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Abstract.  

The paper analyzes the effectiveness of the Ant Colony System (ACS) on a 
production scheduling dataset. The Ant Colony System (ACS) algorithm is a 
member of the Ant Colony Optimization (ACO) algorithm family, a discrete 
optimization algorithm. The article presents the ACS algorithm, the 
production scheduling task and the test results, the analysis of the benchmark 
dataset, and the search space of the algorithm. 
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1. Introduction  
 

Over the years, optimization algorithms have become more and more important 

due to industrial needs. The goal is to develop a more cost-effective solution 

proposal for complex systems. Over the years, many optimization algorithms have 

been published. In this paper, we investigate the effectiveness of the Ant System 

[1], a variant of Ant Colony Optimization (ACO), on a production scheduling 

problem, which is the Flow Shop Scheduling (FSS) Problem [2]. 

First, with the help of Google Scholar, I conducted a literature search to see how 

many articles have been published over the years about the Ant Colony System. I 

conducted the literature research from 2010 to 2023. The Ant Colony System 

algorithm was first published in 1996 in the article [1] by Marco Dorigo and Luca 

Maria Gambardella. 

 

 
Figure 1. Ant Colony System 

keyword result in Google Scholar 
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With the Ant Colony System algorithm, we can see that over the years researchers 

have published more and more articles, although slightly fewer articles were 

published in 2023 than in previous years. 1310 articles were published in 2010, 

1780 articles in 2015, 1940 articles in 2020, and 1950 in 2023. 

In the following parts of the article, the Ant Colony System algorithm, the Flow 

Shop Scheduling Problem, and the test results are presented. The last chapter 

contains the conclusion and future research direction. 

 

2. Ant Colony System and Flow Shop Scheduling Problem 
 

2.1. Ant Colony System [1] 

 

This algorithm is a type of Ant Colony Optimization (ACO) algorithm. The ACO 

algorithm is based on the behavior of ants. The ants' search for food is modeled by 

the algorithm family. The ants will choose the road section that is short and has 

high pheromone content. Individual ants deposit pheromones during their journey. 

The pheromone, on the other hand, evaporates over time. These processes are 

modeled by ACO algorithms. The steps of the algorithm are as follows: 

1. Initialization of input parameters and initialization of ants (e.g. with 

random path) 

2. Local search 

3. Re-updating the pheromone contents 

4. Repeat steps 2-3 until the stop condition is met 

 

The Ant Colony System constructs its route using the formula below: 

   
  

        
       

 

         
       

 
    

 
          

  

 

    
 

   
 : the reciprocal of the distance between the two routes 

      : pheromone content 

     : edge pair 

  and  : the effects of the pheromone and the distance are determined by the 

parameters 

  
 : the nodes that the ant has not yet visited 

 

Ant Colony System has both global and local pheromone updates. 

Global Pheromone Upgrade Formula: 

                            
  

    

where:     
      

 

    

 

Local pheromone update: 

                   
  

where:  

     :  

    
 : initial pheromone value 

 

The Ant Colony System algorithm has been used for many discrete optimization 

tasks over the years; I would like to highlight a few of them: 

 Traveling Salesman Problem [1] 

 Vehicle Routing Problem [3] 

 unit commitment problem [4] 
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 Multiobjective cloud workflow scheduling [5] 

 Coverage path planning [6] 

 airline crew rostering problem [7] 

 

2.2. Flow Shop Scheduling Problem [2] 

 

The Flow Shop Scheduling Problem is a production scheduling problem where a 

given number of tasks must be performed on a given number of machines. During 

the task, the goal is to minimize the makespan. Each job must be performed exactly 

once on each machine. Once the machines have started a job, they must finish it 

before they start the next job. There is also a production time until the given 

machine performs the given work, which also includes the refitting time. Each 

machine must do each job exactly once. 

The Flow Shop Scheduling problem has been solved over the years with several 

algorithms; I would like to highlight a few of them: 

 Genetic algorithm [8] 

 Tabu Search [8] 

 whale optimization algorithm [9] 

 Iterated greedy algorithm [10] 

 reinforcement learning algorithm [11] 

 neural network [11] 

 water wave optimization algorithm [12] 

 Improved Q-learning algorithm [13] 

 mutant firefly algorithm [14] 

 

Several versions of Flow Shop Scheduling have evolved over the years, adapting to 

the real industrial needs of the time. I would like to highlight a few of them: 

 no-wait flow shop scheduling problem [15] 

 Flow shop scheduling problems with assembly operations [16] 

 flow shop scheduling problems with setup energy consumptions [17] 

 total tardiness parallel blocking flow shop scheduling problem [18] 

 flow shop scheduling problem with limited human resource constraints 

[19] 

 flow shop scheduling problem with sequence-independent setup time [20] 

 flow shop scheduling problem with missing operations [21] 

 Multi-machine flow shop scheduling problems with rejection [22] 

 Flow shop scheduling with jobs arriving at different times [23] 

 energy-efficient scheduling of no-wait flow-shop problem [24] 

 no-idle flow shop scheduling problem [25] 

 Flow shop scheduling with blocking [26] 

 

3. Test results 
 

The table below shows the running results of the Ant Colony System compared to 

the other algorithms. I used the Taillard benchmark dataset [27] for the tests. The 

table consists of three parts, the first part contains the elements HMM-PFA, HGA, 

IIGA, DSOMA, and HGSA. These algorithms are not implemented in the frame of 

this research, but published by others. Here you can find results for each data line. 

The second part contains only MA and IG-RIS because these algorithms had data 

from Ta031 to Ta080. And the third table contains the IWO algorithm because here 

there were data for the following data series: Ta001, Ta011, Ta021, Ta031, Ta041, 

Ta051, Ta061, Ta071. 
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Table 2. Test result comparison 

(HMM-PFA, HGA, IIGA, DSOMA, 

HGSA) 

 
Relative performance 

Instance ACS 
HMM-PFA 

[28] % 
HGA [29] % IIGA [29] % DSOMA [29] % HGSA [29] % 

Ta001 1297 114.57 113.64 114.57 105.94 102.08 

Ta002 1368 111.70 109.05 111.7 102.92 105.41 

Ta003 1138 128.30 112.78 128.3 112.48 96.49 

Ta004 1362 116.59 115.68 116.59 106.31 107.86 

Ta005 1281 113.11 120.28 113.11 104.68 100.78 

Ta006 1234 120.02 119.57 120.02 110.45 112.72 

Ta007 1259 117.79 121.8 117.79 109.69 103.18 

Ta008 1261 117.53 126.59 117.53 109.36 102.46 

Ta009 1282 114.59 121.88 114.59 107.1 101.87 

Ta010 1174 117.29 122.34 117.29 109.28 105.03 

Ta011 1690 120.95 120.84 118.99 100.47 101.36 

Ta012 1765 122.72 112.9 122.72 103.85 97.34 

Ta013 1599 121.33 118.68 121.33 104.82 97.25 

Ta014 1463 123.79 120.93 123.79 105.67 103.62 

Ta015 1527 126.59 123.67 126.59 105.89 103.01 

Ta016 1499 126.22 119.8 126.22 106.07 97.2 

Ta017 1589 123.54 126.47 123.54 102.08 102.08 

Ta018 1660 123.92 120.93 123.92 104.28 105.36 

Ta019 1690 116.75 123.8 116.75 103.37 96.09 

Ta020 1686 121.65 124.22 121.65 105.69 102.14 

Ta021 2408 123.46 119.3 123.46 101.16 96.8 

Ta022 2248 126.87 124.2 114.86 99.38 101.42 

Ta023 2439 123.53 125.12 123.53 101.64 101.68 

Ta024 2346 127.92 112.97 127.92 100.09 100.68 

Ta025 2442 122.97 116.42 122.97 99.71 102.66 

Ta026 2349 127.63 117.55 127.2 101.45 101.11 

Ta027 2391 127.65 115.44 127.65 99.96 97.91 

Ta028 2316 122.58 113.1 122.58 100.52 98.4 

Ta029 2393 125.74 113.6 125.74 98.75 100.71 

Ta030 2333 127.69 113.44 127.69 99.57 102.91 

Ta031 2768 114.16 116.7 114.2 109.57 98.66 

Ta032 2953 116.22 115.22 116.22 103.12 99.36 

Ta033 2707 118.58 116.03 118.62 112.15 97.45 

Ta034 2849 117.16 125.62 117.2 105.69 97.75 

Ta035 2931 114.50 128.74 114.5 106.72 97.71 

Ta036 2926 114.35 126.88 114.39 108.2 99.35 

Ta037 2806 115.15 132.82 115.15 107.66 98.5 

Ta038 2779 116.41 128.57 116.41 110.22 97.37 

Ta039 2655 115.63 128.36 115.71 109.53 98.31 

Ta040 2845 116.59 128.33 116.59 109.67 97.86 

Ta041 3384 126.30 129.17 126.3 107.51 94.5 

Ta042 3215 129.92 128.26 129.92 109.21 93.93 

Ta043 3218 127.38 123.53 127.38 108.51 94.93 

Ta044 3373 130.42 142.81 130.42 108.86 92.62 

Ta045 3357 128.75 135.41 128.75 108.22 93.21 

Ta046 3336 128.57 139.68 128.57 108.54 98.71 

Ta047 3410 129.62 138.37 129.62 108.62 94.78 

Ta048 3332 129.59 140.26 129.59 107.2 101.74 

Ta049 3245 128.04 140.15 128.04 109.12 99.75 
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Ta050 3426 125.01 139.2 125.01 105.78 94.89 

Ta051 4298 142.60 138.81 142.6 104.96 95.51 

Ta052 4225 135.50 136.84 135.5 101.49 94.49 

Ta053 4186 140.04 137.29 140.04 102.46 93.17 

Ta054 4178 138.54 116.62 138.54 104.79 93.85 

Ta055 4200 140.14 117.26 140.14 101.69 95.71 

Ta056 4192 139.86 115.26 139.86 100.24 94.73 

Ta057 4265 139.79 118.1 139.79 101.17 95.97 

Ta058 4264 138.98 116.09 138.98 101.45 95.92 

Ta059 4267 137.71 117.7 137.71 101.45 96.25 

Ta060 4323 137.80 116.04 137.82 102.29 95.14 

Ta061 5567 114.26 117.81 114.91 110.49 99.44 

Ta062 5418 114.65 114.91 115.06 111.92 97.86 

Ta063 5334 114.44 117.05 114.75 112.54 97.88 

Ta064 5148 116.53 129.2 117.06 112.39 97.98 

Ta065 5387 114.70 135.75 115.09 111.77 99.46 

Ta066 5248 115.40 132.08 115.74 111.83 99.03 

Ta067 5392 115.37 130.8 116.36 111.35 100.41 

Ta068 5284 115.61 131.93 116.01 112.11 97.09 

Ta069 5607 113.34 134.42 113.61 109.76 98.91 

Ta070 5503 115.66 131.46 115.95 112.41 99.58 

Ta071 6281 128.24 121.07 128.59 112.12 94.95 

Ta072 5883 133.49 130.28 133.95 115.81 95.12 

Ta073 6100 131.41 131.29 131.61 113.82 95.02 

Ta074 6366 130.82 113.64 131.13 113.07 93.12 

Ta075 6057 131.02 109.05 129.75 112.51 94.9 

Ta076 5820 133.56 112.78 134.04 114.86 93.57 

Ta077 6021 130.31 115.68 130.64 113.39 94.32 

Ta078 6095 129.29 120.28 129.83 112.78 93.9 

Ta079 6314 128.78 119.57 129.25 96.48 93.98 

Ta080 6235 129.78 121.8 130.14 112.11 96.2 

 
Table 3. Test result comparison (MA, 

IG-RIS) 

 

 
Relative performance 

Instance ACS MA [29] % IG-RIS [29] % 

Ta031 2768 108.38 108.45 

Ta032 2953 108.33 108.4 

Ta033 2707 111.23 111.23 

Ta034 2849 109.79 109.79 

Ta035 2931 107.88 108.02 

Ta036 2926 108.2 108.3 

Ta037 2806 107.38 107.38 

Ta038 2779 110.36 110.58 

Ta039 2655 109.53 109.53 

Ta040 2845 109.35 109.67 

Ta041 3384 107.51 107.51 

Ta042 3215 108.43 109.08 

Ta043 3218 108.23 108.39 

Ta044 3373 108.39 108.39 

Ta045 3357 108.1 108.1 

Ta046 3336 107.79 108.54 

Ta047 3410 108.27 108.39 

Ta048 3332 106.9 107.2 

Ta049 3245 108.69 108.84 

Ta050 3426 105.72 105.78 
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Ta051 4298 104.21 104.7 

Ta052 4225 101.21 101.21 

Ta053 4186 101.79 102.46 

Ta054 4178 104.5 104.76 

Ta055 4200 101.45 101.62 

Ta056 4192 102.1 102.1 

Ta057 4265 100.91 101.01 

Ta058 4264 101.24 101.45 

Ta059 4267 101.12 101.15 

Ta060 4323 102.08 102.43 

Ta061 5567 110.35 110.49 

Ta062 5418 111.15 111.15 

Ta063 5334 111.12 111.12 

Ta064 5148 111.81 112.12 

Ta065 5387 110.58 110.64 

Ta066 5248 110.75 111.51 

Ta067 5392 111.07 111.35 

Ta068 5284 110.83 111.94 

Ta069 5607 108.19 109.2 

Ta070 5503 111.61 111.92 

Ta071 6281 111.7 112.12 

Ta072 5883 114.57 115.43 

Ta073 6100 112.75 113.7 

Ta074 6366 111.78 112.9 

Ta075 6057 112.43 112.43 

Ta076 5820 113.64 114.54 

Ta077 6021 112.66 112.95 

Ta078 6095 111.4 112.78 

Ta079 6314 110.56 111.74 

Ta080 6235 109.29 111.71 

 
Table 4. Test result comparison 

(IWO) 

 

 
Relative performance 

Instance ACS IWO [30]% 

Ta001 1297 107.09 

Ta011 1690 130.59 

Ta021 2408 133.97 

Ta031 2768 109.1 

Ta041 3384 102.39 

Ta051 4298 127.38 

Ta061 5567 104.89 

Ta071 6281 108.5 

 

 

The table shows the results of the Ant Colony Optimization algorithm and the 

results compared to other algorithms in percentage. 

I ran the Ant Colony Optimization (ACO) algorithm up to the Ta080 dataset. The 

table contains the comparisons to the algorithms. I illustrate in a table how many 

cases the ACO algorithm is better than the other algorithms. 

 
Table 5. Test result comparison  

 
Algorithm Number of data rows (on which 

the comparisons were made) 

Number of better 

results 

HMM-PFA 80 80 
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MA 50 50 

IG-RIS 50 50 

HGA 80 80 

IIGA 80 80 

DSOMA 80 74 

HGSA 80 24 

IWO 8 8 

 

It can be seen from the tables that in the case of HMM-PFA, MA, IG-RIS, HGA, 

and IIGA, the ACO algorithm always gave better results. In the case of DSOMA, it 

did not give better results only a few times. It gave better results than the HGSA 

and IWO algorithms in only a few cases, but the efficiency of ACO was not far 

behind. 

 

The results of the Ant Colony System (ACS) algorithm search space are shown in 

the table below. The solutions given by the iterations of the Ant Colony System 

algorithm were compared to each other. The following metrics were used here [31]: 

 

 Lower and upper limits of fitness values 

 The lower and upper limits of the averages of the fitness Hamming and Basic 

Swap Sequence distances taken from each other 

 Cost Density, which shows how different the solutions given by the iterations 

are, i.e. how many solutions have the same fitness value. 

 

The essence of fitness landscape analysis [31] is to determine, which algorithms 

are outperformed others, and why. It is an analytical analysis, based on different 

metrics. In this paper, this measurement uses the best results given by the iterations 

of the algorithm. The general purpose of the fitness landscape can be multiple: 

deciding the difficulty of the problem itself, examining the effectiveness of each 

algorithm, examining the operators used. 

 

 
Table 6. Fitness landscape analysis  

 

 

The above table shows the fitness landscape results of the Ant Colony System 

algorithm. The Ta001 fitness values were between 1347 and 1328 during the 

iterations, while the results for Ta002 were between 1257 and 1180, the values for 

Ta003 were between 1257 and 1180, and the fitness values for Ta004 were between 

1480 and 1410. Based on this, it can be said that improvements were during each 

iteration, but the best result of the first iteration was a relatively good result. This 

was also shown by the averages of the fitness values. Hamming and Basic Swap 

Ant Colony System (ACS) 

 
 

Ta001 Ta002 Ta003 Ta004 Ta005 

 Distance LB UB LB UB LB UB LB UB LB UB 

Fitness values  1328 1347 1376 1402 1180 1257 1410 1480 1302 1360 

Average of fitness 

distances 
Fitness 2.02 47.98 2.55 12.45 6.55 43.03 5.24 64.76 3.39 69.61 

Average of Hamming 

distances 
Hamming 10.5 18.65 3.4 16.6 13.26 18.34 9.39 19.31 3.81 19.8 

Average of basic swap 

sequence distances 
BSS 9.03 17.03 2.72 13.28 7.09 15.93 7.83 16.81 3.59 17.21 

Fitness distances of the best 

solution 
Fitness 2.83 15.69 2.71 23.29 6.55 43.03 14.94 40.22 3.39 69.61 

Hamming distances of the 

best solution 
Hamming 1.62 17.82 4.94 18.66 13.26 18.34 2.46 19.49 3.81 19.8 

Basic swap sequence 

distances of the best 

solution 

BSS 1.43 14.85 4.47 16.89 10.9 16.12 2.26 17.0 3.59 17.21 

Cost density  1.0 92.0 17.0 84.0 1.0 54.0 1.0 88.0 1.0 69.0 
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Sequence distances are quite large. The upper limits of Cost density are quite large, 

which indicates that after a few iterations, there is no improvement. For Ta001, this 

value was 92, and for Ta002, 84. For Ta003, there were also 54 equal solutions, 

while for Ta004, there were 88 equal solutions, and for Ta005, there were also 69 

equal solutions. 

4. Conclusions and future work 
 

The Ant Colony System algorithm and its solution to a common production 

scheduling task, the Flow Shop Scheduling (FSS) problem, were presented in the 

article. The article contains a solution to a benchmark dataset. The article compares 

the results of the Ant Colony System with the following algorithms: HMM-PFA, 

MA, IG-RIS, HGA, IIGA, DSOMA, HGSA, and IWO. In most of the test results, 

ACS gave better results than the algorithms. Only the DSOMA and HGSA 

algorithms had results that were better than ACS. In the case of DSOMA, there 

were only 6 such cases, in the case of HGSA there were more, here there were 56 

such cases, but ACS was only a few percent behind. The article also presented the 

analysis of the ACS fitness landscape, where the solutions given by the iterations 

were analyzed. The analyses were performed using the following techniques: lower 

and upper limits of the fitness values, also and upper limits of the average 

Hamming, fitness, and basic swap sequence distances. 

Future research area is the analysis of other algorithms of the Ant Colony 

Optimization family for the Flow Shop Scheduling problem. 
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