

Efficiency analysis of the ACS in benchmark data 1

Production Systems and Information Engineering

Volume 12 (3), pp. 1-10 1
doi: https://doi.org/10.32968/psaie.2024.3.1

Efficiency analysis of the Ant Colony System algorithm in benchmark data

ANITA AGÁRDI

University of Miskolc, Hungary

Institute of Information Technology

agardianita@iit.uni-miskolc.hu

Abstract.

The paper analyzes the effectiveness of the Ant Colony System (ACS) on a
production scheduling dataset. The Ant Colony System (ACS) algorithm is a
member of the Ant Colony Optimization (ACO) algorithm family, a discrete
optimization algorithm. The article presents the ACS algorithm, the
production scheduling task and the test results, the analysis of the benchmark
dataset, and the search space of the algorithm.

Keywords: Ant Colony System, production scheduling, fitness landscape analysis

1. Introduction

Over the years, optimization algorithms have become more and more important

due to industrial needs. The goal is to develop a more cost-effective solution

proposal for complex systems. Over the years, many optimization algorithms have

been published. In this paper, we investigate the effectiveness of the Ant System

[1], a variant of Ant Colony Optimization (ACO), on a production scheduling

problem, which is the Flow Shop Scheduling (FSS) Problem [2].

First, with the help of Google Scholar, I conducted a literature search to see how

many articles have been published over the years about the Ant Colony System. I

conducted the literature research from 2010 to 2023. The Ant Colony System

algorithm was first published in 1996 in the article [1] by Marco Dorigo and Luca

Maria Gambardella.

Figure 1. Ant Colony System

keyword result in Google Scholar

https://doi.org/10.32968/psaie.2024.3.1
mailto:agardianita@iit.uni-miskolc.hu

2 A. Agárdi

With the Ant Colony System algorithm, we can see that over the years researchers

have published more and more articles, although slightly fewer articles were

published in 2023 than in previous years. 1310 articles were published in 2010,

1780 articles in 2015, 1940 articles in 2020, and 1950 in 2023.

In the following parts of the article, the Ant Colony System algorithm, the Flow

Shop Scheduling Problem, and the test results are presented. The last chapter

contains the conclusion and future research direction.

2. Ant Colony System and Flow Shop Scheduling Problem

2.1. Ant Colony System [1]

This algorithm is a type of Ant Colony Optimization (ACO) algorithm. The ACO

algorithm is based on the behavior of ants. The ants' search for food is modeled by

the algorithm family. The ants will choose the road section that is short and has

high pheromone content. Individual ants deposit pheromones during their journey.

The pheromone, on the other hand, evaporates over time. These processes are

modeled by ACO algorithms. The steps of the algorithm are as follows:

1. Initialization of input parameters and initialization of ants (e.g. with

random path)

2. Local search

3. Re-updating the pheromone contents

4. Repeat steps 2-3 until the stop condition is met

The Ant Colony System constructs its route using the formula below:

 : the reciprocal of the distance between the two routes

 : pheromone content

 : edge pair

 and : the effects of the pheromone and the distance are determined by the

parameters

 : the nodes that the ant has not yet visited

Ant Colony System has both global and local pheromone updates.

Global Pheromone Upgrade Formula:

where:

Local pheromone update:

where:

 :

 : initial pheromone value

The Ant Colony System algorithm has been used for many discrete optimization

tasks over the years; I would like to highlight a few of them:

 Traveling Salesman Problem [1]

 Vehicle Routing Problem [3]

 unit commitment problem [4]

Efficiency analysis of the ACS in benchmark data 3

 Multiobjective cloud workflow scheduling [5]

 Coverage path planning [6]

 airline crew rostering problem [7]

2.2. Flow Shop Scheduling Problem [2]

The Flow Shop Scheduling Problem is a production scheduling problem where a

given number of tasks must be performed on a given number of machines. During

the task, the goal is to minimize the makespan. Each job must be performed exactly

once on each machine. Once the machines have started a job, they must finish it

before they start the next job. There is also a production time until the given

machine performs the given work, which also includes the refitting time. Each

machine must do each job exactly once.

The Flow Shop Scheduling problem has been solved over the years with several

algorithms; I would like to highlight a few of them:

 Genetic algorithm [8]

 Tabu Search [8]

 whale optimization algorithm [9]

 Iterated greedy algorithm [10]

 reinforcement learning algorithm [11]

 neural network [11]

 water wave optimization algorithm [12]

 Improved Q-learning algorithm [13]

 mutant firefly algorithm [14]

Several versions of Flow Shop Scheduling have evolved over the years, adapting to

the real industrial needs of the time. I would like to highlight a few of them:

 no-wait flow shop scheduling problem [15]

 Flow shop scheduling problems with assembly operations [16]

 flow shop scheduling problems with setup energy consumptions [17]

 total tardiness parallel blocking flow shop scheduling problem [18]

 flow shop scheduling problem with limited human resource constraints

[19]

 flow shop scheduling problem with sequence-independent setup time [20]

 flow shop scheduling problem with missing operations [21]

 Multi-machine flow shop scheduling problems with rejection [22]

 Flow shop scheduling with jobs arriving at different times [23]

 energy-efficient scheduling of no-wait flow-shop problem [24]

 no-idle flow shop scheduling problem [25]

 Flow shop scheduling with blocking [26]

3. Test results

The table below shows the running results of the Ant Colony System compared to

the other algorithms. I used the Taillard benchmark dataset [27] for the tests. The

table consists of three parts, the first part contains the elements HMM-PFA, HGA,

IIGA, DSOMA, and HGSA. These algorithms are not implemented in the frame of

this research, but published by others. Here you can find results for each data line.

The second part contains only MA and IG-RIS because these algorithms had data

from Ta031 to Ta080. And the third table contains the IWO algorithm because here

there were data for the following data series: Ta001, Ta011, Ta021, Ta031, Ta041,

Ta051, Ta061, Ta071.

4 A. Agárdi

Table 2. Test result comparison

(HMM-PFA, HGA, IIGA, DSOMA,

HGSA)

Relative performance

Instance ACS
HMM-PFA

[28] %
HGA [29] % IIGA [29] % DSOMA [29] % HGSA [29] %

Ta001 1297 114.57 113.64 114.57 105.94 102.08

Ta002 1368 111.70 109.05 111.7 102.92 105.41

Ta003 1138 128.30 112.78 128.3 112.48 96.49

Ta004 1362 116.59 115.68 116.59 106.31 107.86

Ta005 1281 113.11 120.28 113.11 104.68 100.78

Ta006 1234 120.02 119.57 120.02 110.45 112.72

Ta007 1259 117.79 121.8 117.79 109.69 103.18

Ta008 1261 117.53 126.59 117.53 109.36 102.46

Ta009 1282 114.59 121.88 114.59 107.1 101.87

Ta010 1174 117.29 122.34 117.29 109.28 105.03

Ta011 1690 120.95 120.84 118.99 100.47 101.36

Ta012 1765 122.72 112.9 122.72 103.85 97.34

Ta013 1599 121.33 118.68 121.33 104.82 97.25

Ta014 1463 123.79 120.93 123.79 105.67 103.62

Ta015 1527 126.59 123.67 126.59 105.89 103.01

Ta016 1499 126.22 119.8 126.22 106.07 97.2

Ta017 1589 123.54 126.47 123.54 102.08 102.08

Ta018 1660 123.92 120.93 123.92 104.28 105.36

Ta019 1690 116.75 123.8 116.75 103.37 96.09

Ta020 1686 121.65 124.22 121.65 105.69 102.14

Ta021 2408 123.46 119.3 123.46 101.16 96.8

Ta022 2248 126.87 124.2 114.86 99.38 101.42

Ta023 2439 123.53 125.12 123.53 101.64 101.68

Ta024 2346 127.92 112.97 127.92 100.09 100.68

Ta025 2442 122.97 116.42 122.97 99.71 102.66

Ta026 2349 127.63 117.55 127.2 101.45 101.11

Ta027 2391 127.65 115.44 127.65 99.96 97.91

Ta028 2316 122.58 113.1 122.58 100.52 98.4

Ta029 2393 125.74 113.6 125.74 98.75 100.71

Ta030 2333 127.69 113.44 127.69 99.57 102.91

Ta031 2768 114.16 116.7 114.2 109.57 98.66

Ta032 2953 116.22 115.22 116.22 103.12 99.36

Ta033 2707 118.58 116.03 118.62 112.15 97.45

Ta034 2849 117.16 125.62 117.2 105.69 97.75

Ta035 2931 114.50 128.74 114.5 106.72 97.71

Ta036 2926 114.35 126.88 114.39 108.2 99.35

Ta037 2806 115.15 132.82 115.15 107.66 98.5

Ta038 2779 116.41 128.57 116.41 110.22 97.37

Ta039 2655 115.63 128.36 115.71 109.53 98.31

Ta040 2845 116.59 128.33 116.59 109.67 97.86

Ta041 3384 126.30 129.17 126.3 107.51 94.5

Ta042 3215 129.92 128.26 129.92 109.21 93.93

Ta043 3218 127.38 123.53 127.38 108.51 94.93

Ta044 3373 130.42 142.81 130.42 108.86 92.62

Ta045 3357 128.75 135.41 128.75 108.22 93.21

Ta046 3336 128.57 139.68 128.57 108.54 98.71

Ta047 3410 129.62 138.37 129.62 108.62 94.78

Ta048 3332 129.59 140.26 129.59 107.2 101.74

Ta049 3245 128.04 140.15 128.04 109.12 99.75

Efficiency analysis of the ACS in benchmark data 5

Ta050 3426 125.01 139.2 125.01 105.78 94.89

Ta051 4298 142.60 138.81 142.6 104.96 95.51

Ta052 4225 135.50 136.84 135.5 101.49 94.49

Ta053 4186 140.04 137.29 140.04 102.46 93.17

Ta054 4178 138.54 116.62 138.54 104.79 93.85

Ta055 4200 140.14 117.26 140.14 101.69 95.71

Ta056 4192 139.86 115.26 139.86 100.24 94.73

Ta057 4265 139.79 118.1 139.79 101.17 95.97

Ta058 4264 138.98 116.09 138.98 101.45 95.92

Ta059 4267 137.71 117.7 137.71 101.45 96.25

Ta060 4323 137.80 116.04 137.82 102.29 95.14

Ta061 5567 114.26 117.81 114.91 110.49 99.44

Ta062 5418 114.65 114.91 115.06 111.92 97.86

Ta063 5334 114.44 117.05 114.75 112.54 97.88

Ta064 5148 116.53 129.2 117.06 112.39 97.98

Ta065 5387 114.70 135.75 115.09 111.77 99.46

Ta066 5248 115.40 132.08 115.74 111.83 99.03

Ta067 5392 115.37 130.8 116.36 111.35 100.41

Ta068 5284 115.61 131.93 116.01 112.11 97.09

Ta069 5607 113.34 134.42 113.61 109.76 98.91

Ta070 5503 115.66 131.46 115.95 112.41 99.58

Ta071 6281 128.24 121.07 128.59 112.12 94.95

Ta072 5883 133.49 130.28 133.95 115.81 95.12

Ta073 6100 131.41 131.29 131.61 113.82 95.02

Ta074 6366 130.82 113.64 131.13 113.07 93.12

Ta075 6057 131.02 109.05 129.75 112.51 94.9

Ta076 5820 133.56 112.78 134.04 114.86 93.57

Ta077 6021 130.31 115.68 130.64 113.39 94.32

Ta078 6095 129.29 120.28 129.83 112.78 93.9

Ta079 6314 128.78 119.57 129.25 96.48 93.98

Ta080 6235 129.78 121.8 130.14 112.11 96.2

Table 3. Test result comparison (MA,

IG-RIS)

Relative performance

Instance ACS MA [29] % IG-RIS [29] %

Ta031 2768 108.38 108.45

Ta032 2953 108.33 108.4

Ta033 2707 111.23 111.23

Ta034 2849 109.79 109.79

Ta035 2931 107.88 108.02

Ta036 2926 108.2 108.3

Ta037 2806 107.38 107.38

Ta038 2779 110.36 110.58

Ta039 2655 109.53 109.53

Ta040 2845 109.35 109.67

Ta041 3384 107.51 107.51

Ta042 3215 108.43 109.08

Ta043 3218 108.23 108.39

Ta044 3373 108.39 108.39

Ta045 3357 108.1 108.1

Ta046 3336 107.79 108.54

Ta047 3410 108.27 108.39

Ta048 3332 106.9 107.2

Ta049 3245 108.69 108.84

Ta050 3426 105.72 105.78

6 A. Agárdi

Ta051 4298 104.21 104.7

Ta052 4225 101.21 101.21

Ta053 4186 101.79 102.46

Ta054 4178 104.5 104.76

Ta055 4200 101.45 101.62

Ta056 4192 102.1 102.1

Ta057 4265 100.91 101.01

Ta058 4264 101.24 101.45

Ta059 4267 101.12 101.15

Ta060 4323 102.08 102.43

Ta061 5567 110.35 110.49

Ta062 5418 111.15 111.15

Ta063 5334 111.12 111.12

Ta064 5148 111.81 112.12

Ta065 5387 110.58 110.64

Ta066 5248 110.75 111.51

Ta067 5392 111.07 111.35

Ta068 5284 110.83 111.94

Ta069 5607 108.19 109.2

Ta070 5503 111.61 111.92

Ta071 6281 111.7 112.12

Ta072 5883 114.57 115.43

Ta073 6100 112.75 113.7

Ta074 6366 111.78 112.9

Ta075 6057 112.43 112.43

Ta076 5820 113.64 114.54

Ta077 6021 112.66 112.95

Ta078 6095 111.4 112.78

Ta079 6314 110.56 111.74

Ta080 6235 109.29 111.71

Table 4. Test result comparison

(IWO)

Relative performance

Instance ACS IWO [30]%

Ta001 1297 107.09

Ta011 1690 130.59

Ta021 2408 133.97

Ta031 2768 109.1

Ta041 3384 102.39

Ta051 4298 127.38

Ta061 5567 104.89

Ta071 6281 108.5

The table shows the results of the Ant Colony Optimization algorithm and the

results compared to other algorithms in percentage.

I ran the Ant Colony Optimization (ACO) algorithm up to the Ta080 dataset. The

table contains the comparisons to the algorithms. I illustrate in a table how many

cases the ACO algorithm is better than the other algorithms.

Table 5. Test result comparison

Algorithm Number of data rows (on which

the comparisons were made)

Number of better

results

HMM-PFA 80 80

Efficiency analysis of the ACS in benchmark data 7

MA 50 50

IG-RIS 50 50

HGA 80 80

IIGA 80 80

DSOMA 80 74

HGSA 80 24

IWO 8 8

It can be seen from the tables that in the case of HMM-PFA, MA, IG-RIS, HGA,

and IIGA, the ACO algorithm always gave better results. In the case of DSOMA, it

did not give better results only a few times. It gave better results than the HGSA

and IWO algorithms in only a few cases, but the efficiency of ACO was not far

behind.

The results of the Ant Colony System (ACS) algorithm search space are shown in

the table below. The solutions given by the iterations of the Ant Colony System

algorithm were compared to each other. The following metrics were used here [31]:

 Lower and upper limits of fitness values

 The lower and upper limits of the averages of the fitness Hamming and Basic

Swap Sequence distances taken from each other

 Cost Density, which shows how different the solutions given by the iterations

are, i.e. how many solutions have the same fitness value.

The essence of fitness landscape analysis [31] is to determine, which algorithms

are outperformed others, and why. It is an analytical analysis, based on different

metrics. In this paper, this measurement uses the best results given by the iterations

of the algorithm. The general purpose of the fitness landscape can be multiple:

deciding the difficulty of the problem itself, examining the effectiveness of each

algorithm, examining the operators used.

Table 6. Fitness landscape analysis

The above table shows the fitness landscape results of the Ant Colony System

algorithm. The Ta001 fitness values were between 1347 and 1328 during the

iterations, while the results for Ta002 were between 1257 and 1180, the values for

Ta003 were between 1257 and 1180, and the fitness values for Ta004 were between

1480 and 1410. Based on this, it can be said that improvements were during each

iteration, but the best result of the first iteration was a relatively good result. This

was also shown by the averages of the fitness values. Hamming and Basic Swap

Ant Colony System (ACS)

Ta001 Ta002 Ta003 Ta004 Ta005

 Distance LB UB LB UB LB UB LB UB LB UB

Fitness values 1328 1347 1376 1402 1180 1257 1410 1480 1302 1360

Average of fitness

distances
Fitness 2.02 47.98 2.55 12.45 6.55 43.03 5.24 64.76 3.39 69.61

Average of Hamming

distances
Hamming 10.5 18.65 3.4 16.6 13.26 18.34 9.39 19.31 3.81 19.8

Average of basic swap

sequence distances
BSS 9.03 17.03 2.72 13.28 7.09 15.93 7.83 16.81 3.59 17.21

Fitness distances of the best

solution
Fitness 2.83 15.69 2.71 23.29 6.55 43.03 14.94 40.22 3.39 69.61

Hamming distances of the

best solution
Hamming 1.62 17.82 4.94 18.66 13.26 18.34 2.46 19.49 3.81 19.8

Basic swap sequence

distances of the best

solution

BSS 1.43 14.85 4.47 16.89 10.9 16.12 2.26 17.0 3.59 17.21

Cost density 1.0 92.0 17.0 84.0 1.0 54.0 1.0 88.0 1.0 69.0

8 A. Agárdi

Sequence distances are quite large. The upper limits of Cost density are quite large,

which indicates that after a few iterations, there is no improvement. For Ta001, this

value was 92, and for Ta002, 84. For Ta003, there were also 54 equal solutions,

while for Ta004, there were 88 equal solutions, and for Ta005, there were also 69

equal solutions.

4. Conclusions and future work

The Ant Colony System algorithm and its solution to a common production

scheduling task, the Flow Shop Scheduling (FSS) problem, were presented in the

article. The article contains a solution to a benchmark dataset. The article compares

the results of the Ant Colony System with the following algorithms: HMM-PFA,

MA, IG-RIS, HGA, IIGA, DSOMA, HGSA, and IWO. In most of the test results,

ACS gave better results than the algorithms. Only the DSOMA and HGSA

algorithms had results that were better than ACS. In the case of DSOMA, there

were only 6 such cases, in the case of HGSA there were more, here there were 56

such cases, but ACS was only a few percent behind. The article also presented the

analysis of the ACS fitness landscape, where the solutions given by the iterations

were analyzed. The analyses were performed using the following techniques: lower

and upper limits of the fitness values, also and upper limits of the average

Hamming, fitness, and basic swap sequence distances.

Future research area is the analysis of other algorithms of the Ant Colony

Optimization family for the Flow Shop Scheduling problem.

Acknowledgment.
„Supported by the ÚNKP-23-4-II. New National Excellence Program of the

Ministry for Culture and Innovation from the source of the National Research,

Development and Innovation Fund.”

References

[1] Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on evolutionary

computation, 1(1), 53-66. https://doi.org/10.1109/4235.585892

[2] Kulcsar, G., & Erdélyi, Ferenc (2006). Modeling and solving of the extended flexible

flow shop scheduling problem. Production Systems and Information Engineering, 3,

121-139.

[3] Montemanni, R., Gambardella, L. M., Rizzoli, A. E., & Donati, A. V. (2005). Ant

colony system for a dynamic vehicle routing problem. Journal of combinatorial

optimization, 10, 327-343. https://doi.org/10.1007/s10878-005-4922-6

[4] Simon, S. P., Padhy, N. P., & Anand, R. S. (2006). An ant colony system approach for

unit commitment problem. International Journal of Electrical Power & Energy

Systems, 28(5), 315-323. https://doi.org/10.1016/j.ijepes.2005.12.004

[5] Chen, Z. G., Zhan, Z. H., Lin, Y., Gong, Y. J., Gu, T. L., Zhao, F., ... & Zhang, J.

(2018). Multiobjective cloud workflow scheduling: A multiple populations ant colony

system approach. IEEE transactions on cybernetics, 49(8), 2912-2926.

https://doi.org/10.1109/TCYB.2018.2832640

[6] Chen, J., Ling, F., Zhang, Y., You, T., Liu, Y., & Du, X. (2022). Coverage path

planning of heterogeneous unmanned aerial vehicles based on ant colony system.

Swarm and Evolutionary Computation, 69, 101005.

https://doi.org/10.1109/4235.585892
https://doi.org/10.1007/s10878-005-4922-6
https://doi.org/10.1016/j.ijepes.2005.12.004
https://doi.org/10.1109/TCYB.2018.2832640

Efficiency analysis of the ACS in benchmark data 9

https://doi.org/10.1016/j.swevo.2021.101005

[7] Zhou, S. Z., Zhan, Z. H., Chen, Z. G., Kwong, S., & Zhang, J. (2020). A multi-

objective ant colony system algorithm for airline crew rostering problem with fairness

and satisfaction. IEEE Transactions on Intelligent Transportation Systems, 22(11),

6784-6798. https://doi.org/10.1109/TITS.2020.2994779

[8] Umam, M. S., Mustafid, M., & Suryono, S. (2022). A hybrid genetic algorithm and

tabu search for minimizing makespan in flow shop scheduling problem. Journal of

King Saud University-Computer and Information Sciences, 34(9), 7459-7467.

https://doi.org/10.1016/j.jksuci.2021.08.025

[9] Abdel-Basset, M., Manogaran, G., El-Shahat, D., & Mirjalili, S. (2018). A hybrid

whale optimization algorithm based on local search strategy for the permutation flow

shop scheduling problem. Future generation computer systems, 85(1), 129-145.

https://doi.org/10.1016/j.future.2018.03.020

[10] Zhao, Z., Zhou, M., & Liu, S. (2021). Iterated greedy algorithms for flow-shop

scheduling problems: A tutorial. IEEE Transactions on Automation Science and

Engineering, 19(3), 1941-1959. https://doi.org/10.1109/TASE.2021.3062994

[11] Ren, J., Ye, C., & Yang, F. (2021). Solving flow-shop scheduling problem with a

reinforcement learning algorithm that generalizes the value function with neural

network. Alexandria Engineering Journal, 60(3), 2787-2800.

https://doi.org/10.1016/j.aej.2021.01.030

[12] Zhao, F., Liu, H., Zhang, Y., Ma, W., & Zhang, C. (2018). A discrete water wave

optimization algorithm for no-wait flow shop scheduling problem. Expert Systems

with Applications, 91, 347-363. https://doi.org/10.1016/j.eswa.2017.09.028

[13] He, Z., Wang, K., Li, H., Song, H., Lin, Z., Gao, K., & Sadollah, A. (2022). Improved

Q-learning algorithm for solving permutation flow shop scheduling problems. IET

Collaborative Intelligent Manufacturing, 4(1), 35-44.

https://doi.org/10.1049/cim2.12042

[14] Fan, B., Yang, W., & Zhang, Z. (2019). Solving the two-stage hybrid flow shop

scheduling problem based on mutant firefly algorithm. Journal of Ambient

Intelligence and Humanized Computing, 10, 979-990. https://doi.org/10.1007/s12652-

018-0903-3

[15] Engin, O., & Güçlü, A. (2018). A new hybrid ant colony optimization algorithm for

solving the no-wait flow shop scheduling problems. Applied Soft Computing, 72,

166-176. https://doi.org/10.1016/j.asoc.2018.08.002

[16] Komaki, G. M., Sheikh, S., & Malakooti, B. (2019). Flow shop scheduling problems

with assembly operations: a review and new trends. International Journal of

Production Research, 57(10), 2926-2955.

https://doi.org/10.1080/00207543.2018.1550269

[17] Li, J. Q., Sang, H. Y., Han, Y. Y., Wang, C. G., & Gao, K. Z. (2018). Efficient multi-

objective optimization algorithm for hybrid flow shop scheduling problems with setup

energy consumptions. Journal of Cleaner Production, 181, 584-598.

https://doi.org/10.1016/j.jclepro.2018.02.004

[18] Ribas, I., Companys, R., & Tort-Martorell, X. (2019). An iterated greedy algorithm

for solving the total tardiness parallel blocking flow shop scheduling problem. Expert

Systems with Applications, 121, 347-361. https://doi.org/10.1016/j.eswa.2018.12.039

[19] Costa, A., Fernandez-Viagas, V., & Framiñan, J. M. (2020). Solving the hybrid flow

shop scheduling problem with limited human resource constraint. Computers &

Industrial Engineering, 146, 106545. https://doi.org/10.1016/j.cie.2020.106545

[20] Belabid, J., Aqil, S., & Allali, K. (2020). Solving permutation flow shop scheduling

problem with sequence-independent setup time. Journal of Applied Mathematics,

2020, 1-11. https://doi.org/10.1155/2020/7132469

[21] Rossit, D. A., Toncovich, A. A., Rossit, D. G., & Nesmachnow, S. (2020). Solving a

flow shop scheduling problem with missing operations in an Industry 4.0 production

environment.

[22] Dabiri, M., Darestani, S. A., & Naderi, B. (2019). Multi-machine flow shop

https://doi.org/10.1016/j.swevo.2021.101005
https://doi.org/10.1109/TITS.2020.2994779
https://doi.org/10.1016/j.jksuci.2021.08.025
https://doi.org/10.1016/j.future.2018.03.020
https://doi.org/10.1109/TASE.2021.3062994
https://doi.org/10.1016/j.aej.2021.01.030
https://doi.org/10.1016/j.eswa.2017.09.028
https://doi.org/10.1049/cim2.12042
https://doi.org/10.1007/s12652-018-0903-3
https://doi.org/10.1007/s12652-018-0903-3
https://doi.org/10.1016/j.asoc.2018.08.002
https://doi.org/10.1080/00207543.2018.1550269
https://doi.org/10.1016/j.jclepro.2018.02.004
https://doi.org/10.1016/j.eswa.2018.12.039
https://doi.org/10.1016/j.cie.2020.106545
https://doi.org/10.1155/2020/7132469

10 A. Agárdi

scheduling problems with rejection using genetic algorithm. International Journal of

Services and Operations Management, 32(2), 158-172.

https://doi.org/10.1504/IJSOM.2019.097527

[23] Li, G., Li, N., Sambandam, N., Sethi, S. P., & Zhang, F. (2018). Flow shop scheduling

with jobs arriving at different times. International Journal of Production Economics,

206, 250-260. https://doi.org/10.1016/j.ijpe.2018.10.010

[24] Zhao, F., He, X., & Wang, L. (2020). A two-stage cooperative evolutionary algorithm

with problem-specific knowledge for energy-efficient scheduling of no-wait flow-

shop problem. IEEE transactions on cybernetics, 51(11), 5291-5303.

https://doi.org/10.1109/TCYB.2020.3025662

[25] Shao, W., Pi, D., & Shao, Z. (2018). Local search methods for a distributed assembly

no-idle flow shop scheduling problem. IEEE Systems Journal, 13(2), 1945-1956.

https://doi.org/10.1109/JSYST.2018.2825337

[26] Doush, I. A., Al-Betar, M. A., Awadallah, M. A., Santos, E., Hammouri, A. I.,

Mafarjeh, M., & AlMeraj, Z. (2019). Flow shop scheduling with blocking using

modified harmony search algorithm with neighboring heuristics methods. Applied

Soft Computing, 85, 105861. https://doi.org/10.1016/j.asoc.2019.105861

[27] E. Taillard, "Benchmarks for basic scheduling problems", EJOR 64(2):278-285, 1993.

https://doi.org/10.1016/0377-2217(93)90182-M

[28] Qu, C., Fu, Y., Yi, Z., & Tan, J. (2018). Solutions to no-wait flow shop scheduling

problem using the flower pollination algorithm based on the hormone modulation

mechanism. Complexity, 2018. https://doi.org/10.1155/2018/1973604

[29] Wei, H., Li, S., Jiang, H., Hu, J., & Hu, J. (2018). Hybrid genetic simulated annealing

algorithm for improved flow shop scheduling with makespan criterion. Applied

Sciences, 8(12), 2621. https://doi.org/10.3390/app8122621

[30] Zhou, Y., Chen, H., & Zhou, G. (2014). Invasive weed optimization algorithm for

optimization no-idle flow shop scheduling problem. Neurocomputing, 137, 285-292.

https://doi.org/10.1016/j.neucom.2013.05.063

[31] Agárdi, A., Kovács, L., & Bányai, T. (2021). The fitness landscape analysis of the ant

colony system algorithm in solving a vehicle routing problem. ACADEMIC

JOURNAL OF MANUFACTURING ENGINEERING, 19(2).

https://doi.org/10.1504/IJSOM.2019.097527
https://doi.org/10.1016/j.ijpe.2018.10.010
https://doi.org/10.1109/TCYB.2020.3025662
https://doi.org/10.1109/JSYST.2018.2825337
https://doi.org/10.1016/j.asoc.2019.105861
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1155/2018/1973604
https://doi.org/10.3390/app8122621
https://doi.org/10.1016/j.neucom.2013.05.063

