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Abstract. Automated Process Discovery is aimed at determining the most fitting 
business process schema model from the event logs. One of the most difficult schema 
components is the loop structure and current process mining methods lack efficient 
loop mining. Our paper presents two novel approaches to fuzzy loop mining, 
where in fuzzy loops, the repeating kernel may have different variations. On 
of the proposed methods uses item-wise direct comparisons, while the other 
one is based on CNN neural network architecture. The performed evaluation 
tests show which are the benefits or drawbacks of the different loop mining 
approaches providing a guide for the implementation of efficient schema 
mining frameworks. 
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1. Introduction 

Automating repetitive business and office tasks is an essential tool for increasing the efficiency 

of corporate processes. Automation reduces execution time, error rates, and overall operational 

costs. The goal of Robotic Process Automation (RPA) is to achieve high-level automation of 

business processes by creating and running software robots (bots) that perform the work 

processes of employees. These robots handle high-volume, repetitive, and template-based tasks 

with greater accuracy and efficiency than humans [1]. 

The concept of RPA is an umbrella term that encompasses all IT solutions that interact with 

other IT systems as humans would [2]. While some interpretations suggest that RPA systems do 

not integrate internally with the managed system but control it through its existing user interface, 

this interpretation is not entirely accurate, as demonstrated by the approach of the Gartner 

Institute [3]. According to Gartner's definition, RPA solves control through a combination of 

classic user interfaces and direct program-level API interfaces. 

Robotic Process Mining (RPM) is a new research area closely related to RPA, aiming to 

discover automatable processes using machine learning tools. Developing process mining 

methods is still a largely unexplored problem area. The field closely related to robotic process 

mining is Automated Process Discovery (APD), which involves determining the most fitting 

business process model through data analysis of the logs from the examined processes. It is 

crucial to ensure the completeness of the analysis, addressing exceptional cases and errors. The 

main goal of APD processes is to produce a model that supports the control and planning tasks 

of processes. The primary criteria for measuring goodness [4] are: a) the ability to generate the 

recorded operational steps, b) the ability to generalize the examined processes and predict 

similar processes, and c) the ability to identify non-conforming processes. 

https://doi.org/10.32968/psaie.2024.2.3
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The most general formalism of process models includes automata, state transition systems, and 

operational flow models. The model has three main elements: 

 a set of states (S), with special emphasis on the starting and ending states, 

 state transitions (T), 

 actions (A). 

There are several methods available for developing operational flow models; the following 

briefly reviews the more common methods. 

Petri Nets. The most widespread process modelling tool [5]. In the model, there are two types of 

nodes: 

 normal state places (place), 

 state transitions (transition). 

 
Figure 1. Petri net formalism 

Connections can only link normal state and state transition nodes. At the transitions, we can thus 

talk about input and output places. In addition to normal states and transitions, status indicator 

elements known as tokens also appear. The tokens indicate the fulfilment of the associated state 

by their presence. A specific condition is required for the transition to occur in the model. A 

transition only happens (fires) if there is at least one token in every input place. During the 

transition, tokens move to the output places. The law of token conservation does not necessarily 

apply here. We can also assign capacity values to the edges, indicating the number of tokens 

involved in the transitional transformation. 

BPMN (Business Process Model Notation) [6]. This modelling language, similar to the YAWL 

system, is widely used in industry, primarily due to its functional richness. The main groups of 

building elements are: 

 EVENT descriptors 

 ACTIVITY descriptors 

 GATEWAY descriptors 

 CONSTRAINT descriptors  

The ACTIVITY group contains the structure of elementary events, including the LOOP unit. 

Process Tree ([7[). General graph-based methods for process descriptions do not necessarily 

provide valid descriptions and cannot effectively control higher-level forms. In contrast, process 

tree-based descriptions use a structural, containment-based hierarchical model, resulting in a less 

flexible but more controlled model. In the tree, internal nodes represent structural units, while 

leaves denote elementary operations. 

In the more complex modelling languages, the loop (LOOP) structure plays a prominent role. 
However, according to analyses, uncovering and inducing the LOOP structure is not a simple 

task, and existing schema discovery procedures are not fully capable of handling it. In our 

current research, we analyze the reasons for the difficulty in uncovering LOOP structures and 

the loop-detecting algorithms. 
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Figure 2. Process tree formalism (source: [7]) 

 

2. Complexity of fuzzy loop mining  

 
The loop structure means the repetition of some event sequences. Having an alphabet  , the 

simple loop L is defined as 

          

where     . The sequence   is the kernel of the loop. 

 

Beside the exact loop, we can define fuzzy loops where there is no fix kernel, it may have some 

limited variations: 

              
where  

           

In the case of complex problem domains, the kernel s is not just an elementary sequence, but a 

complex structure. The complex loop is defined with 

              

where    denotes a sequence, loop or XOR  structure units. 

 

The loops are local properties inside a sequence. We have exact definitions for both the fuzzy 

loops, which enable us to develop a loop detection algorithm. On the other hand, the direct 

implementation of the loop mining is based on a brute force approach. Thus there is a need for 

more efficient methods, but this problem domain has some inherent difficulties: 

 there are too large number of options to be tested; 

 the internal structure of a loop can be very complex (XOR branches or inner LOOP); 

 there is no standard algorithms and code implementation for loop detection task; 

 there is no machine learning approach for this problem domain ; 

 there are very few investigation in the literature on the fuzzy loop and complex loops. 

 

Based on these challenges, our paper focuses on the presentation of some possible solution 

alternatives and  on the evaluation of the proposed algorithms. The investigated algorithms are 

implemented in Python using the TensorFlow/Keras framework.  
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3. Algorithms for fuzzy loop 

 

 
3.1. Brute force algorithm 

 
In the case of brute force approach, we test all possible positions and kernel sets. Taking a 

starting position    in the sequence, we test all possible starting kernels which are substrings 

starting at    . All possible variants are saved into a queue of candidates (Q). In the next phase, 

we process the current candidates (  ) pulled from Q. Next, we try to extend    with another 

new kernel resulting a new candidate (  ) which is saved in Q. Only those loop candidates are 

stored in Q which meet the similarity constraints, i.e. the edit distance between any two kernels 

is less than a given threshold. The result set contains only those loops which are maximal, i.e 

they can not be extended with new kernels. 

 

The simplified pseudocode of the brute force algorithm: 

 

def find_fuzzy_loops_A (seq, dlim): 
  # seq_ imput sequence 

  # dlim : distance limit releative length  
 

    for p1 in range(len(seq)-1): 
        s2 =seq[p1:] 
        cloops = [] 
        for p in range(1, int(len(s2)/2+1)): 
            w = s2[:p] 
            cloops.append({"start":p1,"kernels":[w],"len":p}) 
 

        while len(cloops) > 0: 
            citem = cloops.pop() 
            p0 = citem["start"] + citem["len"] 
            s3 = seq[p0:] 
            for p in range(1,int(len(s3)/2+1)): 
                w3 = s3[:p] 
                db = 1 

                for j in range(len(citem["kernels"])): 
                    wk = citem["kernels"][j] 
                    dv = levenshteinDistance(wk,w3) 
                    dl = min(int(dlim[0]*len(wk)),dlim[1]) 
                    if dv > dl: 
                        db = 0 

                if db == 1: 
                    ncitem = copy_citem(citem) 
                    ncitem["kernels"].append(w3) 
                    ncitem["len"] = ncitem["len"] + p  
                    cloops.append(ncitem) 

 

 

 
3.2. Method DC algorithm 

 

The next investigated algorithm is a novel proposal to improve the efficiency of the brute force 

method. The method uses special storage units to optimize the processing costs. The main 

storage variables: 

 

 Poss: hash table to store the occurrence positions for each character (sequence item) 

 Reps: the list of hash tables to manage the distances between the positions with the 

same  character   

 

The algorithm first fill in the variables Reps and Poss. The main program loop processes the 

item (positions) of the sequence one by one. For the current position  we check whether the 

current character and the previous character may belong to the same kernel or not. In order to 

speed up the similarity checking, we use a Hamilton-distance instead of the Levenstein distance. 

Similar to the brute-force approach, a starting kernel may have several adjacent kernels, thus the 
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loop variants can be structured into a tree. During the candidate generation, the valid loop 

candidates must meet the predefined distance conditions. Only the maximal loops are returned in 

the results, thus smaller loops covered by other loops are removed from the result. 

 The simplified pseudocode of the  algorithm: 

 

def test_rep (seq, Mp, Md): 
 

    N = len(seq)   # input sequence 

    poss = dict()    # dictionary where does the given character occur in the list  
    reps = [[] for _ in range(N)]   # the list of rep lengths 

    kernels = []     # list of valid loops 
 

    for p in range(N):    # loop on the start position  
        for k0 in reps[p]:   # loop on possible kernel length 

            k1 = k0 

            dist = k1-1 # distance  
            p1 = 1 
 

            maxp1 = min (k0 + min (Md,int(k0*Mp)) + 1, N-p) 
            while p1< maxp1:      # go forward to test the candidate kernels 

                s = [ (abs(k-k1),k)  for k in reps[p+p1]]  # differences in gap 

                if len(s) > 0: 
                    s.sort() 
                    k2 = s[0][1] 
                    if k2 == k1: 
                        dist -= 1 

                    if k2 < k1: 
                        dist ,k1= dist+ (k1-k2), k2 

                    if k2 > k1: 
                        dist.k1  = dist + 1.k1+1 

                if dist < dmin: 
                    dist = levenshteinDistance(seq[pmin-k0min:pmin], seq[pmin:pmin+p1min+1]) 
                    dmin = dist 
                 
                p1 += 1 

            kernels.append((dmin,pmin-k0min,pmin+p1min+1)) 

 

 

 
3.3. Method CNN algorithm 

 
The neural networks are the dominating machine learning mechanism where a neural network 

can be considered as an universal function approximator. The main motivations to use NN for 

problem solving are 

 no need to develop domain specific algorithm 

 shorter development time  

 existing standard universal tools 

 integration  with other neural network architectures   

 

The application of NN in the different optimisation and pattern matching problems is hindered 

by the fact that NN is designed to optimize a lost function calculated for a given fixed size input 

[10]. In order to copy with complex problem domains, different new NN architectures were 

developed in the recent decades. While MLP [11] is for a function approximation with input of 

fixed size, the RNN [12] networks are able to process sequences and CNN [9] perform 

prediction on high dimensional cubes. 

 

In our approach, we proposed a CNN-based solution based on the following components. 

1. The sequence is first converted into a two dimensional square matrix describing the 

similarity between the items at the different positions in the sequence. 

2. The kernels can be recognized as special patterns in the matrix.  

3. The CNN is trained to discover these patterns. 

 

The 2D representation matrix shows which section in the sequence are similar to each others. 

For example, taking the sequence s = "adogdogdughua", we get the following matrix: 
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Figure 3. Sample similarity matrix  

 
The main steps in building up the CNN matrix are summarized in the followings: 
 

    model = Sequential() 
    model.add(Conv2D(64, kernel_size=(3, 3), activation='linear', 
                          input_shape=(in1, in2,1), 
                          padding='same')) 
    model.add(LeakyReLU(alpha=0.1)) 
    model.add(MaxPooling2D((2, 2), padding='same')) 
    model.add( 
        Conv2D(128, (3, 3), activation='linear', padding='same')) 
    model.add(LeakyReLU(alpha=0.1)) 
    model.add(MaxPooling2D(pool_size=(2, 2), padding='same')) 
    model.add( 
        Conv2D(256, (3, 3), activation='linear', padding='same')) 
    model.add(LeakyReLU(alpha=0.1)) 
    model.add(MaxPooling2D(pool_size=(2, 2), padding='same')) 
    model.add(Flatten()) 
    model.add(Dense(256, activation='linear')) 
    model.add(LeakyReLU(alpha=0.1)) 
    model.add(Dense(out, activation='relu')) 
 

    # cnn.compile(loss=keras.losses.binary_crossentropy, 
    # optimizer=keras.optimizers.Adam(),metrics=['mse']) 
    model.compile(loss=keras.losses.mean_squared_error, 
                       optimizer=keras.optimizers.Adam(), 
                       metrics=['mse']) 

 

 

4. Comparison Tests 

 
In the performed tests, we compared the execution time complexity of the presented algorithms. 

In order to get the       complexity, we performed the loop mining on sequences with different 

lengths. In the case of brute force algorithm, we got the execution times presented in Table 1. 

 
Table 1. Time cost of the brute-force algorithm  

 
sequence length  execution time [s]l 

50 0.2 

100 5.9 

150 42.9 
200 169.4 
250 627.0 
300 1214.1 
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Table 2. Time cost of the Method DC  algorithm  

 
sequence length  execution time [s]l 

200 0.2 

300 0.5 

400 0.9 
500 1.6 
600 2.3 
700 3.9 

8000 6.1 

 

In the case of the CNN-based solution, we measure the execution time both for training and 

prediction.  

 
Table 3. Training time cost of the Method CNN  algorithm  

 
sequence length  execution time [s]l 

50 12.9 

100 38.3 

150 90.3 
200 173.1 
250 287.0 
300 488.2 

 

Table 4. Prediction time cost of the Method CNN  algorithm  

 
sequence length  execution time [s]l 

50 0.002 

100 0.003 

150 0.005 
200 0.006 
250 0.006 
300 0.007 

 

Regarding the accuracy of the loop prediction, we calculated item level accuracy as 

 

     
                               

              
 

 
The accuracy test results is summarized in the next table: 

 
Table 4. Accuracy results of the methods  

 
method  accuracy recall 

Brute-force 100% 100% 
Method DC 96% 93% 

Method CNN 81% 72% 
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5. Conclusion 

 
We proposed two novel algorithms for detection of fuzzy loops, one of them is based on the 

usual direct comparison of the sequence items and the other one uses a CNN neural network to 

perform the loop prediction. In the case of CNN-based solution, the sequence is first converted 

into a similarity matrix which is the input of the CNN module. In the efficiency comparison 

tests, we also involved a brute force algorithm as a baseline method. 

The test results can be summarized into the following conclusions: 

1. The best accuracy is achieved by the  brute-force method, but it has a very high 

execution cost, nearly      . 

2. The proposed Method DC provides an acceptable         cost . 

3. The training cost of CNN-based method is in         while the prediction cost is very 

low     . 
4. The absolute time for CNN is very high, it is not worth to use CNN for a small number 

of predictions. 

5. Another problem of CNN is that we should fix the sequence length for the training and 

prediction, it is not suitable to apply it for variable sequence length domains. 

6. The brute force can be used if we require very high precision and the sequence length is 

a small value. 

7. The CNN can be used for stream-based loop search when the length of the sequence is 

fixed. 

8. The proposed Method A provides a good balance with a  good accuracy and good time 

efficiency values. 
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