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Abstract. One of the hot topics in machine learning is the field 

of GNN. The complexity of graph data has imposed significant 

challenges on existing machine learning algorithms. Recently, 

many studies on extending deep learning approaches for graph 

data have emerged. This paper represents a survey, providing a 

comprehensive overview of Graph Neural Networks (GNNs). 

We discuss the applications of graph neural networks across 

various domains. Finally, we present an advanced field in 

GNNs: graph generation. 
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1. Introduction 

Embarking on the exploration of machine learning applied to graphs [1] invites us 

into a realm where graphs, representing connections between objects (nodes), become 

a universal language for deciphering complex systems [2]. For instance, in a social 

network graph, individuals are nodes, and friendships are edges. The power of this 

concept becomes evident in historical studies, like Wayne W. Zachary’s analysis of a 

karate club’s dynamics [3], predicting factional splits based on the graph structure. 

What makes graphs versatile is their ability to represent various interactions, be it in 

social networks, biology, or even telecommunications. 

Now, as we step into the world of machine learning, graphs become more than 

visual representations. They serve as a mathematical foundation enabling us to 

analyze and understand intricate relationships within real-world complex systems. 

With the surge in available graph-structured data from sources like social networks, 

scientific initiatives, and interconnected devices, the challenge lies in unleashing the 

potential of this data. 
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At the same time, the second part of our exploration looks at why people are 

paying a lot of attention to studying graphs with machine learning. Graphs, which 

are like maps showing connections between things, are powerful tools. They help us 

understand many different things like how people interact in social networks, how 

proteins work together, or how information is organized in knowledge graphs. The 

advent of Graph Neural Networks (GNNs), rooted in the history of neural networks 

for graphs and inspired by the success of convolutional neural networks (CNNs), has 

revolutionized graph analysis. GNNs collectively aggregate information from graph 

structures, enabling tasks like node classification [4] and link prediction [5]. 

This paper unfolds the motivations behind GNNs [6]. It explores the role of graph 

representation learning in enhancing traditional machine learning approaches. The 

review provides a comprehensive understanding of GNNs, categorizes them into 

different groups, and delves into their applications across various domains. It also 

identifies open problems for future research, making this exploration a roadmap for 

understanding and advancing machine learning on graphs. 

 

2. Background survey 

2.1. Graph description 

Before we dive into talking about machine learning on graphs, let’s first explain what 

we mean by “graph data” in simpler terms. A graph, formally represented as G = (V, E) 

as it shown in Figure 1, is made up of nodes (V) and edges (E) connecting these 

nodes. An edge from one node (u) to another (v) is written as (u, v) ∈ E. Usually, 

we’re dealing with straightforward graphs, where there’s at most one connection 

between each pair of nodes, no self-connections, and all connections are two-way, 

meaning (u, v) ∈ E is the same as (v, u) ∈ E. 

 

 
Figure 1. Graph G = (V, E) 

 

We often use an adjacency matrix (let’s call it A) to represent graphs [7]. This matrix, 

with dimensions |V|×|V|, helps us see which nodes are connected. If there’s a 

connection between nodes u and v, A [u, v] equals 1; otherwise, it’s 0. If the graph 

only has undirected connections, the matrix is symmetrical, but if the graph is 

directed connections, it might not be. Some graphs also have “weighted” edges, 
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meaning the connections aren’t just 0 or 1, but can be any real number. For instance, 

in a graph showing how proteins interact, a weighted edge could tell us how strong 

the connection is between two proteins. 

 

2.1.1 Graph type and scale  

Graphs with complex types could provide more information on nodes and their 

connections. Graphs are usually categorized as: 

 Directed/Undirected Graphs. Edges in directed graphs are all directed from 

one node to another, which provides more information than undirected graphs. 

Each edge in undirected graphs can also be regarded as two directed edges. 

 Homogeneous/Heterogeneous Graphs. Nodes and edges in homogeneous 

graphs have same types, while nodes and edges have different types in 

heterogeneous graphs. Types for nodes and edges play important roles in 

heterogeneous graphs and should be further considered. 

 Static/Dynamic Graphs. When input features or the topology of the graph 

vary with time, the graph is regarded as a dynamic graph. The time 

information should be carefully considered in dynamic graphs. 

These categories operate independently, allowing for combinations; for instance, a 

dynamic directed heterogeneous graph is one possible combination. Various other 

graph types, like hypergraphs and signed graphs designed for specific tasks, exist. 

Although not exhaustively listed here, the primary consideration lies in acknowledging 

the additional information offered by these graphs. 

Concerning graph scale, the determination of what qualifies as “small” or “large” 

lacks a fixed criterion. The definition evolved with advancements in computational 

devices, such as the speed and memory of GPUs. In this paper, a graph earns the 

classification of large-scale when the device encounters challenges in storing and 

processing its adjacency matrix or graph Laplacian, which has a space complexity 

of 𝑂(𝑛2). In such instances, methodologies like sampling may become necessary. 

*𝑂(𝑛2).: n represents the number of nodes in the graph, the space complexity 

indicating that the space required grows quadratically with the number of nodes in 

the graph. 

 

2.2. Application area 

Exploring the application areas of graph-based machine learning unveils a spectrum 

of diverse domains where these techniques prove instrumental. Social network 

analysis [8] stands out as a primary application, employing graphs to represent 

relationships among individuals. This enables the discernment of communities, 

influential nodes, and patterns within social structures. In recommendation systems, 

graphs model user-item interactions, facilitating the provision of personalized 

content recommendations based on shared preferences. Within the realm of biology, 

graph-based models contribute to understanding molecular interactions, where nodes 

signify biological entities and edges convey relationships. Transportation and 
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logistics benefit from graph algorithms, optimizing routes and enhancing network 

connectivity. Notably, in graph generation, these techniques play a pivotal role in 

creating realistic graph structures, such as generating realistic social networks or 

molecular structures, adding an innovative dimension to the field by creating 

synthetic yet representative data for various applications. This multifaceted 

applicability underscores the adaptability of graph-based machine learning, offering 

inventive solutions across a spectrum of disciplines. 

 

Table 1 

Application of graph neural networks 

Area Application 

Graph Mining Graph Matching 

Graph Clustering 

Physics Physical Systems Modeling 

Chemistry Molecular Fingerprints 

Chemical Reaction Prediction 

Biology Protein Interface Prediction 

Side Effects Prediction 

Disease Classification 

Knowledge Graph Knowledge Base completion 

Knowledge Graph alignment 

Generation Graph Generation 

Combinatorial Optimization Combinatorial Optimization 

Traffic Network Traffic State Prediction 

Recommendation Systems User-item Interaction Prediction  

Social Recommendation 

Others Stock Market 

Software Defined Networks 

AMR Graph to Text 

Image Social Relationship 

Understanding 

Image Classification 

Visual Question Answering 

Object Detection 

Interaction Detection 

Region Classification 

Semantic Segmentation 

Text Text Classification 

Sequence Labeling 

Neural Machine Translation 

Relation Etraction 

Event Extraction 

Fact Verification 

Question Answering 

Relational Reasoning 
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2.3. Dynamic operations 

In the exploration of dynamic operations [9], our attention turns to the temporal 

dimension of graphs, investigating how they evolve over time. Dynamic operations refer 

to the study and manipulation of graphs with changing structures, capturing variations in 

connections, entities, or attributes across different time points. This temporal layer adds 

complexity to traditional static graphs, offering insight into the dynamic nature of real-

world systems, where relationships between entities can undergo transformations over 

time. Whether tracking shifts in social network interactions, observing changes in 

biological processes, or analyzing fluctuations in transportation networks, this section 

delves into the methodologies and considerations associated with dynamic graph 

operations. It aims to elucidate the mechanisms employed to navigate and comprehend 

the temporal evolution of graph structures within the context of complex systems. 

A dynamic graph model is defined as 𝐺𝑡  =  (𝑉𝑡 , 𝐸𝑡), where it outlines the state of 

the graph (comprising nodes and edges) at a specific time moment [10], denoted as 

t. Both directed and undirected dynamic graphs find representation in various 

existing models, be they discrete or continuous. In discrete models, periodic 

snapshots are taken at fixed intervals, such as every 30 minutes, day, or week. This 

approach offers precise mappings at specific time points and allows approximations 

for states at other instances based on factors like time or changes. Conversely, 

continuous models meticulously track every change, presenting an accurate graph 

state for any given instant. The subsequent sections categorize the pertinent literature 

into four distinct types, providing a detailed description of each. 

 

3. General design pipeline of GNNs 

3.1. Graph learnings tasks: 

Graph learning tasks involve three main types: node-level tasks focus on individual 

nodes, edge-level tasks examine connections between nodes, and graph-level tasks 

address the properties of the overall graph.  

 Node-level tasks in graph learning, such as classification, regression, and 

clustering, focus on categorizing nodes, predicting continuous values, and 

grouping similar nodes, respectively. 

 Edge-level tasks involve classifying edge types and predicting the existence 

of edges between specified nodes. 

 Graph-level tasks encompass graph classification, graph regression, and 

graph matching, requiring the model to learn representations for entire graphs. 

From a supervision standpoint, graph learning tasks can be categorized into three 

training settings: 

 Supervised setting utilizes labeled data for training. 

 Semi-supervised setting involves a mix of labeled and unlabeled nodes, 

often seen in tasks like node and edge classification. 

 Unsupervised setting relies solely on unlabeled data, suitable for tasks like 

node clustering. 
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3.2. Basic Design concept of GNN’s 

In graph-based learning, extracting meaningful representations as shown in Figure 2 

involves deriving a node feature vector and adjacency matrix. The node feature 

vector captures essential characteristics of individual nodes, serving as a condensed 

representation [11]. Simultaneously, the adjacency matrix encapsulates the 

relationships between nodes, reflecting the graph’s connectivity structure. With these 

components in hand, embedding techniques can be applied to map nodes into a 

continuous vector space, facilitating efficient representation learning. Message 

passing algorithms [12], leveraging the adjacency matrix, then enable nodes to 

exchange information and refine their embeddings through iterative communication 

within the graph structure. 

 

 

Figure 1. Extracting adjacency matrix from a graph 

 

3.2.1 Adjacency Matrix(A): 

The adjacency matrix represents the connections between nodes in the graph. For a 

graph with N nodes, the adjacency matrix A is a matrix, where 𝐴𝑖𝑗 = 1 if there is an 

edge between node (i) and node (j), and = 0 otherwise. As shown in Figure 3. 

 

 
Figure 2. mapping an adjacency matrix 
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3.2.2. Node Embeddings (H) 

Node embedding is a pivotal concept in graph representation learning, aiming to 

transform individual nodes into continuous vector representations. By capturing the 

inherent structural and relational information within a graph using different 

computational modules as shown in Figure 4, node embeddings facilitate the translation 

of complex network structures into a more interpretable and computationally efficient 

format. These embeddings serve as compact yet informative representations, enabling 

downstream tasks such as node classification, clustering, and link prediction in a 

variety of applications, from social networks to biological systems. 

 

New Embeddings =  adj_matrix ×  X 

 
Figure 4. Node embedding using message passing 

 

3.2.2 Message passing algorithm 

The fundamental graph neural network (GNN) model can be explained in various 

ways. Researchers have derived this core GNN model as an extension of 

convolutions to non-Euclidean data [Bruna et al., 2014], a differentiable version of 

belief propagation [Dai et al., 2016], and through analogies to traditional graph 

isomorphism tests [Hamilton et al., 2017b]. Regardless of the specific motivation, a 

defining characteristic of GNNs is their use of neural message passing. In this 

approach, vector messages are exchanged between nodes and updated using neural 

networks [Gilmer et al., 2017]. 

In this paper, we delve into the foundational aspects of this neural message 

passing framework. Our focus will be on the message passing mechanism itself, 

while detailed discussions about training and optimizing GNN models are reserved 

for later. This chapter primarily explores how an input graph 𝐺 = (𝑉, 𝐸), along with 

a set of node features 𝑋 ∈ 𝑅𝑑 ×∣ 𝑉 ∣, can be utilized to generate node embeddings 

𝑧𝑢 for all nodes 𝑢 ∈ 𝑉. Moreover, we will also explore how the GNN framework 

can be employed to generate embeddings for subgraphs and entire graphs. 

 

* 𝑋 ∈ 𝑅𝑑 ×∣ 𝑉 ∣,: Denotes a real-valued matrix of dimensions 𝑑 × |𝑉| . where “d” 
is the number of features associated with each node and |V| is the number of 
nodes in the graph. 
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During each iteration of message-passing within a Graph Neural Network (GNN), 

the hidden embedding ℎ𝑢
(𝑘)

 [13] corresponding to every node u in the set V gets 

revised. This adjustment occurs based on information aggregated from the 

neighborhood 𝑁(𝑢) of node 𝑢 in the graph (as illustrated in Figure 5). This iterative 

process of message-passing forms a crucial part of GNN operations. 

 

 
Figure 5. Message passing algorithm applied for a node 

 

In Figure 5, we see how a single node in a graph aggregates messages from its nearby 

neighbors. For instance, node 1 collects messages from its immediate neighbors 

(nodes 5, 4, and 2). What makes this process interesting is that these neighboring 

nodes, in turn, aggregate messages from their respective neighbors, creating a 

recursive pattern of information exchange. This visualization showcases a two-layer 

version of the message-passing model, illustrating how information ripples through 

the graph. Additionally, the computation graph forms a tree structure as it unfolds 

around the target node, depicting the hierarchical nature of message aggregation in 

Graph Neural Networks (GNNs). 

Mathematically it could be expressed as follows:  

 

ℎ𝑢
(𝑘+1)

= 𝑈𝑝𝑑𝑎𝑡𝑒(𝑘)(ℎ𝑢
(𝑘)

, 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑘) ({ℎ𝑢
(𝑘)

, ∀𝜗 ∈ (𝑢)})) 

= 𝑈𝑝𝑑𝑎𝑡𝑒(𝑘)(ℎ𝑢
(𝑘)

, 𝑚𝑁(𝑢)
(𝑘)

 

 

In the Graph Neural Network (GNN) framework, the processes of updating [14] node 

embeddings involve two main steps: AGGREGATE and UPDATE. Here, these are 

flexible, differentiable functions, often implemented as neural networks. During 

each iteration k of the GNN, the AGGREGATE function processes the embeddings 

of nodes in u’s neighborhood 𝑁(𝑢), creating a message) 𝑚𝑁(𝑢)
(𝑘)

based on this 

collective neighborhood information. Subsequently, the UPDATE function 

combines this message 𝑚𝑁(𝑢)
(𝑘)

with the prior embedding ℎ𝑢
(𝑘−1)

 of node u to generate 

the updated embedding ℎ𝑢
(𝑘)

. 
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Initially, at k = 0, the embeddings are set to the input features for all nodes ℎ𝑢
(0)

=𝑥𝑢, 

where xu represents the features of node u. After running K iterations of GNN message 

passing, the final layer’s output ℎ𝑢
(𝑘)

represents the embeddings for each node in the 

graph 𝑧𝑢=ℎ𝑢
(𝑘)

. This iterative process allows GNNs to capture complex relationships 

within graph-structured data. 

 

4. Computational modules 

In this part, we explore how node embeddings and message passing algorithms work 

together. We break down the mechanisms that these computer modules use to make 

graph-based learning powerful. They take raw data and turn it into important, 

detailed representations. By looking closely at these modules, we reveal the 

processes that make GNNs efficient and effective. This helps us understand better 

how GNNs can be useful in different areas. 

Some commonly used computational modules are: 

 Propagation Module: This module facilitates the flow of information 

between nodes, allowing the aggregated data to encompass both feature and 

topological details. Within propagation modules, the convolution and 

recurrent operators play key roles in gathering information from neighboring 

nodes, while the skip connection operation helps integrate insights from 

historical node representations, addressing concerns like over-smoothing. 
 Sampling Module: For large graphs, the use of sampling modules becomes 

essential in the propagation process. These modules are typically integrated 

with the propagation module to ensure effective information dissemination 

across the graph. 

 Pooling Module: When the focus shifts to obtaining representations of 

higher-level subgraphs or entire graphs, pooling modules come into play. 

These modules are instrumental in extracting valuable information from nodes 

to construct meaningful representations. 

 
These computational modules form the building blocks of a typical Graph Neural 

Network (GNN) model, often combined to create the overall architecture. In the 

central portion of Figure 6.a common GNN model design is depicted. Each layer 

incorporates the convolutional operator, recurrent operator, sampling module, and 

skip connection for effective information propagation [15]. Following this, a pooling 

module is introduced to extract high-level information. The stacking of these layers 

is a standard practice to enhance the quality of representations. While this 

architecture generally applies to most GNN models. 

In a Graph Neural Network (GNN) layer, several key operations come into play. 

The sampling module is employed, particularly in large graphs, to facilitate the 

propagation of information. Simultaneously, the convolutional operator plays a 

pivotal role in gathering insights from neighboring nodes, capturing both features 

and topological information. Additionally, the introduction of the pooling module 
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allows for the extraction of high-level information, crucial when dealing with 

representations of larger subgraphs or entire graphs. These operations within a GNN 

layer work together to improve the model’s capacity to comprehend intricate graph 

structures. 

 

 
Figure 3. Design pipeline for a GNN model 

 

5. Graph Generation 

The objective of graph generation is to construct models capable of producing 

realistic graph structures. [16] Conceptually, this task can be linked to the inverse of 

the graph embedding problem. Rather than assuming a given graph structure G = (V, 

E) as input, in graph generation, our aim is for the model's output to be a graph G. 

While generating any arbitrary graph is relatively straightforward, such as a fully 

connected or edgeless graph, the true challenge lies in generating graphs with 

specific desired properties. 

 
5.1. Traditional Graph Generation 

Conventional methods for graph generation typically entail defining a generative 

process to describe the creation of edges within a graph. This generative process is 

often framed as establishing the probability or likelihood, denoted as P(A[u, v] = 1), 

of an edge existing between nodes u and v. The primary challenge lies in formulating 

a generative process that is both manageable and capable of producing graphs with 

non-trivial properties or characteristics. Manageability is crucial to facilitate 

sampling or analysis of the generated graphs. Simultaneously, we strive for these 

graphs to exhibit properties that align with real-world graph patterns. 

 

5.2. Deep Generative Models 

The conventional graph generation methods explored in the preceding chapter prove 

valuable across various scenarios. They excel in efficiently producing synthetic 

graphs with specified properties and offer insights into the potential emergence of 
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certain graph structures in the real world. Nonetheless, a notable constraint of these 

traditional approaches lies in their dependence on fixed, manually designed 

generation processes. In essence, while these methods can generate graphs, they fall 

short in their capacity to autonomously learn a generative model from data [17].  

We will introduce a series of basic deep generative models for graphs. These 

models will adapt three of the most popular approaches to building general deep 

generative models: variational autoencoders (VAEs) [18], generative adversarial 

networks (GANs) [19], as shown in Figure 7 a standard VAE model applied to the 

graph setting. An encoder neural network maps the input graph G = (A,X) to a 

posterior distribution qφ(Z|X) over latent variables Z. Given a sample from this 

posterior, the decoder model pθ(X|Z) attempts to reconstruct the adjacency matrix. 

 

 
Figure 7. Comparison of two categories of generative models 

 

The initial objective is to adeptly interpret significant graphs from encoded latent 

representations, particularly when presented with training graphs. Meanwhile, the 

secondary objective serves as a regularization mechanism, guaranteeing our ability 

to interpret meaningful graphs even when latent representations are sampled from 

the prior distribution, denoted as 𝑝(𝑍). This second goal assumes paramount 

importance, especially in scenarios where the generation of new graphs is desired 

post-training. The generation process relies on sampling from the prior and inputting 

these latent embeddings into the decoder, functioning effectively only when the 

second goal is met. 

 

5.3. Evaluating Graph Generation 

In the previous section, we explored more advanced graph generation methods based 

on Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). 

While discussing these methods, we hinted at the effectiveness of some approaches 

compared to others and showcased examples of generated graphs in Figure 8, 

illustrating the diverse capabilities of these approaches. However, determining which 

graph generation approach is superior poses a challenge. Unlike tasks with a clear 

notion of accuracy or error, evaluating generative models lacks a straightforward 

measure. 
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For instance, we could compare reconstruction losses or model likelihoods on held-

out graphs, but this is complicated by the absence of a consistent likelihood definition 

across different generation approaches. In the realm of general graph generation, the 

current practice involves analyzing various statistics of the generated graphs and 

comparing their distribution to a test set. 

Formally, let’s assume we have a set of graph statistics denoted as 𝑆 =
 (𝑠1, 𝑠2, . . . , 𝑠𝑛). Each of these statistics, represented as is𝐺 ∶  𝑅 →  [0, 1], is 

assumed to define a univariate distribution over the real numbers. 

 

 
Figure 8. Examples of graphs generated by VAE and GRAN 

 

 

Figure 8: Examples of graphs generated by a basic graph-level VAE as well as the 

GRAN model. Each row corresponds to a different dataset. The first column shows 

an example of a real graph from the dataset, while the other columns are randomly 

selected samples of graphs generated by the corresponding model [Liao et al., 

2019a] [20] 
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5.4. Python Libraries for GNN’s  

There are many open-source libraries that allow the creation of deep neural network 

in Python, without having to explicitly write the code from scratch. In this section, 

we’ll discover three of the most popular: TensorFlow, Keras, and PyTorch. They all 

share some common features, as follows: 

 The basic unit for data storage is the tensor. Consider the tensor as a 

generalization of a matrix to higher dimensions. Mathematically, the definition 

of a tensor is more complex, but in the context of deep learning libraries, they 

are multi-dimensional arrays of base values. 

 Neural networks are represented as a computational graph of operations. The 

nodes of the graph represent the operations (weighted sum, activation function, 

and so on). The edges represent the flow of data, which is how the output of one 

operation serves as an input for the next one. The inputs and outputs of the 

operations (including the network inputs and outputs) are tensors. 

 

5.4.1 TensorFlow  

TensorFlow (TF) (https://www.tensorflow.org), is the most popular deep learning 

library. It’s developed and maintained by Google. You don’t need to explicitly 

require the use of a GPU, rather TensorFlow will automatically try to use it if you 

have one. If you have more than one GPU, you must assign operations to each GPU 

explicitly, or only the first one will be used. 

TensorFlow has a steeper learning curve, compared to the other libraries.  

 

5.4.2 Keras  

Keras is a high-level neural net Python library that runs on top of TensorFlow, 

CNTK (https://github.com/Microsoft/CNTK), or Theano., we’ll assume that it uses 

TensorFlow on the backend. With Keras, you can perform rapid experimentation 

and it’s relatively easy to use compared to TF. It will automatically detect an 

available GPU and attempt to use it. Otherwise, it will revert to the CPU. 

 

5.4.3 PyTorch 

PyTorch (https://pytorch.org/) is a deep learning library based on Torch and 

developed by Facebook. It is relatively easy to use and has recently gained a lot of 

popularity. It will automatically select a GPU, if one is available, reverting to the 

CPU otherwise. 

 

6. Conclusion 

In conclusion, this paper navigates through the intricate landscape of Graph Neural 

Networks (GNNs), shedding light on their applications, design principles, and 

emerging trends. It emphasizes the principal role of graphs as a universal language 

for understanding complex systems and illustrates how GNNs revolutionize graph 
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analysis. The exploration encompasses essential concepts such as graph description, 

types, and scales, providing a solid groundwork. Dynamic operations and the 

temporal dimension of graphs are also explored, and the design pipeline of GNNs 

have been discussed, revealing the significance of computational modules in graph-

based learning. The paper concludes by digging into the fascinating realm of graph 

generation, evaluating methods, and offering an overview of prominent Python 

libraries for GNNs. In essence, this paper serves as a comprehensive guide, 

illuminating the transformative capabilities of GNNs in deciphering intricate 

relationships within diverse graph-structured data. 
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