregates messages from its nearby

neighbors. For instance, node 1 collects messages from its immediate neighbors

(nodes 5, 4, and 2). What makes this process interesting is that these neighboring

nodes, in turn, aggregate messages from their respective neighbors, creating a

recursive pattern of information exchange. This visualization showcases a two-layer

version of the message-passing model, illustrating how information ripples through

the graph. Additionally, the computation graph forms a tree structure as it unfolds

around the target node, depicting the hierarchical nature of message aggregation in

Graph Neural Networks (GNNs).

Mathematically it could be expressed as follows:

ℎ𝑢
(𝑘+1)

= 𝑈𝑝𝑑𝑎𝑡𝑒(𝑘)(ℎ𝑢
(𝑘)

, 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑘) ({ℎ𝑢
(𝑘)

, ∀𝜗 ∈ (𝑢)}))

= 𝑈𝑝𝑑𝑎𝑡𝑒(𝑘)(ℎ𝑢
(𝑘)

, 𝑚𝑁(𝑢)
(𝑘)

In the Graph Neural Network (GNN) framework, the processes of updating [14] node

embeddings involve two main steps: AGGREGATE and UPDATE. Here, these are

flexible, differentiable functions, often implemented as neural networks. During

each iteration k of the GNN, the AGGREGATE function processes the embeddings

of nodes in u’s neighborhood 𝑁(𝑢), creating a message) 𝑚𝑁(𝑢)
(𝑘)

based on this

collective neighborhood information. Subsequently, the UPDATE function

combines this message 𝑚𝑁(𝑢)
(𝑘)

with the prior embedding ℎ𝑢
(𝑘−1)

 of node u to generate

the updated embedding ℎ𝑢
(𝑘)

.

70 L. Kovács and Ali Jlidi

Initially, at k = 0, the embeddings are set to the input features for all nodes ℎ𝑢
(0)

=𝑥𝑢,

where xu represents the features of node u. After running K iterations of GNN message

passing, the final layer’s output ℎ𝑢
(𝑘)

represents the embeddings for each node in the

graph 𝑧𝑢=ℎ𝑢
(𝑘)

. This iterative process allows GNNs to capture complex relationships

within graph-structured data.

4. Computational modules

In this part, we explore how node embeddings and message passing algorithms work

together. We break down the mechanisms that these computer modules use to make

graph-based learning powerful. They take raw data and turn it into important,

detailed representations. By looking closely at these modules, we reveal the

processes that make GNNs efficient and effective. This helps us understand better

how GNNs can be useful in different areas.

Some commonly used computational modules are:

 Propagation Module: This module facilitates the flow of information

between nodes, allowing the aggregated data to encompass both feature and

topological details. Within propagation modules, the convolution and

recurrent operators play key roles in gathering information from neighboring

nodes, while the skip connection operation helps integrate insights from

historical node representations, addressing concerns like over-smoothing.
 Sampling Module: For large graphs, the use of sampling modules becomes

essential in the propagation process. These modules are typically integrated

with the propagation module to ensure effective information dissemination

across the graph.

 Pooling Module: When the focus shifts to obtaining representations of

higher-level subgraphs or entire graphs, pooling modules come into play.

These modules are instrumental in extracting valuable information from nodes

to construct meaningful representations.

These computational modules form the building blocks of a typical Graph Neural

Network (GNN) model, often combined to create the overall architecture. In the

central portion of Figure 6.a common GNN model design is depicted. Each layer

incorporates the convolutional operator, recurrent operator, sampling module, and

skip connection for effective information propagation [15]. Following this, a pooling

module is introduced to extract high-level information. The stacking of these layers

is a standard practice to enhance the quality of representations. While this

architecture generally applies to most GNN models.

In a Graph Neural Network (GNN) layer, several key operations come into play.

The sampling module is employed, particularly in large graphs, to facilitate the

propagation of information. Simultaneously, the convolutional operator plays a

pivotal role in gathering insights from neighboring nodes, capturing both features

and topological information. Additionally, the introduction of the pooling module

 Graphs unveiled: graph neural networks and graph generation 71

allows for the extraction of high-level information, crucial when dealing with

representations of larger subgraphs or entire graphs. These operations within a GNN

layer work together to improve the model’s capacity to comprehend intricate graph

structures.

Figure 3. Design pipeline for a GNN model

5. Graph Generation

The objective of graph generation is to construct models capable of producing

realistic graph structures. [16] Conceptually, this task can be linked to the inverse of

the graph embedding problem. Rather than assuming a given graph structure G = (V,

E) as input, in graph generation, our aim is for the model's output to be a graph G.

While generating any arbitrary graph is relatively straightforward, such as a fully

connected or edgeless graph, the true challenge lies in generating graphs with

specific desired properties.

5.1. Traditional Graph Generation

Conventional methods for graph generation typically entail defining a generative

process to describe the creation of edges within a graph. This generative process is

often framed as establishing the probability or likelihood, denoted as P(A[u, v] = 1),

of an edge existing between nodes u and v. The primary challenge lies in formulating

a generative process that is both manageable and capable of producing graphs with

non-trivial properties or characteristics. Manageability is crucial to facilitate

sampling or analysis of the generated graphs. Simultaneously, we strive for these

graphs to exhibit properties that align with real-world graph patterns.

5.2. Deep Generative Models

The conventional graph generation methods explored in the preceding chapter prove

valuable across various scenarios. They excel in efficiently producing synthetic

graphs with specified properties and offer insights into the potential emergence of

72 L. Kovács and Ali Jlidi

certain graph structures in the real world. Nonetheless, a notable constraint of these

traditional approaches lies in their dependence on fixed, manually designed

generation processes. In essence, while these methods can generate graphs, they fall

short in their capacity to autonomously learn a generative model from data [17].

We will introduce a series of basic deep generative models for graphs. These

models will adapt three of the most popular approaches to building general deep

generative models: variational autoencoders (VAEs) [18], generative adversarial

networks (GANs) [19], as shown in Figure 7 a standard VAE model applied to the

graph setting. An encoder neural network maps the input graph G = (A,X) to a

posterior distribution qφ(Z|X) over latent variables Z. Given a sample from this

posterior, the decoder model pθ(X|Z) attempts to reconstruct the adjacency matrix.

Figure 7. Comparison of two categories of generative models

The initial objective is to adeptly interpret significant graphs from encoded latent

representations, particularly when presented with training graphs. Meanwhile, the

secondary objective serves as a regularization mechanism, guaranteeing our ability

to interpret meaningful graphs even when latent representations are sampled from

the prior distribution, denoted as 𝑝(𝑍). This second goal assumes paramount

importance, especially in scenarios where the generation of new graphs is desired

post-training. The generation process relies on sampling from the prior and inputting

these latent embeddings into the decoder, functioning effectively only when the

second goal is met.

5.3. Evaluating Graph Generation

In the previous section, we explored more advanced graph generation methods based

on Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs).

While discussing these methods, we hinted at the effectiveness of some approaches

compared to others and showcased examples of generated graphs in Figure 8,

illustrating the diverse capabilities of these approaches. However, determining which

graph generation approach is superior poses a challenge. Unlike tasks with a clear

notion of accuracy or error, evaluating generative models lacks a straightforward

measure.

 Graphs unveiled: graph neural networks and graph generation 73

For instance, we could compare reconstruction losses or model likelihoods on held-

out graphs, but this is complicated by the absence of a consistent likelihood definition

across different generation approaches. In the realm of general graph generation, the

current practice involves analyzing various statistics of the generated graphs and

comparing their distribution to a test set.

Formally, let’s assume we have a set of graph statistics denoted as 𝑆 =
 (𝑠1, 𝑠2, . . . , 𝑠𝑛). Each of these statistics, represented as is𝐺 ∶ 𝑅 → [0, 1], is

assumed to define a univariate distribution over the real numbers.

Figure 8. Examples of graphs generated by VAE and GRAN

Figure 8: Examples of graphs generated by a basic graph-level VAE as well as the

GRAN model. Each row corresponds to a different dataset. The first column shows

an example of a real graph from the dataset, while the other columns are randomly

selected samples of graphs generated by the corresponding model [Liao et al.,

2019a] [20]

74 L. Kovács and Ali Jlidi

5.4. Python Libraries for GNN’s

There are many open-source libraries that allow the creation of deep neural network

in Python, without having to explicitly write the code from scratch. In this section,

we’ll discover three of the most popular: TensorFlow, Keras, and PyTorch. They all

share some common features, as follows:

 The basic unit for data storage is the tensor. Consider the tensor as a

generalization of a matrix to higher dimensions. Mathematically, the definition

of a tensor is more complex, but in the context of deep learning libraries, they

are multi-dimensional arrays of base values.

 Neural networks are represented as a computational graph of operations. The

nodes of the graph represent the operations (weighted sum, activation function,

and so on). The edges represent the flow of data, which is how the output of one

operation serves as an input for the next one. The inputs and outputs of the

operations (including the network inputs and outputs) are tensors.

5.4.1 TensorFlow

TensorFlow (TF) (https://www.tensorflow.org), is the most popular deep learning

library. It’s developed and maintained by Google. You don’t need to explicitly

require the use of a GPU, rather TensorFlow will automatically try to use it if you

have one. If you have more than one GPU, you must assign operations to each GPU

explicitly, or only the first one will be used.

TensorFlow has a steeper learning curve, compared to the other libraries.

5.4.2 Keras

Keras is a high-level neural net Python library that runs on top of TensorFlow,

CNTK (https://github.com/Microsoft/CNTK), or Theano., we’ll assume that it uses

TensorFlow on the backend. With Keras, you can perform rapid experimentation

and it’s relatively easy to use compared to TF. It will automatically detect an

available GPU and attempt to use it. Otherwise, it will revert to the CPU.

5.4.3 PyTorch

PyTorch (https://pytorch.org/) is a deep learning library based on Torch and

developed by Facebook. It is relatively easy to use and has recently gained a lot of

popularity. It will automatically select a GPU, if one is available, reverting to the

CPU otherwise.

6. Conclusion

In conclusion, this paper navigates through the intricate landscape of Graph Neural

Networks (GNNs), shedding light on their applications, design principles, and

emerging trends. It emphasizes the principal role of graphs as a universal language

for understanding complex systems and illustrates how GNNs revolutionize graph

 Graphs unveiled: graph neural networks and graph generation 75

analysis. The exploration encompasses essential concepts such as graph description,

types, and scales, providing a solid groundwork. Dynamic operations and the

temporal dimension of graphs are also explored, and the design pipeline of GNNs

have been discussed, revealing the significance of computational modules in graph-

based learning. The paper concludes by digging into the fascinating realm of graph

generation, evaluating methods, and offering an overview of prominent Python

libraries for GNNs. In essence, this paper serves as a comprehensive guide,

illuminating the transformative capabilities of GNNs in deciphering intricate

relationships within diverse graph-structured data.

References

[1] Chami, I., Perozzi, B., Ré, C., Murphy, K. & Abu-El-Haija, S. (2022). Machine

Learning on Graphs: A Model and Comprehensive Taxonomy. Journal of Machine

Learning Research, Vol. 23.

https://dl.acm.org/doi/abs/10.5555/3586589.3586678

[2] Pigné, Y., Dutot, A., Guinand, F. & Olivier, D. (2008). GraphStream: A Tool for

bridging the gap between Complex Systems and Dynamic Graphs.

http://arxiv.org/abs/0803.2093

[3] Wikipedia contributors. (2023, September 22). Zachary’s karate club. In: Wikipedia,

The Free Encyclopedia. Retrieved 08:57, November 17, 2023, from https://en.wiki

pedia.org/w/index.php?title=Zachary%27s_karate_club& oldid=1176533381

[4] Zhou, F., Trajcevski, G., Cao, C., Zhong, T., Zhang, K. & Geng, J. (2019). Meta-

GNN: On few-shot node classification in graph meta-learning. International

Conference on Information and Knowledge Management, Proceedings, pp. 2357–

2360. https://doi.org/10.1145/3357384.3358106

[5] Zhang, M. & Chen, Y. (n.d.). Link Prediction Based on Graph Neural Networks.

(2022) The Journal of Machine Learning Research, Vol. 23, Issue 1, Article No. 89,

pp 3840–3903.

[6] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C. & Sun, M.

(2020). Graph neural networks: A review of methods and applications. AI Open, Vol.

1, pp. 57–81. https://doi.org/10.1016/j.aiopen.2021.01.001

[7] Harary, F. (1962). The Determinant of the Adjacency Matrix of a Graph. SIAM

Review, 4 (3), pp. 202–210. https://doi.org/10.1137/1004057

[8] Guo, Z., Wang, H. A Deep Graph Neural Network-Based Mechanism for Social

Recommendations. IEEE Transactions on Industrial Informatics, Vol. 17, No. 4, pp.

2776–2783. https://doi.org/10.1109/TII.2020.2986316

[9] Kosmatopoulos A., Giannakopoulou, K. et al. (2016). An Overview of Methods for

Handling Evolving Graph Sequences. In: Karydis, I., Sioutas, S. et al. (eds.).

Algorithmic Aspects of Cloud Computing. Springer International Publishing, pp. 181–192.

[10] Harary, F. & Gupta, G. (1997). Dynamic Graph Models. Mathl. Comput. Modelling,

Vol. 25, Issue 7.

https://dl.acm.org/doi/abs/10.5555/3586589.3586678
http://arxiv.org/abs/0803.2093
https://doi.org/10.1145/3357384.3358106
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1137/1004057
https://doi.org/10.1109/TII.2020.2986316

76 L. Kovács and Ali Jlidi

[11] Gibert, J., Valveny, E. & Bunke, H. (2012). Graph embedding in vector spaces by

node attribute statistics. Pattern Recognition, 45 (9), pp. 3072–3083.

https://doi.org/10.1016/j.patcog.2012.01.009

[12] Meltzer, T., Globerson, A. & Weiss, Y. (n.d.). Convergent message passing algo-

rithms-a unifying view. arXiv journal report number UAI-P-2009-PG-393-401.
https://doi.org/10.48550/arXiv.1205.2625

[13] Veyrin-Forrer, L. (2023). Explaining machine learning models on graphs by

identifying hidden structures built by GNNs. Computer Science [cs]. INSA LYON,

English.

[14] Béres, F., Kelen, D. M., Pálovics, R. & Benczúr, A. A. (2019). Node embeddings in

dynamic graphs. Applied Network Science, Springer.

https://doi.org/10.1007/s41109-019-0169-5

[15] Grattarola, D., Alippi, C. (2021). Graph Neural Networks in TensorFlow and Keras

with Spektral [Application Notes]. IEEE Computational Intelligence Magazine, Vol.

16, No. 1, pp. 99–106. https://doi.org/10.1109/MCI.2020.3039072

[16] Faez, F., Ommi, Y., Baghshah, M. S., Rabiee, H. R. (2021). Deep Graph Generators:

A Survey. IEEE Access, Vol. 9, pp. 106675–106702.

https://doi.org/10.1109/ACCESS.2021.3098417

[17] Bach, S. H., He, B., Ratner, A. & Ré, C. (2017). Learning the Structure of Generative

Models without Labeled Data. In: Precup, D. & The, Y. W. (eds.). Proceedings of the

34th International Conference on Machine Learning, Vol. 70, pp. 273–282. PMLR.

https://proceedings.mlr.press/v70/bach17a.html

[18] Doersch, C. (2016). Tutorial on Variational Autoencoders. arXiv journal http://

arxiv.org/abs/1606.05908

[19] Saxena, D. & Cao, J. (2021). Generative Adversarial Networks (GANs). ACM

Computing Surveys, Vol. 54, Issue 3. https://doi.org/10.1145/3446374

[20] Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duvenaud, D. K., Urtasun, R. &

Zemel, R. (2019). Efficient Graph Generation with Graph Recurrent Attention

Networks. In: Wallach, H., Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox, E.

& Garnett, R. (eds.). Advances in Neural Information Processing Systems. Vol. 32.

Curran Associates, Inc. https://proceedings. neurips.cc/paper_files/paper/2019/file/

d0921d442ee91b896ad95059d13df618-Paper.pdf

https://doi.org/10.1016/j.patcog.2012.01.009
https://doi.org/10.48550/arXiv.1205.2625
https://doi.org/10.48550/arXiv.1205.2625
https://doi.org/10.1007/s41109-019-0169-5
https://doi.org/10.1109/MCI.2020.3039072
https://doi.org/10.1109/ACCESS.2021.3098417
https://doi.org/10.1145/3446374

