
36 L. Kovács

Production Systems and Information Engineering

Volume 12 (2), pp. 36-44

doi: https://doi.org/10.32968/psaie.2024.2.3

EFFICIENCY ANALYSIS OF FUZZY LOOP DETECTION METHODS

LÁSZLÓ KOVÁCS

University of Miskolc, Hungary

Institute of Information Technology

kovacs@iit.uni-miskolc.hu

Abstract. Automated Process Discovery is aimed at determining the most fitting
business process schema model from the event logs. One of the most difficult schema
components is the loop structure and current process mining methods lack efficient
loop mining. Our paper presents two novel approaches to fuzzy loop mining,
where in fuzzy loops, the repeating kernel may have different variations. On
of the proposed methods uses item-wise direct comparisons, while the other
one is based on CNN neural network architecture. The performed evaluation
tests show which are the benefits or drawbacks of the different loop mining
approaches providing a guide for the implementation of efficient schema
mining frameworks.

Keywords: Robotic Process Automation, Robotic Process Mining, CNN

neural network

1. Introduction

Automating repetitive business and office tasks is an essential tool for increasing the efficiency

of corporate processes. Automation reduces execution time, error rates, and overall operational

costs. The goal of Robotic Process Automation (RPA) is to achieve high-level automation of

business processes by creating and running software robots (bots) that perform the work

processes of employees. These robots handle high-volume, repetitive, and template-based tasks

with greater accuracy and efficiency than humans [1].

The concept of RPA is an umbrella term that encompasses all IT solutions that interact with

other IT systems as humans would [2]. While some interpretations suggest that RPA systems do

not integrate internally with the managed system but control it through its existing user interface,

this interpretation is not entirely accurate, as demonstrated by the approach of the Gartner

Institute [3]. According to Gartner's definition, RPA solves control through a combination of

classic user interfaces and direct program-level API interfaces.

Robotic Process Mining (RPM) is a new research area closely related to RPA, aiming to

discover automatable processes using machine learning tools. Developing process mining

methods is still a largely unexplored problem area. The field closely related to robotic process

mining is Automated Process Discovery (APD), which involves determining the most fitting

business process model through data analysis of the logs from the examined processes. It is

crucial to ensure the completeness of the analysis, addressing exceptional cases and errors. The

main goal of APD processes is to produce a model that supports the control and planning tasks

of processes. The primary criteria for measuring goodness [4] are: a) the ability to generate the

recorded operational steps, b) the ability to generalize the examined processes and predict

similar processes, and c) the ability to identify non-conforming processes.

https://doi.org/10.32968/psaie.2024.2.3
mailto:kovacs@iit.uni-miskolc.hu

Fuzzy Loop Detection 37

The most general formalism of process models includes automata, state transition systems, and

operational flow models. The model has three main elements:

 a set of states (S), with special emphasis on the starting and ending states,

 state transitions (T),

 actions (A).

There are several methods available for developing operational flow models; the following

briefly reviews the more common methods.

Petri Nets. The most widespread process modelling tool [5]. In the model, there are two types of

nodes:

 normal state places (place),

 state transitions (transition).

Figure 1. Petri net formalism

Connections can only link normal state and state transition nodes. At the transitions, we can thus

talk about input and output places. In addition to normal states and transitions, status indicator

elements known as tokens also appear. The tokens indicate the fulfilment of the associated state

by their presence. A specific condition is required for the transition to occur in the model. A

transition only happens (fires) if there is at least one token in every input place. During the

transition, tokens move to the output places. The law of token conservation does not necessarily

apply here. We can also assign capacity values to the edges, indicating the number of tokens

involved in the transitional transformation.

BPMN (Business Process Model Notation) [6]. This modelling language, similar to the YAWL

system, is widely used in industry, primarily due to its functional richness. The main groups of

building elements are:

 EVENT descriptors

 ACTIVITY descriptors

 GATEWAY descriptors

 CONSTRAINT descriptors

The ACTIVITY group contains the structure of elementary events, including the LOOP unit.

Process Tree ([7[). General graph-based methods for process descriptions do not necessarily

provide valid descriptions and cannot effectively control higher-level forms. In contrast, process

tree-based descriptions use a structural, containment-based hierarchical model, resulting in a less

flexible but more controlled model. In the tree, internal nodes represent structural units, while

leaves denote elementary operations.

In the more complex modelling languages, the loop (LOOP) structure plays a prominent role.
However, according to analyses, uncovering and inducing the LOOP structure is not a simple

task, and existing schema discovery procedures are not fully capable of handling it. In our

current research, we analyze the reasons for the difficulty in uncovering LOOP structures and

the loop-detecting algorithms.

38 L. Kovács

Figure 2. Process tree formalism (source: [7])

2. Complexity of fuzzy loop mining

The loop structure means the repetition of some event sequences. Having an alphabet , the

simple loop L is defined as

where . The sequence is the kernel of the loop.

Beside the exact loop, we can define fuzzy loops where there is no fix kernel, it may have some

limited variations:

where

In the case of complex problem domains, the kernel s is not just an elementary sequence, but a

complex structure. The complex loop is defined with

where denotes a sequence, loop or XOR structure units.

The loops are local properties inside a sequence. We have exact definitions for both the fuzzy

loops, which enable us to develop a loop detection algorithm. On the other hand, the direct

implementation of the loop mining is based on a brute force approach. Thus there is a need for

more efficient methods, but this problem domain has some inherent difficulties:

 there are too large number of options to be tested;

 the internal structure of a loop can be very complex (XOR branches or inner LOOP);

 there is no standard algorithms and code implementation for loop detection task;

 there is no machine learning approach for this problem domain ;

 there are very few investigation in the literature on the fuzzy loop and complex loops.

Based on these challenges, our paper focuses on the presentation of some possible solution

alternatives and on the evaluation of the proposed algorithms. The investigated algorithms are

implemented in Python using the TensorFlow/Keras framework.

Fuzzy Loop Detection 39

3. Algorithms for fuzzy loop

3.1. Brute force algorithm

In the case of brute force approach, we test all possible positions and kernel sets. Taking a

starting position in the sequence, we test all possible starting kernels which are substrings

starting at . All possible variants are saved into a queue of candidates (Q). In the next phase,

we process the current candidates () pulled from Q. Next, we try to extend with another

new kernel resulting a new candidate () which is saved in Q. Only those loop candidates are

stored in Q which meet the similarity constraints, i.e. the edit distance between any two kernels

is less than a given threshold. The result set contains only those loops which are maximal, i.e

they can not be extended with new kernels.

The simplified pseudocode of the brute force algorithm:

def find_fuzzy_loops_A (seq, dlim):
 # seq_ imput sequence

 # dlim : distance limit releative length

 for p1 in range(len(seq)-1):
 s2 =seq[p1:]
 cloops = []
 for p in range(1, int(len(s2)/2+1)):
 w = s2[:p]
 cloops.append({"start":p1,"kernels":[w],"len":p})

 while len(cloops) > 0:
 citem = cloops.pop()
 p0 = citem["start"] + citem["len"]
 s3 = seq[p0:]
 for p in range(1,int(len(s3)/2+1)):
 w3 = s3[:p]
 db = 1

 for j in range(len(citem["kernels"])):
 wk = citem["kernels"][j]
 dv = levenshteinDistance(wk,w3)
 dl = min(int(dlim[0]*len(wk)),dlim[1])
 if dv > dl:
 db = 0

 if db == 1:
 ncitem = copy_citem(citem)
 ncitem["kernels"].append(w3)
 ncitem["len"] = ncitem["len"] + p
 cloops.append(ncitem)

3.2. Method DC algorithm

The next investigated algorithm is a novel proposal to improve the efficiency of the brute force

method. The method uses special storage units to optimize the processing costs. The main

storage variables:

 Poss: hash table to store the occurrence positions for each character (sequence item)

 Reps: the list of hash tables to manage the distances between the positions with the

same character

The algorithm first fill in the variables Reps and Poss. The main program loop processes the

item (positions) of the sequence one by one. For the current position we check whether the

current character and the previous character may belong to the same kernel or not. In order to

speed up the similarity checking, we use a Hamilton-distance instead of the Levenstein distance.

Similar to the brute-force approach, a starting kernel may have several adjacent kernels, thus the

40 L. Kovács

loop variants can be structured into a tree. During the candidate generation, the valid loop

candidates must meet the predefined distance conditions. Only the maximal loops are returned in

the results, thus smaller loops covered by other loops are removed from the result.

 The simplified pseudocode of the algorithm:

def test_rep (seq, Mp, Md):

 N = len(seq) # input sequence

 poss = dict() # dictionary where does the given character occur in the list
 reps = [[] for _ in range(N)] # the list of rep lengths

 kernels = [] # list of valid loops

 for p in range(N): # loop on the start position
 for k0 in reps[p]: # loop on possible kernel length

 k1 = k0

 dist = k1-1 # distance
 p1 = 1

 maxp1 = min (k0 + min (Md,int(k0*Mp)) + 1, N-p)
 while p1< maxp1: # go forward to test the candidate kernels

 s = [(abs(k-k1),k) for k in reps[p+p1]] # differences in gap

 if len(s) > 0:
 s.sort()
 k2 = s[0][1]
 if k2 == k1:
 dist -= 1

 if k2 < k1:
 dist ,k1= dist+ (k1-k2), k2

 if k2 > k1:
 dist.k1 = dist + 1.k1+1

 if dist < dmin:
 dist = levenshteinDistance(seq[pmin-k0min:pmin], seq[pmin:pmin+p1min+1])
 dmin = dist

 p1 += 1

 kernels.append((dmin,pmin-k0min,pmin+p1min+1))

3.3. Method CNN algorithm

The neural networks are the dominating machine learning mechanism where a neural network

can be considered as an universal function approximator. The main motivations to use NN for

problem solving are

 no need to develop domain specific algorithm

 shorter development time

 existing standard universal tools

 integration with other neural network architectures

The application of NN in the different optimisation and pattern matching problems is hindered

by the fact that NN is designed to optimize a lost function calculated for a given fixed size input

[10]. In order to copy with complex problem domains, different new NN architectures were

developed in the recent decades. While MLP [11] is for a function approximation with input of

fixed size, the RNN [12] networks are able to process sequences and CNN [9] perform

prediction on high dimensional cubes.

In our approach, we proposed a CNN-based solution based on the following components.

1. The sequence is first converted into a two dimensional square matrix describing the

similarity between the items at the different positions in the sequence.

2. The kernels can be recognized as special patterns in the matrix.

3. The CNN is trained to discover these patterns.

The 2D representation matrix shows which section in the sequence are similar to each others.

For example, taking the sequence s = "adogdogdughua", we get the following matrix:

Fuzzy Loop Detection 41

Figure 3. Sample similarity matrix

The main steps in building up the CNN matrix are summarized in the followings:

 model = Sequential()
 model.add(Conv2D(64, kernel_size=(3, 3), activation='linear',
 input_shape=(in1, in2,1),
 padding='same'))
 model.add(LeakyReLU(alpha=0.1))
 model.add(MaxPooling2D((2, 2), padding='same'))
 model.add(
 Conv2D(128, (3, 3), activation='linear', padding='same'))
 model.add(LeakyReLU(alpha=0.1))
 model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
 model.add(
 Conv2D(256, (3, 3), activation='linear', padding='same'))
 model.add(LeakyReLU(alpha=0.1))
 model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
 model.add(Flatten())
 model.add(Dense(256, activation='linear'))
 model.add(LeakyReLU(alpha=0.1))
 model.add(Dense(out, activation='relu'))

 # cnn.compile(loss=keras.losses.binary_crossentropy,
 # optimizer=keras.optimizers.Adam(),metrics=['mse'])
 model.compile(loss=keras.losses.mean_squared_error,
 optimizer=keras.optimizers.Adam(),
 metrics=['mse'])

4. Comparison Tests

In the performed tests, we compared the execution time complexity of the presented algorithms.

In order to get the complexity, we performed the loop mining on sequences with different

lengths. In the case of brute force algorithm, we got the execution times presented in Table 1.

Table 1. Time cost of the brute-force algorithm

sequence length execution time [s]l

50 0.2

100 5.9

150 42.9
200 169.4
250 627.0
300 1214.1

mailto:kovacs@iit.uni-miskolc.hu

42 L. Kovács

Table 2. Time cost of the Method DC algorithm

sequence length execution time [s]l

200 0.2

300 0.5

400 0.9
500 1.6
600 2.3
700 3.9

8000 6.1

In the case of the CNN-based solution, we measure the execution time both for training and

prediction.

Table 3. Training time cost of the Method CNN algorithm

sequence length execution time [s]l

50 12.9

100 38.3

150 90.3
200 173.1
250 287.0
300 488.2

Table 4. Prediction time cost of the Method CNN algorithm

sequence length execution time [s]l

50 0.002

100 0.003

150 0.005
200 0.006
250 0.006
300 0.007

Regarding the accuracy of the loop prediction, we calculated item level accuracy as

The accuracy test results is summarized in the next table:

Table 4. Accuracy results of the methods

method accuracy recall

Brute-force 100% 100%
Method DC 96% 93%

Method CNN 81% 72%

mailto:kovacs@iit.uni-miskolc.hu

Fuzzy Loop Detection 43

5. Conclusion

We proposed two novel algorithms for detection of fuzzy loops, one of them is based on the

usual direct comparison of the sequence items and the other one uses a CNN neural network to

perform the loop prediction. In the case of CNN-based solution, the sequence is first converted

into a similarity matrix which is the input of the CNN module. In the efficiency comparison

tests, we also involved a brute force algorithm as a baseline method.

The test results can be summarized into the following conclusions:

1. The best accuracy is achieved by the brute-force method, but it has a very high

execution cost, nearly .

2. The proposed Method DC provides an acceptable cost .

3. The training cost of CNN-based method is in while the prediction cost is very

low .
4. The absolute time for CNN is very high, it is not worth to use CNN for a small number

of predictions.

5. Another problem of CNN is that we should fix the sequence length for the training and

prediction, it is not suitable to apply it for variable sequence length domains.

6. The brute force can be used if we require very high precision and the sequence length is

a small value.

7. The CNN can be used for stream-based loop search when the length of the sequence is

fixed.

8. The proposed Method A provides a good balance with a good accuracy and good time

efficiency values.

References

[1] Aguirre, Santiago, and Alejandro Rodriguez, Automation of a business process using

robotic process automation (RPA): A case study, Applied Computer Sciences in

Engineering: 4th Workshop on Engineering Applications, WEA, 2017 , pp. 65-71

https://doi.org/10.1007/978-3-319-66963-2_7

[2] Van der Aalst, Wil MP, Martin Bichler, and Armin Heinzl. Robotic process

automation, Business & information systems engineering 60, 2018, pp. 269-272.

https://doi.org/10.1007/s12599-018-0542-4

[3] Tornbohm, Gartner market guide for robotic process automation software. Report

G00319864. Gartner, 2017

[4] N. Russell, W. van der Aalst, and A. Ter Hofstede, Workflow patterns : the definitive

guide. MIT Press, 2016

[5] Jensen, Kurt, and Lars M. Kristensen, Colored Petri nets: a graphical language for

formal modeling and validation of concurrent systems, Communications of the ACM

58.6 ,2015, pp. 61-70. https://doi.org/10.1145/2663340

[6] Recker, Jan, et al. Measuring method complexity: UML versus BPMN, Proceedings

of the Fifteenth Americas Conference on Information Systems. Association for

Information Systems, 2009., pp.1-9.

[7] Leemans, Maikel, Wil MP Van Der Aalst, and Mark GJ Van Den Brand, Hierarchical

performance analysis for process mining, Proceedings of the 2018 International

Conference on Software and System Process. 2018, pp. 96-105.

https://doi.org/10.1145/3202710.3203151

[8] Asadollahfardi, Gholamreza, and Gholamreza Asadollahfardi. "Artificial neural

network." Water Quality Management: Assessment and Interpretation, 2015, pp. 77-

91. https://doi.org/10.1007/978-3-662-44725-3_5

[9] Li, Zewen, et al. , A survey of convolutional neural networks: analysis, applications,

and prospects, IEEE transactions on neural networks and learning systems 33.12,

2021, pp. 6999-7019. https://doi.org/10.1109/TNNLS.2021.3084827

[10] El Alani, Omaima, et al., Short term solar irradiance forecasting using sky images

based on a hybrid CNN–MLP model. Energy Reports, 7, 2021: pp. 888-900.

https://doi.org/10.1007/978-3-319-66963-2_7
https://doi.org/10.1007/s12599-018-0542-4
https://doi.org/10.1145/2663340
https://doi.org/10.1145/3202710.3203151
https://doi.org/10.1007/978-3-662-44725-3_5
https://doi.org/10.1109/TNNLS.2021.3084827

44 L. Kovács

https://doi.org/10.1016/j.egyr.2021.07.053

[11] Zainuddin, Zarita, and Ong Pauline., Function approximation using artificial neural

networks, WSEAS Transactions on Mathematics, 7.6 (2008): 333-338.

[12] Guo, Jianmin, et al. "Rnn-test: Towards adversarial testing for recurrent neural

network systems, IEEE Transactions on Software Engineering, 48.10 ,2021,pp. 4167-

4180. https://doi.org/10.1109/TSE.2021.3114353

https://doi.org/10.1016/j.egyr.2021.07.053
https://doi.org/10.1109/TSE.2021.3114353

