

Production Systems and Information Engineering
Volume 12 (2), pp. 45-56 45
doi: https://doi.org/10.32968/psaie.2024.2.4

DISCOVERING PROCESS MODELS CONTAINING XOR BRANCHES

ERIKA BAKSÁNÉ VARGA

University of Miskolc, Hungary

Institute of Information Technology
erika.b.varga@uni-miskolc.hu

ATTILA BAKSA

University of Miskolc, Hungary

Faculty of Mechanical Engineering

and Informatics

attila.baksa@uni-miskolc.hu

Abstract. This study aims to investigate the robustness of the process
discovery algorithms implemented in the PM4Py library. We created
synthetic event logs to serve as benchmark datasets for evaluating process
discovery methods in terms of the complexity of the event logs. Specifically,
we developed a test framework using process models containing XOR
branches. For simple XOR branches, all the examined algorithms (Alpha
Miner, Inductive Miner, and Heuristics Miner) effectively uncovered the
underlying process models. However, for more complex scenarios with
events occurring in varied structural positions, heuristic and inductive
approaches proved to be more reliable.

Keywords: process discovery, PM4Py, process models with XOR branches

1. Introduction

Effective business process management is vital for organizational success, and

various methodologies, including process mining, play a crucial role in achieving

and maintaining optimal performance levels. Process mining offers valuable

support across the entire business process management (BPM) life-cycle, from

initial design to continuous optimization [1]. In practice, process mining becomes

particularly valuable when traditional methods fail to provide formal process

descriptions, or when existing documentation lacks reliability [2]. By analyzing

event logs, practitioners can compare observed behavior with predefined or

expected patterns, ensuring adherence to prescribed standards [3].

Process mining constitutes a set of methodologies and techniques utilized to delve

into event data, aiming to comprehend and enhance operational processes within

organizations. Positioned at the intersection of data analysis and process

management, process mining relies on event logs generated by business

information systems, which typically contain essential elements such as transaction

identifiers (case IDs), activity descriptions, timestamps, and sometimes

supplementary details like resource allocations and costs. The objectives of process

mining can be categorized into three main areas: process discovery, conformance

checking and process performance improvement [4].

https://doi.org/10.32968/psaie.2024.2.4
mailto:erika.b.varga@uni-miskolc.hu
mailto:attila.baksa@uni-miskolc.hu

 E. Baksáné Varga and A. Baksa

The present research concentrates on process discovery, which involves the

automated construction of process models based on event log data. By employing

this technique, organizations gain valuable insights into the actual sequences of

activities executed within their operational processes. Through process discovery,

previously hidden patterns and variations in process execution can be uncovered,

shedding light on both expected and unexpected process behaviors [5].

Process models that can be discovered from event logs include low-level models,

like state transition systems, and high-level models, such as Petri-nets, process

trees and BPMN models. These workflow models are built-up from basic control-

flow structures [6] and are systematic representations of the sequence of processes

and tasks within the organization.

In recent years, the process mining group of the Fraunhofer Institute has initiated a

number of process mining-related projects. A notable example is the PM4Py

(Process Mining for Python) library [7], which implements a wide range of state-

of-the-art process mining algorithms. Several studies have evaluated existing

process mining tools, including PM4Py, ProM, and Disco. For instance, [8]

benchmarks these tools based on metrics such as process discovery accuracy and

conformance checking, while [9] emphasizes PM4Py's flexibility, customization

options, and suitability for large-scale experimentation. These capabilities have

inspired numerous studies in diverse domains, including healthcare [9], business

process management [10], finance [11], education [12], and traffic management

[13].

In our investigations, we applied the process discovery algorithms implemented in

the PM4Py library. We have created synthetic event logs including sequential and

conditional patterns with a web-based process graph creator and log generator

application [14] and evaluated the output of the process discovery methods as

compared with the expected process model.

2. Input Data

2.1. Event Log Formats

In information systems, activities executed sequentially are stored in event logs,

which are detailed records of these activities. An event log is essentially a

structured table where each record corresponds to a specific case or process

instance. The data captured during the execution of the sequence of activities

within a given case are organized into columns. Event logs can be stored in various

formats, such as CSV, JSON, and XML, but the standard format for storing case-

based event logs is XES (eXtensible Event Stream) [15]. In these logs, events are

grouped under process instances, referred to as cases or traces. Each case contains a

unique case ID, a timestamp, and the IDs of the activities that occurred.

Additionally, XES allows for the inclusion of other relevant information, such as

the originator of the event, event types, and data attributes, providing a

comprehensive view of the process execution. This detailed structure facilitates

effective analysis and monitoring of business processes, aiding in process

improvement and compliance tracking [16].

Event logs serve as inputs for process discovery algorithms. In our experimental

workflow, the synthetically generated event log files are formatted in plain text

(TXT), with each line encapsulating the description of a process instance. Each

activity within these cases is denoted by its symbolic name, typically represented

by a letter indicative of the corresponding activity as shown in Figure 1. To process

Process Discovery from XOR Logs 47

this data format, we developed a parser program specifically designed to convert

these TXT files into CSV and XES event logs. During the transformation process,

essential details such as the case ID and timestamps are automatically incorporated,

ensuring the integrity and completeness of the event logs. Subsequently, these logs

are integrated into the process discovery pipeline, enabling the use of a diverse set

of algorithms available within the PM4Py library [7].

Figure 1 Process instances in S_IR dataset

2.2. Control Structures in Event Logs

Typical workflow patterns [6] include sequential, parallel, conditional and loop

structures as shown in Figure 2. In the simplest workflow structure, activities are

performed one after the other in linear sequence. In a parallel pattern, some tasks

can be executed simultaneously. An AND-split indicates the point where parallel

paths are created, while an AND-join synchronizes these paths back into a single

sequence. There are two types of conditional structures: exclusive and inclusive. In

an exclusive choice, one of several possible paths is chosen at an XOR-split point

based on a condition. If the conditional point is an OR-split, multiple paths can be

taken simultaneously. In both cases, a join point is required to merge the alternative

paths back into a single flow. Last, but not least, loop structures allow for the

repetition of activities.

Figure 2 Basic control-flow patterns

For the present study, we created process graphs containing only sequential and

exclusive choice workflow patterns. We then used these models to generate event

logs, ensuring that all cases correspond to the predefined workflows.

3. Methods

3.1. Process Discovery Methods in PM4Py

The algorithms available in the PM4Py library describe the discovered process in

various ways. We examined the following algorithms:

 E. Baksáné Varga and A. Baksa

 discover_eventually_follows_graph()

 discover_log_skeleton()

 discover_dfg_typed()

 discover_heuristics_net()

 discover_prefix_tree()

 discover_transition_system()

 discover_process_tree_inductive()

 discover_bpmn_inductive()

 discover_petri_net_alpha()

 discover_petri_net_heuristics()

 discover_petri_net_inductive()

 discover_petri_net_ilp()

The text representation of an Eventually Follows Graph (EFG) involves a list of

pairs indicating which activity eventually follows the other. In the PM4Py

implementation of the method, the frequency of each pair of subsequent activities

is also given in the output file (see Figure 3).

Figure 3 EFG graph of S_IR dataset

A log skeleton is again a textual representation (see Figure 4) used to describe the

underlying structure and constraints of an event log in the following grouping:

 equivalence: the order of the two activities can be swapped.

 always_after: activity pairs where the first activity is always followed by

the second.

 always_before: activity pairs where the first activity always precedes the

second.

 never_together: activity pairs that never occur simultaneously in any

process instance.

 directly_follows: activity pairs where the first activity is immediately

followed by the second.

 activ_freq: the occurrence frequencies of the given activity in the process

instances.

Figure 4 Log skeleton of S_IR dataset

Process Discovery from XOR Logs 49

The algorithms producing a Directly Follows Graph (DFG) and a Heuristic Net

yield the same graph for the small-sized randomly generated S_IR dataset as can be

seen in Figure 5. These graphs describe the relationships and frequencies of event

sequences within a process. Each node represents a unique activity and its

frequency in the given position of the process instances. Directed edges between

the nodes show the frequency and direction of sequences between the activities.

a) b)

Figure 5 a) DFG Graph and b) Heuristic Net of S_IR dataset

So, for example the edge from node 'a' to node 'b' () indicates that activity 'b'

directly follows activity 'a' five times in the observed process instances. On the

other hand, the absence of edge between node 'a' and 'c' suggests that this sequence

does not occur or is infrequent in the observed data. The most frequent start and

end activities are explicitly denoted in both graphs.

Another notation used to describe a process model is prefix tree. This is a tree-like

data structure used for efficiently storing and retrieving a set of event sequences

that share a common prefix. Each node represents an activity, and traversing from

the root to a node along the edges forms a case that corresponds to the event

sequence represented by that path (see Figure 6).

Figure 6 Prefix Tree of S_IR dataset

A state-transition system graph visually represents the states of the process

instances and the possible transitions between these states (see Figure 7). States are

denoted by nodes including pairs of subsequent events. Edges stand for transitions

labeled with activities that trigger these transitions.

 E. Baksáné Varga and A. Baksa

Figure 7 Transition System of S_IR dataset

Beside the above mentioned process representations, there are different types of

process tree notations applied in the PM4Py program library. We can create the

process tree, the BPMN or Petri-net graph of the discovered process model.

The algorithm that generates the process tree in Figure 8 can uncover the following

structures:

 seq: sequential execution

 and: joining parallel branches

 xor: executing one branch (exclusive or)

 xor loop: loop (repeating one branch of the process). The end of the repeating
section is marked by a black dot.

Figure 8 Process tree of S_IR dataset

In a BPMN graph activities are represented by rectangles. Circles denote the most

frequent start and end event of the process instances, and diamonds are for

denoting exclusive (X) and parallel (+) gateways (see Figure 9).

Process Discovery from XOR Logs 51

Figure 9 BPMN model of S_IR dataset

Petri-nets are popular output models of process discovery algorithms. In these

diagrams, places are represented as circles denoting the state of the system where

tokens (representing resources, tasks, or conditions) can reside. Transitions are

represented as rectangles denoting events that can change the state of the system.

Transitions may fire (activate) when certain conditions (token availability in input

places) are met, which results in the consumption of tokens from input places and

the production of tokens in output places. Arcs are directed connections between

places and transitions indicating the flow of tokens between the elements. See an

example in Figure 10.

Figure 10 Petri-net model of S_IR dataset yielded by Alpha Miner

3.2. Evaluation of Process Discovery Methods

When assessing the models produced by the above algorithms, we use the

functions of the pm4py.algo.evaluation package and consider four criteria:

1. Fitness: This measures how well the discovered model aligns with the cases

recorded in the event log, indicating the percentage of cases it accurately

represents.

2. Precision: This criterion ensures that the discovered model does not

generate cases that are not present in the event log. It measures what

percentage of the cases generated by the model actually appear in the

original event log.

3. Generalization: This assesses the extent to which the discovered model can

generalize beyond the specific cases in the event log.

4. Simplicity: This evaluates how straightforward and uncomplicated the

discovered model is.

3.3. Test Data

We generated synthetic datasets for benchmark purposes in two stages. In the first

step, a process model graph was drawn with a web-based graph creator tool. This

application allows for setting the frequencies of events and directly-follows-

relations to be used when producing the process instances in the generated event

log. For the present study, we constructed workflow graphs containing sequences

and XOR branches following this systematic structural layout:

 E. Baksáné Varga and A. Baksa

 Process models containing single-depth XOR branches (X) (3 files)

 Process models containing double-depth XOR branches (XX) (2 files)

 Process models containing triple-depth XOR branches (XXX) (2 files)

 The generated event logs are stored in TXT format and their statistical features are

 listed in Table 1.

Table 1. Statistical data of the test event logs.

Event log Process instances All events Event types

S_X_01 1000 5000 7

S_X_02 1000 7000 10

S_X_04 1000 11000 16

S_XX_01 1000 3932 7

S_XX_10 1000 4534 6

S_XXX_01 1000 4026 9

S_XXX_10 1000 3911 9

4. Results

This section summarizes the results gained when executing the process discovery

methods for the examined synthetic event logs.

4.1. Conformance of Expected and Discovered Process Models

Logs containing single-depth XOR branches (S_X_01, S_X_02, S_X_04) differ

only in the number of involved events and types of events. In these simple cases,

the Alpha Miner, Inductive Miner and Heuristics Miner algorithms discover the

same process models, which exactly correspond to the ones we have created to

generate the event logs.

We have received the same results when increasing the number of XOR branch

embeddings to three (S_XXX_01, S_XXX_10). So we can conclude, that one can

rely on all three algorithms when discovering process models containing only

sequences and XOR branches where events do not occur in multiple structural

positions. The number of event types and the length of the process instances do not
make any difference. These graphs are displayed in Figures 11 and 12.

a)

b)

Figure 11 a) Expected and b) discovered process model for S_XXX_01 dataset

Process Discovery from XOR Logs 53

a)

b)

Figure 12 a) Expected and b) discovered process model for S_XXX_10 dataset

On the other hand, the two event logs containing double-depth XOR branches

(S_XX_01, S_XX_10) are similar in event size and process length, but the second

dataset is more complex. Activity 'b' and 'e' may occur in two different structural

positions: as part of a sequence and as part of the XOR branch. This difference is

the cause of the diverging models explored by the different algorithms shown in
Figures 13 and 14.

a) b)

Figure 13 Process model for S_XX_10 dataset: a) expected, b) produced by
Heuristics Miner

 E. Baksáné Varga and A. Baksa

a)

b)

Figure 14 Process model for S_XX_10 dataset discovered by a) Alpha Miner, b)
Inductive Miner

Among these graphs, the heuristic net and the Petri-net produced by the Inductive

Miner fit the original process model. We can see, that Alpha Miner has limitations
handling infrequent behavior.

4.2. Comparative Evaluation of Process Discovery Methods

Table 2 gives a summary of the evaluation metrics calculated by means of the following

functions:
 pm4py.fitness_token_based_replay()

 pm4py.fitness_alignments()

 pm4py.precision_token_based_replay()

 pm4py.precision_alignments()

 pm4py.algo.evaluation.generalization.algorithm.apply()

 pm4py.algo.evaluation.simplicity.algorithm.apply()

Table 2 Evaluation of the discovered process models

Dataset Method Fitness Precision Generali-

zation

Simplicity

S_X_01 All methods 1.0 1.0 0.96 0.87

S_X_02 All methods 1.0 1.0 0.96 0.82

S_X_04 All methods 1.0 1.0 0.96 0.78

S_XX_01 All methods 1.0 1.0 0.95 0.87

S_XX_10 Alpha Miner 0.83 0.93 0.96 1.0

S_XX_10 Heuristics M. 1.0 0.95 0.96 0.81

S_XX_10 ILP Miner 1.0 0.87 0.96 0.68

S_XX_10 Inductive M. 1.0 0.83 0.96 0.77

S_XXX_01 All methods 1.0 1.0 0.94 0.80

S_XXX_10 All methods 1.0 1.0 0.94 0.80

Our analysis revealed a negative correlation between fitness and simplicity,

indicating that as fitness improves, model simplicity tends to decrease (
). From the evaluation of the methods, we can conclude that they aim to

maximize fitness and generalization. In simpler cases, they generate process

models that align closely with the datasets while maintaining a balance between

generalization and simplicity. However, with higher event log complexity,

differences between the process discovery methods become apparent.

The Alpha Miner algorithm tends to prioritize simplicity and generalization over

Process Discovery from XOR Logs 55

fitness, which can result in models that may not accurately represent all observed

behaviors in the event log. In contrast, Heuristics Miner, ILP Miner, and Inductive

Miner strive to maximize fitness and generalization, even at the cost of producing

more complex models.

5. Conclusion

In this study, we explored process discovery techniques for event logs containing

XOR branches, utilizing various algorithms implemented in the PM4Py library.

Our synthetic datasets, designed with single, double, and triple-depth XOR

branches, provided a controlled environment to evaluate the efficacy and

limitations of different process discovery methods.

Our findings revealed that the Alpha Miner, Inductive Miner, and Heuristics

Miner algorithms consistently discovered accurate process models for event logs

with XOR branches. These models matched the predefined structures used to

generate the event logs, indicating the robustness of these algorithms in handling

straightforward sequences and XOR branches where events do not repeat in

multiple structural positions.

However, the analysis of double-depth XOR branches highlighted challenges in

process discovery, particularly when events occur in multiple structural positions.

The resulting models from different algorithms varied, demonstrating that certain

algorithms, like Alpha Miner, struggle with infrequent behaviors and complex

branching structures. In contrast, the models generated by Inductive Miner and

Heuristics Miner showed better alignment with the original process models,

suggesting their enhanced capability in handling more complex XOR branching

scenarios.

The evaluation metrics, including fitness, precision, generalization, and

simplicity, provided a comprehensive assessment of the discovered models. The

results indicated that while the algorithms generally achieved high fitness,

maintaining a balance between generalization and simplicity sometimes

compromised precision, leading to the generation of cases not found in the event

logs. These findings underscore the importance of choosing the appropriate

algorithm based on the complexity and characteristics of the event logs being

analyzed.

References

[1] Z. Lamghari, M. Radgui, R. Saidi and M. D. Rahmani, (2018) A set of indicators for

BPM life cycle improvement, 2018 International Conference on Intelligent Systems

and Computer Vision (ISCV), Fez, Morocco, 2018, pp. 1-8,

https://doi.org/10.1109/ISACV.2018.8354057.

[2] M. Dumas, M. La Rosa, J. Mendling, and H.A. Reijers. (2013). Introduction to

Business Process Management. In: Fundamentals of Business Process Management.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33143-5_1

[3] Di Francescomarino, C., Burattin, A., Janiesch, C. and Sadiq, S. eds., (2023).

Business Process Management: 21st International Conference, BPM 2023, Utrecht,

The Netherlands, September 11–15, 2023, Proceedings (Vol. 14159), Springer

Nature, https://doi.org/10.1007/978-3-031-41620-0

[4] W.M.P. van der Aalst. (2016) Process Mining – Data Science in Action, Springer

Berlin, Heidelberg, 2
nd

 edition, https://doi.org/10.1007/978-3-662-49851-4

[5] W.M.P. van der Aalst, J. Carmona. (2022) Process Mining Handbook, Springer Cham

https://doi.org/10.1007/978-3-031-08848-3

https://doi.org/10.1109/ISACV.2018.8354057
https://doi.org/10.1007/978-3-642-33143-5_1
https://doi.org/10.1007/978-3-031-41620-0
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-031-08848-3

 E. Baksáné Varga and A. Baksa

[6] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. (2006)

Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22 ,

BPMcenter.org, 2006

[7] A. Berti, S. van Zelst and D. Schuster, (2023) PM4Py: A process mining library for

Python, Software Impacts, 17, 100556, https://doi.org/10.1016/j.simpa.2023.100556.

[8] C. Parente and C. J. Costa, Comparing Process Mining Tools and Algorithms, (2022)

17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid,

Spain, 2022, pp. 1-7, https://doi.org/10.23919/CISTI54924.2022.9820570.

[9] A. F. D. Gomes, C. Wanzeller, and J. Fialho, (2021) Comparative Analysis of

Process Mining Tools, CAPSI 2021 Proceedings. 4.

https://aisel.aisnet.org/capsi2021/4.

[10] M. Masyuk and M. Dorrer, (2024) Using PM4Py for Process Mining in an

Educational Organization, Advances in Automation V, Proceedings of the

International Russian Automation Conference, RusAutoCon2023, September 10–16,

2023, Sochi, Russia, pp. 234-242. https://doi.org/10.1007/978-3-031-51127-1_23.

[11] A. Tripathi, A. Rai, U. Singh, R. Vyas, and O. P. Vyas (2024) Unveiling AI

Efficiency: Loan Application Process Optimization Using PM4PY Tool, Advanced

Computing, IACC 2023, Communications in Computer and Information Science, Vol.

2053, 2024, https://doi.org/10.1007/978-3-031-56700-1_39.

[12] E. Baksáné Varga and A. Baksa, (2025) Application of Process Discovery Methods

for Learning Process Modeling, accepted in Infocommunications Journal

[13] L. Kovács and A. Jlidi, (2024) Navigating Process Mining: A Case study using

pm4py, Production Systems and Information Engineering, Vol. 12 No. 1 (2024),

https://doi.org/10.32968/psaie.2024.1.5.

[14] P. Mileff (2024) Design and development of a web-based graph editor and simulator

application, Production Systems and Information Engineering - ERPA Project, Vol.

12 No. 2, 2024, https://doi.org/10.32968/psaie.2024.2.1.

[15] M. T. Wynn, W. van der Aalst, E. Verbeek and B. D. Stefano. (2024) The IEEE XES

Standard for Process Mining: Experiences, Adoption, and Revision [Society Briefs],

in IEEE Computational Intelligence Magazine, Vol. 19, No. 1, pp. 20-23, Feb. 2024,

https://doi.org/10.1109/MCI.2023.3333141.

[16] W. van der Aalst, A.J.M.M. Weijters, (2004) Process mining: a research agenda,

Computers in Industry, Volume 53, Issue 3, 2004, Pages 231-244, ISSN 0166-3615,

https://doi.org/10.1016/j.compind.2003.10.001.

https://doi.org/10.23919/CISTI54924.2022.9820570
https://doi.org/10.1007/978-3-031-51127-1_23
https://doi.org/10.1007/978-3-031-56700-1_39
https://doi.org/10.32968/psaie.2024.1.5
https://doi.org/10.32968/psaie.2024.2.1
https://doi.org/10.1109/MCI.2023.3333141
https://doi.org/10.1016/j.compind.2003.10.001

