

Production Systems and Information Engineering
Volume 12 (2), pp. 20-35 20
doi: https://doi.org/10.32968/psaie.2024.2.2

EVALUATING PROCESS DISCOVERY FROM LOOP STRUCTURES

ERIKA BAKSÁNÉ VARGA

University of Miskolc, Hungary

Institute of Information Technology
erika.b.varga@uni-miskolc.hu

ATTILA BAKSA

University of Miskolc, Hungary

Faculty of Mechanical Engineering

and Informatics

attila.baksa@uni-miskolc.hu

Abstract. Modern organizations increasingly rely on sophisticated
information systems to manage their business processes, generating detailed
event logs that record key activities. Process mining, and specifically process
discovery, utilizes these event logs to construct models that represent the
underlying processes. Effective process discovery is crucial for organizations
to gain insights into their operations, identify inefficiencies, and drive
continuous improvement. This study evaluates the capability of four process
discovery algorithms – Alpha Miner, Heuristics Miner, ILP Miner, and
Inductive Miner – in handling complex workflow patterns, particularly those
involving intricate loop and nested control-flow structures. By generating
synthetic event logs and applying the PM4Py library, we assess the
algorithms' performance using metrics such as fitness, precision,
generalization, and simplicity. Our results highlight the strengths and
limitations of each algorithm, providing valuable insights for researchers and
practitioners in the field.

Keywords: process discovery, PM4Py, LOOP structures in workflows

1. Introduction

Modern organizations increasingly rely on sophisticated information systems to

manage their business processes, generating detailed event logs that record key

activities. Process mining, and specifically process discovery, utilizes these event

logs to construct models that represent the underlying processes [1]. Effective

process discovery is crucial for organizations to gain insights into their operations,

identify inefficiencies, and drive continuous improvement [2].

Process discovery algorithms automatically create process models from event logs,

capturing the control-flow relationships between tasks [3]. These algorithms, such

as Alpha Miner, Heuristics Miner, ILP Miner, and Inductive Miner, each strike

different balances between model accuracy, complexity, and computational

efficiency [4]. The Alpha Miner algorithm [5], one of the earliest and simplest,

uses a basic set of rules to construct a Petri net representing the process. However,

its simplicity often limits its applicability to more complex real-life logs. The

Heuristics Miner [6] improves upon Alpha Miner by incorporating frequency-

based heuristics, enabling it to better handle noise and infrequent behavior in the

https://doi.org/10.32968/psaie.2024.2.2
mailto:erika.b.varga@uni-miskolc.hu
mailto:attila.baksa@uni-miskolc.hu

Process Models with Loops 21

logs. ILP Miner [7] uses integer linear programming to discover models that

guarantee soundness, however at a higher computational cost. Inductive Miner [8],

known for its robustness, constructs process trees that can represent complex

behaviors including parallelism, choices, and loops, making it particularly suitable

for real-life event logs.

In this study, we focus on the complexities that arise in process models,

particularly those involving intricate structures such as loops and nested control

flows. We generate synthetic event logs from process models featuring these

advanced constructs and evaluate the output of the aforementioned process

discovery algorithms using the PM4Py library. By comparing the discovered

models with the original models, we assess the algorithms' ability to accurately

capture complex process behaviors. This research aims to highlight the strengths

and limitations of current process discovery techniques when applied to

sophisticated process structures, providing insights for both researchers and

practitioners in the field.

2. Input for Process Discovery

2.1. Build-up of Event Logs

Users can discover process models from event logs in various formats such as

XES, MXML, CSV, OCEL, and others. These logs typically originate from ASCII

text log files and contain information about process instances, such as their case

ID, the activities involved and the timestamp.

In our study, synthetically generated TXT files contain sequences of events

separated by commas, with each event specified by its symbolic name (a letter

representing the activity). During the transformation process, the case ID and

timestamp are automatically added as illustrated in Figure 1.

a) b)

Figure 1 a) Synthetic event sequences and b) the first sequence in the transformed

event log

The PM4Py library provides a uniform implementation for the examined process

discovery algorithms, allowing each function to be called with the same arguments.

Specifically, we provide the name of the input event log, the column names

containing the case ID, activity/event label, and timestamp. The functions return

descriptions of the generated process models, which can be visualized using

GraphViz for graphical models and saved in PNG format. Outputs of algorithms
producing declarative models can be stored in TXT format.

2.2. Complex Control Structures

Workflow patterns are essential for modeling and analyzing business processes,

aiding in the comprehension and optimization of workflows. Traditional patterns

include sequential, parallel, conditional, and loop structures, forming the

foundation for most process models [9]. In this study, we focus on more complex

control structures that go beyond these basic patterns (see Figure 2).

Loop structures allow for the repetition of one or more activities. An XOR-in-loop

pattern combines exclusive choice (XOR) within a loop structure. Within the loop,

at certain points, one of several possible paths is chosen based on a condition

 E. Baksáné Varga and A. Baksa

(XOR-split). After executing the selected path, the process returns to the beginning

of the loop to repeat the embedded activities.

A loop-in-XOR pattern integrates loops within an exclusive choice (XOR)

structure. Here, based on a condition, one of several paths is chosen at an XOR-

split point, and the selected path contains a loop. The loop allows the repetition of

activities within that particular path before returning to the XOR-split point.

A loop-in-loop pattern involves nested loops, where one loop is contained within

another loop. The outer loop iterates a set of activities, and within those activities,

there is another loop that repeats a subset of tasks.

Figure 2 Complex control structures

For this research, we created process graphs containing these complex workflow

patterns. By incorporating loops, XOR-in-loop, loop-in-XOR, and nested loops, we

aim to evaluate the capability of process discovery algorithms in handling intricate

process behaviors. Using these models, we generated synthetic event logs ensuring

that all cases adhere to the predefined complex workflows [10]. These event logs

serve as the basis for applying and assessing the performance of the PM4Py

library's process discovery algorithms [11].

3. Methods

3.1. Process Discovery Algorithms

3.1.1. Alpha Miner

Alpha Miner is one of the earliest process mining algorithms designed to discover

process models from event logs [5]. It identifies patterns in the sequences of

activities recorded in the logs, specifically focusing on the order in which activities

occur. The algorithm constructs a workflow net (a type of Petri net) that represents

the control-flow structure of a business process as shown in Figure 3. Although

Alpha Miner is foundational and simple, it has limitations such as difficulty

handling noise and infrequent behavior, and it does not manage complex constructs

like non-free-choice constructs well.

Process Models with Loops 23

Figure 3 Process model generated by Alpha Miner from the even log in Figure 1

3.1.2. Heuristics Miner

Heuristics Miner [6] improves upon Alpha Miner by addressing some of its

weaknesses. The main difference is that the Heuristic Miner applies filtering to

reduce noise, meaning it removes insignificant or incomplete event log data to

provide process models that are less precise but more fault-tolerant than those

provided by the Alpha Miner. This algorithm uses dependency graphs called causal

nets to represent the causal relations between activities (see Figure 4) and can

handle loops and short-term dependencies more effectively. Heuristics Miner is

particularly useful in practical scenarios where event logs are noisy and incomplete
and contain large number of process cases.

Figure 4 Petri net generated by Heuristics Miner from data in Figure 1

3.1.3. ILP Miner

The ILP (Integer Linear Programming) Miner [7] is an advanced process discovery

algorithm that constructs process models by finding the best fitting model for the

given event log using integer linear programming techniques. This algorithm aims

to produce a Petri net that perfectly aligns with the observed behavior in the event

log (see Figure 5) while ensuring certain formal properties, such as soundness and

minimality. The ILP Miner is particularly effective in handling complex and large

event logs, providing precise and comprehensive models that capture the

complexities of the underlying processes. However, due to its computational

intensity, it may be less suitable for very large datasets or real-time applications.

Figure 5 Process model generated by ILP Miner from the event log in Figure 1

3.1.4 Inductive Miner

Inductive Miner [8] represents a more advanced approach to process discovery. It

 E. Baksáné Varga and A. Baksa

builds process models using a divide-and-conquer strategy, ensuring the resultant

models are block-structured (i.e., represented as process trees). This method

guarantees sound process models that are easy to understand and manage.

Inductive Miner can handle various complexities, including concurrency, and

provides models that are easier to comprehend and modify. It is considered more
versatile and reliable, especially for complex and large-scale processes.

Figure 6 Petri net generated by Inductive Miner from the event log in Figure 1

3.2. Evaluation Metrics

In this study, we evaluate the models generated by the process discovery

algorithms implemented in the PM4Py program library using the

pm4py.algo.evaluation package, considering the following criteria:

 Fitness: This indicates the proportion of cases accurately captured by the

model.

 Precision: It measures the percentage of the model-generated cases that are

actually found in the original event log.

 Generalization: It evaluates the model’s ability to generalize beyond the

specific cases in the event log. A good generalization ensures the model can

handle variations without overfitting to the log.

 Simplicity: It measures how straightforward and uncomplicated the

discovered model is. A simpler model is preferred as it is easier to

understand and interpret.

In addition to the above criteria, we also assess how well the discovered model
aligns with the predefined process graph.

3.3. Test Data

We generated the test datasets described in Table 1 in TXT format using a

graphical process graph editor and event log creator software [10], following the

systematic structural layout outlined below:

 Process model containing single-depth XOR branches within a loop (LX)

(3 files)

 Process model containing two XOR branches within a loop (L2X) (1 file)

 Process model containing two loops combined with a XOR branch (2LX)

(1 file)

 Process model containing a loop embedded in a XOR branch (XL)

(1 file)

 Process model containing a loop embedded in a XOR branch within a loop

(LXL) (1 file)

 Process model containing two-level loop nesting (LL) (1 file)

 Process model containing two-level loop nesting within a XOR branch

embedded in a loop (LXLL) (1 file)

 Process model containing single-depth XOR branch within four-level loop

nesting (LLLLX) (1 file)

Process Models with Loops 25

Table 1 Statistical data of the test datasets

Event log No. of processes Number of events Number of event types

S_LX_01 1000 6576 4

S_LX_02 1000 8378 4

S_LX_05 1000 10922 8

S_L2X_01 1000 24725 9

S_2LX_02 1000 25469 10

S_XL_01 1000 4834 5

S_LXL_01 1000 23879 8

S_LL_02 1000 38167 5

S_LXLL_02 1000 50798 9

S_LLLLX_01 1000 237032 12

4. Results

4.1. XOR-in-loop

The log files containing single XOR-in-loop structures vary in complexity. The

S_LX_01 dataset has a limited number of event types, with each activity occurring

in a single structural position within the event sequence. In contrast, the S_LX_02

dataset includes event 'a' which can repeat in different structural positions within

the sequence. The S_LX_05 log file features processes with multiple XOR

branches within the loop, as shown in Figure 7.

a) b) c)

Figure 7 Original process models for the log files a) S_LX_01, b) S_LX_02, and

c) S_LX_05

For the smaller datasets (S_LX_01 and S_LX_02), the Alpha Miner algorithm

identifies the most frequent start and end activities but fails to detect the complex

control-flow structures. Conversely, the ILP Miner method is effective only for

these smaller datasets. Due to its limitations, particularly its inability to handle

larger or more complex event logs effectively, we will not consider the ILP Miner

method further in this study as it is not applicable for real-world event logs which

typically exhibit greater complexity and variability.

 E. Baksáné Varga and A. Baksa

Figures 8 and 9 show the process models generated by the Heuristics Miner and

Inductive Miner algorithms for these datasets.

a)

b)

Figure 8 Process model for S_LX_01 dataset generated by a) Heuristics Miner and

b) Inductive Miner

a)

b)

Figure 9 Process model for S_LX_02 dataset generated by a) Heuristics Miner and

b) Inductive Miner

Figure 10 illustrates more complicated scenarios. The S_L2X_01 file represents

two consecutive XOR branches within a loop, while the S_2LX_02 test file

contains processes with two loops combined with a XOR branch.

When applying the Alpha Miner method to larger datasets (S_LX_05, S_L2X_01,

and S_2LX_02), we observed that the method can handle XOR-in-loop structure

with a limited number of possible options, as shown in Figures 11 and 14. Figures

12, 13 and 14 display the process models generated by the Heuristics Miner and

Inductive Miner algorithms for the S_L2X_01, S_LX_05 and S_2LX_02 datasets,

respectively.

Process Models with Loops 27

a) b)

Figure 10 Original process graphs for the log files a) S_L2X_01, and b)

S_2LX_02

Figure 11 Process model for S_L2X_01 dataset generated by Alpha Miner

a)

b)

Figure 12 Process model for S_L2X_01 dataset generated by a) Heuristics Miner

and b) Inductive Miner

 E. Baksáné Varga and A. Baksa

a)

b)

Figure 13 Process model for S_LX_05 dataset generated by a) Heuristics Miner

and b) Inductive Miner

a)

b)

c)

Figure 14 Process model for S_2LX_02 dataset generated by a) Alpha Miner, b)

Heuristics Miner and c) Inductive Miner

4.2. Loop-in-XOR

In this category, the simplest dataset is S_XL_01 in terms of structure, whereas the

S_LXL_01 log file contains a loop-in-XOR embedded in another loop. Figure 15

demonstrates the process models of these event logs.

Studying the results, we can conclude that the Alpha Miner algorithm is unable to

handle the Loop-in-XOR structure effectively. On the other hand, the Heuristics

Process Models with Loops 29

Miner and Inductive Miner algorithms produce the same output for the simpler

S_XL_01 case, as shown in Figure 16. For the more complex S_LXL_01 dataset,

the generated process models are presented in Figure 17.

a) b)

Figure 15 Original process graphs for the log files a) S_XL_01, and b) S_LXL_01

Figure 16 Process model for S_XL_01 dataset generated by Heuristics Miner and

Inductive Miner

a)

b)

Figure 17 Process model for S_LXL_01 dataset generated by a) Heuristics Miner

and b) Inductive Miner

4.3. Loop-in-loop

In the simplest approach, the loop-in-loop structure is not combined with XOR

branches as shown in Figure 18. When executing the process discovery algorithms

on the S_LL_02 dataset, we find that the Alpha Miner cannot capture loops if there

are repetitive activities. In contrast, the Heuristics Miner can identify one-level

loops, and the Inductive Miner can detect embedded loops. The generated models

are displayed in Figure 19.

 E. Baksáné Varga and A. Baksa

Figure 18 Original process graph for S_LL_02 test log

a)

b)

Figure 19 Process model for S_LL_02 dataset generated by a) Heuristics Miner

and b) Inductive Miner

A more complex scenario arises when a loop-in-loop structure is within an XOR

branch embedded in another loop (see Figure 20a). In this case, the Alpha Miner

algorithm oversimplifies the model, failing to capture the composite control-flow

patterns. The results of the Heuristics Miner and Inductive Miner methods for this

structure are shown in Figure 21.

The most complicated case we created involves a process graph with four levels of

loop embeddings combined with a XOR branch (see Figure 20b). For this scenario,

the three examined algorithms - Alpha Miner, Heuristics Miner, and Inductive

Miner - produce completely different models, as illustrated in Figure 22.

Process Models with Loops 31

a) b)

Figure 20 Original process graphs for the log files a) S_LXLL_02 and b)

S_LLLLX_01

a)

b)

Figure 21 Process model for S_LXLL_02 dataset generated by a) Heuristics Miner

and b) Inductive Miner

 E. Baksáné Varga and A. Baksa

a)

b)

c)

Figure 22 Process model for S_LLLLX_01 dataset generated by a) Alpha Miner,

b) Heuristics Miner and c) Inductive Miner

4.4. Evaluation of Process Discovery Methods

The evaluation metrics for the process models generated by the examined

algorithms are collected in Table 2. Some models are not sound and therefore

cannot be replayed or aligned with the data in the event log. As a result, these

models cannot be evaluated in terms of fitness, precision, generalization, and

simplicity.

This evaluation highlights specific patterns for each algorithm. The Alpha Miner

algorithm demonstrates a notable negative correlation between fitness and

generalization (). This suggests that as the fitness of the model

increases, its ability to generalize decreases. This trade-off indicates that Alpha

Miner tends to overfit the models to the specific cases in the event log, limiting its

applicability to broader scenarios. For this reason, this method produces a sound

Petri-net process model only for 4 of the 10 synthetic event logs.

Heuristics Miner shows high precision and simplicity across various datasets. This

algorithm is capable of producing models that are both accurate and relatively

simple, making it suitable for datasets with varying complexities. It generated a

replayable process model for 7 of the 10 test event logs. However, there is no

significant correlation between the evaluation metrics, suggesting a balanced

performance without any specific trade-offs.

ILP Miner consistently achieves high fitness across datasets, indicating that the

discovered models align well with the recorded cases. However, this algorithm is

effective mainly for smaller datasets and struggles with larger or more complex

event logs. This limitation makes ILP Miner less practical for real-world

applications where event logs are typically larger and more complex.

The Inductive Miner algorithm yields a significant negative correlation between

precision and simplicity (). This implies that as the precision of the

model increases, its simplicity tends to decrease. This trade-off suggests that

achieving higher accuracy in representing the event log cases comes at the cost of

creating more complex models. Inductive Miner produced 9 sound models out of

10, which proves its efficiency in detecting complex control-flow structures,

including nested loops and XOR branches, making it a robust choice for handling

intricate process models.

Process Models with Loops 33

Table 2 Evaluation of the generated process models

Dataset Method Fitness Precision Generali-

zation

Simplicity

S_LX_01 Alpha Miner 1.0 0.50 0.97 1.0

 Heuristics M. 0.97 0.97 0.97 0.63

 ILP Miner 1.0 0.93 0.97 0.66

 Inductive M. 1.0 0.93 0.96 0.73

S_LX_02 Alpha Miner 0.72 0.39 0.98 1.0

 Heuristics M. - - - -

 ILP Miner 1.0 0.69 0.97 0.46

 Inductive M. 1.0 0.52 0.97 0.71

S_LX_05 Alpha Miner - - - -

 Heuristics M. 0.84 0.98 0.96 0.70

 ILP Miner 1.0 0.35 0.97 1.0

 Inductive M. 1.0 0.91 0.97 0.80

S_L2X_01 Alpha Miner - - - -

 Heuristics M. 0.99 0.94 0.98 0.81

 ILP Miner 1.0 0.93 0.98 0.80

 Inductive M. 1.0 0.94 0.98 0.82

S_2LX_02 Alpha Miner - - - -

 Heuristics M. 0.99 0.75 0.97 0.72

 ILP Miner 1.0 0.93 0.98 0.37

 Inductive M. 1.0 0.54 0.98 0.73

S_XL_01 Alpha Miner 0.82 0.55 0.97 1.0

 Heuristics M. 0.99 0.99 0.96 0.88

 ILP Miner 1.0 0.50 0.97 0.60

 Inductive M. 1.0 0.99 0.96 0.88

S_LXL_01 Alpha Miner - - - -

 Heuristics M. 0.99 0.91 0.97 0.79

 ILP Miner 1.0 0.51 0.98 0.87

 Inductive M. 1.0 0.91 0.98 0.83

S_LL_02 Alpha Miner 0.23 0.49 0.98 1.0

 Heuristics M. - - - -

 ILP Miner 0.99 0.80 0.98 0.42

 Inductive M. 1.0 0.64 0.98 0.74

S_LXLL_02 Alpha Miner - - - -

 Heuristics M. 0.99 0.76 0.97 0.70

 ILP Miner 1.0 0.43 0.98 0.36

 Inductive M. 1.0 0.45 0.98 0.71

S_LLLLX_01 All methods - - - -

 E. Baksáné Varga and A. Baksa

5. Conclusion

In this study, we evaluated the performance of four process discovery algorithms -

Alpha Miner, Heuristics Miner, ILP Miner, and Inductive Miner - using synthetic

event logs that represent complex workflow patterns. Our analysis focused on the

algorithms' ability to accurately capture intricate control-flow structures,

particularly those involving loops and nested loops combined with XOR branches.

The key observations from our evaluation are as follows:

 Alpha Miner: The Alpha Miner algorithm, being one of the earliest and

simplest, struggles with complex control-flow structures. It produced a

sound Petri-net process model for only 4 of the 10 synthetic event logs. This

highlights its limitations in handling noise, infrequent behavior, and

complex constructs.

 Heuristics Miner: The Heuristics Miner algorithm improves upon Alpha

Miner by incorporating frequency-based heuristics, making it more effective

in practical scenarios with noisy and incomplete logs. This algorithm can

produce models that are both accurate and relatively simple, making it

suitable for datasets with varying complexities. It generated a sound Petri-

net model for 7 of the 10 test event logs.

 ILP Miner: The ILP Miner algorithm, while precise and capable of handling

complex event logs, is computationally intensive. Due to its high

computational cost, it may be less suitable for very large datasets or real-

time applications.

 Inductive Miner: The Inductive Miner algorithm proved to be the most

versatile and reliable, particularly for complex and large-scale processes. It

produced 9 sound Petri-net models out of 10, demonstrating its efficiency in

detecting complex control-flow structures and providing models that are

easy to understand and manage.

Our findings emphasize the importance of selecting the appropriate process

discovery algorithm based on the complexity and characteristics of the event logs.

While simpler algorithms like Alpha Miner may suffice for straightforward

processes, more advanced methods like Inductive Miner are necessary for

accurately capturing complex workflows. These insights can guide both researchers

and practitioners in choosing the right tools for effective process discovery.

References

[1] M. Dumas, M. La Rosa, J. Mendling, and H.A. Reijers. (2013). Introduction to

Business Process Management. In: Fundamentals of Business Process Management.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33143-5_1.

[2] Z. Lamghari, M. Radgui, R. Saidi and M. D. Rahmani. (2018) A set of indicators for

BPM life cycle improvement, 2018 International Conference on Intelligent Systems

and Computer Vision (ISCV), Fez, Morocco, pp. 1-8,

https://doi.org/10.1109/ISACV.2018.8354057.

[3] W.M.P. van der Aalst. (2016). Process Mining: Data Science in Action (2nd ed.).

Springer. https://doi.org/10.1007/978-3-662-49851-4.

[4] A. Augusto et al., (2019) Automated Discovery of Process Models from Event Logs:

Review and Benchmark, in IEEE Transactions on Knowledge and Data Engineering,

vol. 31, no. 4, pp. 686-705, https://doi.org/10.1109/TKDE.2018.2841877.

[5] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. (2004) Workflow

Mining: Discovering Process Models from Event Logs. IEEE Transactions on

Knowledge and Data Engineering, 16(9):1128-1142.

https://doi.org/10.1109/TKDE.2004.47

https://doi.org/10.1007/978-3-642-33143-5_1
https://doi.org/10.1109/ISACV.2018.8354057
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1109/TKDE.2004.47

Process Models with Loops 35

[6] A.J.M.M. Weijters, J.T.S. Ribeiro. (2011). Flexible Heuristics Miner (FHM). In

Proceedings of the 2011 IEEE Symposium on Computational Intelligence and Data

Mining (CIDM), pp. 310-317, 2011. https://doi.org/10.1109/CIDM.2011.5949453.

[7] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. (2008)

Process Discovery using Integer Linear Programming. Fundamenta Informaticae,

94(3-4), 387-412, 2008. https://doi.org/10.1007/978-3-540-68746-7_24.

[8] S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. (2013) Discovering Block-

Structured Process Models from Event Logs – A Constructive Approach. In

Application and Theory of Petri Nets and Concurrency, pp. 311-329, Springer, 2013.

https://doi.org/10.1007/978-3-642-38697-8_17.

[9] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. (2006)

Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22,

BPMcenter.org.

[10] P. Mileff. (2024) Design and Development of a Web-based Graph Editor and

Simulator Application, Production Systems and Information Engineering – ERPA

Project, Vol. 12 No. 2.

[11] A. Berti, S. van Zelst, D. Schuster, (2023) PM4Py: A process mining library for

Python, Software Impacts, 17, 100556, https://doi.org/10.1016/j.simpa.2023.100556.

https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1007/978-3-540-68746-7_24
https://doi.org/10.1007/978-3-642-38697-8_17

