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Abstract. This study aims to investigate the robustness of the process 
discovery algorithms implemented in the PM4Py library. We created 
synthetic event logs to serve as benchmark datasets for evaluating process 
discovery methods in terms of the complexity of the event logs. Specifically, 
we developed a test framework using process models containing XOR 
branches. For simple XOR branches, all the examined algorithms (Alpha 
Miner, Inductive Miner, and Heuristics Miner) effectively uncovered the 
underlying process models. However, for more complex scenarios with 
events occurring in varied structural positions, heuristic and inductive 
approaches proved to be more reliable. 
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1. Introduction 
 

Effective business process management is vital for organizational success, and 

various methodologies, including process mining, play a crucial role in achieving 

and maintaining optimal performance levels. Process mining offers valuable 

support across the entire business process management (BPM) life-cycle, from 

initial design to continuous optimization [1]. In practice, process mining becomes 

particularly valuable when traditional methods fail to provide formal process 

descriptions, or when existing documentation lacks reliability [2]. By analyzing 

event logs, practitioners can compare observed behavior with predefined or 

expected patterns, ensuring adherence to prescribed standards [3].  

 

Process mining constitutes a set of methodologies and techniques utilized to delve 

into event data, aiming to comprehend and enhance operational processes within 

organizations. Positioned at the intersection of data analysis and process 

management, process mining relies on event logs generated by business 

information systems, which typically contain essential elements such as transaction 

identifiers (case IDs), activity descriptions, timestamps, and sometimes 

supplementary details like resource allocations and costs. The objectives of process 

mining can be categorized into three main areas: process discovery, conformance 

checking and process performance improvement [4]. 
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The present research concentrates on process discovery, which involves the 

automated construction of process models based on event log data. By employing 

this technique, organizations gain valuable insights into the actual sequences of 

activities executed within their operational processes. Through process discovery, 

previously hidden patterns and variations in process execution can be uncovered, 

shedding light on both expected and unexpected process behaviors [5]. 

 

Process models that can be discovered from event logs include low-level models, 

like state transition systems, and high-level models, such as Petri-nets, process 

trees and BPMN models. These workflow models are built-up from basic control-

flow structures [6] and are systematic representations of the sequence of processes 

and tasks within the organization.  

 

In recent years, the process mining group of the Fraunhofer Institute has initiated a 

number of process mining-related projects. A notable example is the PM4Py 

(Process Mining for Python) library [7], which implements a wide range of state-

of-the-art process mining algorithms. Several studies have evaluated existing 

process mining tools, including PM4Py, ProM, and Disco. For instance, [8] 

benchmarks these tools based on metrics such as process discovery accuracy and 

conformance checking, while [9] emphasizes PM4Py's flexibility, customization 

options, and suitability for large-scale experimentation. These capabilities have 

inspired numerous studies in diverse domains, including healthcare [9], business 

process management [10], finance [11], education [12], and traffic management 

[13]. 

 

In our investigations, we  applied the process discovery algorithms implemented in 

the PM4Py library. We have created synthetic event logs including sequential and 

conditional patterns with a web-based process graph creator and log generator 

application [14] and evaluated the output of the process discovery methods as 

compared with the expected process model. 

 

2. Input Data 
 

2.1. Event Log Formats 

 

In information systems, activities executed sequentially are stored in event logs, 

which are detailed records of these activities. An event log is essentially a 

structured table where each record corresponds to a specific case or process 

instance. The data captured during the execution of the sequence of activities 

within a given case are organized into columns. Event logs can be stored in various 

formats, such as CSV, JSON, and XML, but the standard format for storing case-

based event logs is XES (eXtensible Event Stream) [15]. In these logs, events are 

grouped under process instances, referred to as cases or traces. Each case contains a 

unique case ID, a timestamp, and the IDs of the activities that occurred. 

Additionally, XES allows for the inclusion of other relevant information, such as 

the originator of the event, event types, and data attributes, providing a 

comprehensive view of the process execution. This detailed structure facilitates 

effective analysis and monitoring of business processes, aiding in process 

improvement and compliance tracking [16]. 

 

Event logs serve as inputs for process discovery algorithms. In our experimental 

workflow, the synthetically generated event log files are formatted in plain text 

(TXT), with each line encapsulating the description of a process instance. Each 

activity within these cases is denoted by its symbolic name, typically represented 

by a letter indicative of the corresponding activity as shown in Figure 1. To process 
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this data format, we developed a parser program specifically designed to convert 

these TXT files into CSV and XES event logs. During the transformation process, 

essential details such as the case ID and timestamps are automatically incorporated, 

ensuring the integrity and completeness of the event logs. Subsequently, these logs 

are integrated into the process discovery pipeline, enabling the use of a diverse set 

of algorithms available within the PM4Py library [7]. 

 

 
 

Figure 1 Process instances in S_IR dataset 

 

2.2. Control Structures in Event Logs 

 

Typical workflow patterns [6] include sequential, parallel, conditional and loop 

structures as shown in Figure 2. In the simplest workflow structure, activities are 

performed one after the other in linear sequence. In a parallel pattern, some tasks 

can be executed simultaneously. An AND-split indicates the point where parallel 

paths are created, while an AND-join synchronizes these paths back into a single 

sequence. There are two types of conditional structures: exclusive and inclusive. In 

an exclusive choice, one of several possible paths is chosen at an XOR-split point 

based on a condition. If the conditional point is an OR-split, multiple paths can be 

taken simultaneously. In both cases, a join point is required to merge the alternative 

paths back into a single flow. Last, but not least, loop structures allow for the 

repetition of activities. 

 

 

 

Figure 2 Basic control-flow patterns 

 

For the present study, we created process graphs containing only sequential and 

exclusive choice workflow patterns. We then used these models to generate event 

logs, ensuring that all cases correspond to the predefined workflows. 

 

3. Methods 

 

3.1. Process Discovery Methods in PM4Py 

The algorithms available in the PM4Py library describe the discovered process in 

various ways. We examined the following algorithms: 
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 discover_eventually_follows_graph() 

 discover_log_skeleton() 

 discover_dfg_typed() 

 discover_heuristics_net() 

 discover_prefix_tree() 

 discover_transition_system() 

 discover_process_tree_inductive() 

 discover_bpmn_inductive() 

 discover_petri_net_alpha() 

 discover_petri_net_heuristics() 

 discover_petri_net_inductive() 

 discover_petri_net_ilp() 

 

The text representation of an Eventually Follows Graph (EFG) involves a list of 

pairs indicating which activity eventually follows the other. In the PM4Py 

implementation of the method, the frequency of each pair of subsequent activities 

is also given in the output file (see Figure 3). 

 

 
 

Figure 3 EFG graph of S_IR dataset  

 

A log skeleton is again a textual representation (see Figure 4) used to describe the 

underlying structure and constraints of an event log in the following grouping: 

 equivalence: the order of the two activities can be swapped. 

 always_after: activity pairs where the first activity is always followed by 

the second. 

 always_before: activity pairs where the first activity always precedes the 

second. 

 never_together: activity pairs that never occur simultaneously in any 

process instance. 

 directly_follows: activity pairs where the first activity is immediately 

followed by the second. 

 activ_freq: the occurrence frequencies of the given activity in the process 

instances. 

 
 

Figure 4 Log skeleton of S_IR dataset  



 

 

 

Process Discovery from XOR Logs 49 

 
 

 

The algorithms producing a Directly Follows Graph (DFG) and a Heuristic Net 

yield the same graph for the small-sized randomly generated S_IR dataset as can be 

seen in Figure 5. These graphs describe the relationships and frequencies of event 

sequences within a process. Each node represents a unique activity and its 

frequency in the given position of the process instances. Directed edges between 

the nodes show the frequency and direction of sequences between the activities.  

 

a)                       b)  

 

Figure 5 a) DFG Graph and b) Heuristic Net of S_IR dataset 

 

So, for example the edge from node 'a' to node 'b' (   ) indicates that activity 'b' 

directly follows activity 'a' five times in the observed process instances. On the 

other hand, the absence of edge between node 'a' and 'c' suggests that this sequence 

does not occur or is infrequent in the observed data. The most frequent start and 

end activities are explicitly denoted in both graphs. 

Another notation used to describe a process model is prefix tree. This is a tree-like 

data structure used for efficiently storing and retrieving a set of event sequences 

that share a common prefix. Each node represents an activity, and traversing from 

the root to a node along the edges forms a case that corresponds to the event 

sequence represented by that path (see Figure 6). 

 

 
 

Figure 6 Prefix Tree of S_IR dataset 

A state-transition system graph visually represents the states of the process 

instances and the possible transitions between these states (see Figure 7). States are 

denoted by nodes including pairs of subsequent events. Edges stand for transitions 

labeled with activities that trigger these transitions. 
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Figure 7 Transition System of S_IR dataset 

 

Beside the above mentioned process representations, there are different types of 

process tree notations applied in the PM4Py program library. We can create the 

process tree, the BPMN or Petri-net graph of the discovered process model. 

The algorithm that generates the process tree in Figure 8 can uncover the following 

structures: 

 seq: sequential execution 

 and: joining parallel branches 

 xor: executing one branch (exclusive or) 

 xor loop: loop (repeating one branch of the process). The end of the repeating 
section is marked by a black dot. 

 

Figure 8 Process tree of S_IR dataset 

 

In a BPMN graph activities are represented by rectangles. Circles denote the most 

frequent start and end event of the process instances, and diamonds are for 

denoting exclusive (X) and parallel (+) gateways (see Figure 9). 
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Figure 9 BPMN model of S_IR dataset 

 

Petri-nets are popular output models of process discovery algorithms. In these 

diagrams, places are represented as circles denoting the state of the system where 

tokens (representing resources, tasks, or conditions) can reside. Transitions are 

represented as rectangles denoting events that can change the state of the system. 

Transitions may fire (activate) when certain conditions (token availability in input 

places) are met, which results in the consumption of tokens from input places and 

the production of tokens in output places. Arcs are directed connections between 

places and transitions indicating the flow of tokens between the elements. See an 

example in Figure 10. 

 

 

 

Figure 10 Petri-net model of S_IR dataset yielded by Alpha Miner 

 

3.2. Evaluation of Process Discovery Methods 

 

When assessing the models produced by the above algorithms, we use the 

functions of the pm4py.algo.evaluation package and consider four criteria: 

 

1. Fitness: This measures how well the discovered model aligns with the cases 

recorded in the event log, indicating the percentage of cases it accurately 

represents. 

2. Precision: This criterion ensures that the discovered model does not 

generate cases that are not present in the event log. It measures what 

percentage of the cases generated by the model actually appear in the 

original event log.  

3. Generalization: This assesses the extent to which the discovered model can 

generalize beyond the specific cases in the event log. 

4. Simplicity: This evaluates how straightforward and uncomplicated the 

discovered model is. 

 

3.3. Test Data 

 

We generated synthetic datasets for benchmark purposes in two stages. In the first 

step, a process model graph was drawn with a web-based graph creator tool. This 

application allows for setting the frequencies of events and directly-follows-

relations to be used when producing the process instances in the generated event 

log. For the present study, we constructed workflow graphs containing sequences 

and XOR branches following this systematic structural layout: 



 

 

 

 E. Baksáné Varga and A. Baksa 

 

 Process models containing single-depth XOR branches (X) (3 files) 

 Process models containing double-depth XOR branches (XX) (2 files) 

 Process models containing triple-depth XOR branches (XXX) (2 files) 

 The generated event logs are stored in TXT format and their statistical features are 

 listed in Table 1. 

 

Table 1. Statistical data of the test event logs. 

Event log Process instances All events Event types 

S_X_01 1000 5000 7 

S_X_02 1000 7000 10 

S_X_04 1000 11000 16 

S_XX_01 1000 3932 7 

S_XX_10 1000 4534 6 

S_XXX_01 1000 4026 9 

S_XXX_10 1000 3911 9 

 

4. Results 

This section summarizes the results gained when executing the process discovery 

methods for the examined synthetic event logs.  

 

4.1. Conformance of Expected and Discovered Process Models 

 

Logs containing single-depth XOR branches (S_X_01, S_X_02, S_X_04) differ 

only in the number of involved events and types of events. In these simple cases, 

the Alpha Miner, Inductive Miner and Heuristics Miner algorithms discover the 

same process models, which exactly correspond to the ones we have created to 

generate the event logs. 

We have received the same results when increasing the number of XOR branch 

embeddings to three (S_XXX_01, S_XXX_10). So we can conclude, that one can 

rely on all three algorithms when discovering process models containing only 

sequences and XOR branches where events do not occur in multiple structural 

positions. The number of event types and the length of the process instances do not 
make any difference. These graphs are displayed in Figures 11 and 12. 

a)  

b)  

Figure 11 a) Expected and b) discovered process model for S_XXX_01 dataset 
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a)  

b)  

Figure 12 a) Expected and b) discovered process model for S_XXX_10 dataset 

 

On the other hand, the two event logs containing double-depth XOR branches 

(S_XX_01, S_XX_10) are similar in event size and process length, but the second 

dataset is more complex. Activity 'b' and 'e' may occur in two different structural 

positions: as part of a sequence and as part of the XOR branch. This difference is 

the cause of the diverging models explored by the different algorithms shown in 
Figures 13 and 14. 

a)                 b)  

Figure 13 Process model for S_XX_10 dataset: a) expected, b) produced by 
Heuristics Miner 
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a)  

b)  

Figure 14 Process model for S_XX_10 dataset discovered by a) Alpha Miner, b) 
Inductive Miner 

 

Among these graphs, the heuristic net and the Petri-net produced by the Inductive 

Miner fit the original process model. We can see, that Alpha Miner has limitations 
handling infrequent behavior. 

4.2. Comparative Evaluation of Process Discovery Methods 

 

Table 2 gives a summary of the evaluation metrics calculated by means of the following 

functions: 
 pm4py.fitness_token_based_replay() 

 pm4py.fitness_alignments() 

 pm4py.precision_token_based_replay() 

 pm4py.precision_alignments() 

 pm4py.algo.evaluation.generalization.algorithm.apply() 

 pm4py.algo.evaluation.simplicity.algorithm.apply() 

 

Table 2 Evaluation of the discovered process models 

Dataset Method Fitness Precision Generali-

zation 

Simplicity 

S_X_01 All methods 1.0 1.0 0.96 0.87 

S_X_02 All methods 1.0 1.0 0.96 0.82 

S_X_04 All methods 1.0 1.0 0.96 0.78 

S_XX_01 All methods 1.0 1.0 0.95 0.87 

S_XX_10 Alpha Miner 0.83 0.93 0.96 1.0 

S_XX_10 Heuristics M. 1.0 0.95 0.96 0.81 

S_XX_10 ILP Miner 1.0 0.87 0.96 0.68 

S_XX_10 Inductive M. 1.0 0.83 0.96 0.77 

S_XXX_01 All methods 1.0 1.0 0.94 0.80 

S_XXX_10 All methods 1.0 1.0 0.94 0.80 

 

Our analysis revealed a negative correlation between fitness and simplicity, 

indicating that as fitness improves, model simplicity tends to decrease (  
     ). From the evaluation of the methods, we can conclude that they aim to 

maximize fitness and generalization. In simpler cases, they generate process 

models that align closely with the datasets while maintaining a balance between 

generalization and simplicity. However, with higher event log complexity, 

differences between the process discovery methods become apparent.  

The Alpha Miner algorithm tends to prioritize simplicity and generalization over 
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fitness, which can result in models that may not accurately represent all observed 

behaviors in the event log. In contrast, Heuristics Miner, ILP Miner, and Inductive 

Miner strive to maximize fitness and generalization, even at the cost of producing 

more complex models. 

 

5. Conclusion 

In this study, we explored process discovery techniques for event logs containing 

XOR branches, utilizing various algorithms implemented in the PM4Py library. 

Our synthetic datasets, designed with single, double, and triple-depth XOR 

branches, provided a controlled environment to evaluate the efficacy and 

limitations of different process discovery methods. 

 

Our findings revealed that the Alpha Miner, Inductive Miner, and Heuristics 

Miner algorithms consistently discovered accurate process models for event logs 

with XOR branches. These models matched the predefined structures used to 

generate the event logs, indicating the robustness of these algorithms in handling 

straightforward sequences and XOR branches where events do not repeat in 

multiple structural positions. 

However, the analysis of double-depth XOR branches highlighted challenges in 

process discovery, particularly when events occur in multiple structural positions. 

The resulting models from different algorithms varied, demonstrating that certain 

algorithms, like Alpha Miner, struggle with infrequent behaviors and complex 

branching structures. In contrast, the models generated by Inductive Miner and 

Heuristics Miner showed better alignment with the original process models, 

suggesting their enhanced capability in handling more complex XOR branching 

scenarios. 

The evaluation metrics, including fitness, precision, generalization, and 

simplicity, provided a comprehensive assessment of the discovered models. The 

results indicated that while the algorithms generally achieved high fitness, 

maintaining a balance between generalization and simplicity sometimes 

compromised precision, leading to the generation of cases not found in the event 

logs. These findings underscore the importance of choosing the appropriate 

algorithm based on the complexity and characteristics of the event logs being 

analyzed. 
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