

Production Systems and Information Engineering

Volume 12 (3), pp. 42-59 42
doi: https://doi.org/10.32968/psaie.2024.3.5

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS

PÉTER MILEFF

University of Miskolc, Hungary

Institute of Information Technology

peter.mileff@uni-miskolc.hu

Abstract. In computer graphics, per-pixel lighting is a widely used technique
for achieving realistic lighting effects by computing light interactions at the
pixel level. This approach allows for detailed representation of surface
characteristics, such as textures and fine details, which are crucial for high-
quality visual rendering. To enhance per-pixel lighting, normal mapping is
often employed to simulate complex surface details without increasing the
geometric complexity of the model. However, accurate normal vector
calculations become challenging in multi-object models where adjacent
surfaces with differing orientations and geometries share vertices. This paper
presents a method for calculating proper normal vectors for multi-object
models, ensuring visually consistent and realistic lighting effects in complex
scenes. The proposed technique addresses common issues such as normal
interpolation artifacts and lighting inconsistencies by dynamically adjusting
normal vectors based on the spatial relationships of multi-objects models.
Results demonstrate that the method significantly improves the visual quality
of per-pixel lighting with normal mapping, providing a more robust solution
for real-time rendering in computer graphics applications.

Keywords: Per-pixel lighting, normal smoothing, multi-object models

1. Introduction

Computer graphics have become an integral part of modern technology,

influencing a wide range of industries from entertainment and virtual reality to

scientific visualization and industrial design. The ability to create realistic and

immersive 3D environments has not only revolutionized visual media but also

enhanced our capacity to simulate and analyze complex systems in fields such as

engineering, medicine, and education. As the demand for more lifelike and

dynamic visualizations grows, the techniques used to render these 3D environments

must continually evolve to meet the expectations of realism and performance.

One of the most critical aspects of 3D visualization is the accurate simulation of

light. Lighting is not merely a cosmetic feature; it is fundamental to how we

perceive shapes, textures, and spatial relationships within a virtual scene. The way

light interacts with surfaces, casting shadows, reflecting off objects, and refracting

through transparent materials, contributes significantly to the visual realism and the

immersive quality of the rendered scene. Without effective lighting, even the most

detailed 3D models can appear flat and lifeless, undermining the viewer's ability to

interpret the visual information accurately [9].

In multi-object 3D models, where numerous surfaces and materials interact within

a shared space, the complexity of lighting calculations increases significantly. Each

object not only receives light from various sources but also influences the lighting

environment by casting shadows, reflecting light onto neighboring objects, and

https://doi.org/10.32968/psaie.2024.3.5
mailto:kovacs@iit.uni-miskolc.hu

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 43

contributing to global illumination effects. Accurately modeling these interactions

is essential for achieving photorealistic renderings that can be used in applications

ranging from cinematic special effects to architectural visualization and virtual

prototyping.

This paper aims to explore advanced techniques for calculating and optimizing

lighting in multi-object 3D models. We present how vertex attributes should be

calculated and handled effectively in case of normal mapping technique.

2. Lights in computer visualization

The need for light modeling emerged at the very beginning of computer

visualization. Initially, only offline implementations were possible due to limited

hardware and low computational power. However, as hardware improved, the

demand for real-time light modeling also arose. Nowadays, increasingly

sophisticated solutions are available. Lighting is a fundamental element in

computer graphics, playing a crucial role in defining the visual realism, mood, and

depth of a scene. It significantly impacts the perception of objects and

environments by simulating how light interacts with surfaces. In 3D graphics,

lighting models are used to calculate the effects of light on surfaces, including

specular highlights, shadows, and reflections. These effects help to create the

illusion of depth and enhance the realism of scenes. Advanced techniques like

global illumination and ray tracing take into account the complex interactions of

light, such as scattering, refraction, and indirect lighting, further improving visual

fidelity.

2.1. Lighting models

In real-world environments, the appearance of objects is affected by light sources.

These effects can be simulated using a lighting model. A lighting model is a set of

equations that approximates (models) the effect of light sources on an object. A

Lighting Equation in computer science refers to a formula used to calculate the

final color value of an object. The equation helps in determining how light interacts

with objects in a scene to create realistic visual effects. The lighting model may

include reflection, absorption, and transmission of a light source. The lighting

model computes the color at one point on the surface of an object, using

information about the light sources, the object position and surface characteristics,

and perhaps information about the location of the viewer and the rest of the

environment containing the object (such as other reflective objects in the scene,

atmospheric properties, and so on):

Figure 1. Basic elements of modeling light in a 3D space

44 P. Mileff

The traditional approach in real-time computer graphics has been to calculate

lighting at a vertex as a sum of the ambient, diffuse, and specular light. In the

simplest form (used by OpenGL and Direct3D), the function is simply the sum of

these lighting components (clamped to a maximum color value). Thus we have an

ambient term and then a sum of all the light from the light sources [15].

�total = ���� + ∑(����+����)

where itotal is the intensity of light (as an rgb value) from the sum of the intensity of

the global ambient value and the diffuse and specular components of the light from

the light sources. This is called a local lighting model since the only light on a

vertex is from a light source, not from other objects.

During the years many lighting models with different purposes have been

developed. These models range from simple approximations to highly sophisticated

algorithms, each with its strengths and trade-offs between computational efficiency

and visual realism. The most well-known models are:

Types of Lighting Models [5][13]:

1. Phong Lighting Model (1975): One of the earliest and most widely

used lighting models, Phong lighting introduces the concept of

specular highlights (shiny spots), ambient light, and diffuse reflection.

It simplifies light calculations by computing reflections based on the

viewer’s perspective, making it ideal for real-time rendering.

2. Blinn-Phong Model: A variant of Phong lighting developed by Jim

Blinn, this model introduces a slight modification to the specular

reflection calculation, offering improved performance and more

accurate highlights for a wider range of viewing angles.

3. Lambertian Reflection Model: This model is used to simulate diffuse

reflection where the surface scatters light equally in all directions. It’s

based on Lambert’s cosine law, which states that the intensity of light

is directly proportional to the cosine of the angle between the light

source and the surface normal.

4. Physically-Based Rendering (PBR): Recent advancements have

shifted towards PBR, where lighting is modeled to match real-world

physical properties more closely. PBR integrates concepts like energy

conservation, fresnel effects, and microfacet theory to deliver highly

realistic lighting simulations, essential for modern gaming and film

industries.

5. Oren-Nayar Model: An extension of the Lambertian model, the Oren-

Nayar model simulates rough surfaces by considering the scattering of

light due to micro-occlusions on the surface.

6. Ward Anisotropic Model: This model is designed to handle

anisotropic reflections, which occur on surfaces like brushed metal or

hair, where the reflection varies depending on the direction.

Lighting Techniques [5]:

1. Global Illumination (GI): GI techniques simulate how light interacts with

multiple surfaces in a scene, allowing light to bounce and scatter,

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/computer-graphic
https://www.sciencedirect.com/topics/physics-and-astronomy/light-source
https://www.sciencedirect.com/topics/physics-and-astronomy/light-source

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 45

contributing to more realistic ambient lighting and soft shadows.

Techniques such as ray tracing and radiosity are commonly used for GI.

2. Ray Tracing: This technique traces the path of individual rays of light as

they travel through a scene, interacting with surfaces, materials, and light

sources. While computationally expensive, ray tracing produces highly

accurate reflections, refractions, and shadows.

3. Radiosity: Radiosity focuses on how diffuse surfaces exchange light. It

calculates the light reflecting off surfaces and how this contributes to the

overall scene’s lighting. Radiosity is particularly effective in rendering

interiors and architectural models, where indirect lighting plays a

significant role.

2.2. How lighting fits into the graphics pipeline

A graphics pipeline is a conceptual framework used in computer graphics to

describe the steps involved in rendering 2D or 3D images from a scene description.

It is called a "pipeline" because the data passes through several sequential stages,

where different operations are performed to transform the scene’s geometry, apply

textures and colors, and calculate the lighting, shading, and final image [2].

The fixed-function graphics pipeline and the programmable graphics pipeline

represent two different approaches to how graphics hardware handles lighting,

shading, and other rendering tasks. While the fixed-function pipeline offers

predefined, limited functionality, the programmable pipeline provides more

flexibility and control for developers.

Nowadays, we almost exclusively use the programmable graphics pipeline in

computer visualization. With the introduction of programmable shaders (vertex and

fragment/pixel shaders), modern GPUs allow developers to customize every step of

the rendering process, including lighting. This flexibility allows for more

sophisticated and realistic lighting effects. The following image shows the OpenGL

4 pipeline [8].

Figure 2. The OpenGL 4 pipeline

46 P. Mileff

In the case of previous fixed-function pipelines, pre-programmed lighting models

could be used. Based on Figure 2, it is clear that today the implementation of the

applied lighting algorithm has shifted to the programmer's side. It is the

programmer's task to develop and program the given lighting model using vertex

and fragment shaders [6][7]. The following table compares the two approaches.

Table 1. Fixed vs Programmable pipeline comparison

Feature Fixed-function Pipeline Programmable Pipeline

Lighting Model Predefined models (e.g., Phong) Customizable lighting models,

including PBR

Number of Light Sources Limited (usually up to 8) Customizable lighting models,

including PBR

Lighting Calculation Per-vertex lighting, interpolated
across surfaces

Per-pixel lighting (more
detailed and realistic)

Shadows and Advanced Effects Limited or absent Real-time shadows, global

illumination, custom effects

Control and Flexibility Little to no control over lighting
equations

Full control over how lighting
is calculated

Surface Detail Basic lighting; limited ability to

represent fine details

Fine surface detail through

bump mapping, normal

mapping, etc.

Shader Use No shaders, hard-coded operations Custom vertex and fragment

shaders for fine control

Performance Faster, but less realistic More demanding, but much
more realistic

2.3. Lighting in the virtual world

In computer graphics, lighting models play a crucial role in rendering realistic

images by simulating how light interacts with surfaces. Two widely used

techniques for light computation are vertex-based lighting (also known as

Gouraud shading) and per-pixel lighting (commonly implemented through Phong

shading or more advanced pixel shaders). Both approaches have distinct

characteristics, strengths, and limitations that influence their use in different

contexts [3].

2.3.1 Vertex-Based Lighting

Vertex-based lighting calculates lighting at the vertices of a 3D model and

interpolates these values across the surface of the polygon. This method is

computationally efficient because it requires lighting calculations only at the

model's vertices, significantly reducing the number of operations required. The

efficiency of vertex-based lighting makes it particularly suitable for real-time

applications where rendering speed is crucial, such as older video games or

applications running on low-power devices. The technique is straightforward to

implement and demands less processing power, which was especially advantageous

in the early days of computer graphics when hardware capabilities were limited.

However, vertex-based lighting has notable limitations. Because the lighting is

interpolated between vertices, it can result in visual artifacts or a lack of fine detail,

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 47

particularly on surfaces with low tessellation. For instance, specular highlights may

appear blurry or washed out. Additionally, vertex-based lighting struggles with

complex lighting scenarios, such as sharp reflections, spotlights, or fine surface

details, because the interpolation cannot accurately capture rapid changes in light

intensity or color.

2.3.2 Per-Pixel Lighting

Per-pixel lighting, also known as Phong shading, on the other hand, performs

lighting calculations for each individual pixel on a surface, allowing for a much

finer granularity in how light interacts with the surface's material properties. This

method results in more detailed and realistic images. The primary advantage of per-

pixel lighting is its high visual fidelity. It provides much more detailed and

accurate lighting effects than vertex-based methods, accurately modeling specular

highlights, reflections, and other intricate lighting phenomena, which greatly

enhances realism [10]. In modern graphics programming, per-pixel lighting is

implemented using programmable shaders. This approach allows developers to

create highly realistic effects like bump mapping, normal mapping, and dynamic

shadows, making it a cornerstone of contemporary 3D rendering in video games,

simulations, and virtual reality. However, per-pixel lighting comes with higher

computational costs. Calculating lighting for each pixel requires significantly more

processing power and memory bandwidth, which can be a limiting factor in real-

time applications, especially on less capable hardware. Moreover, implementing

per-pixel lighting often involves more complex algorithms and shader

programming, which can increase development time and complexity.

2.3.3. Choosing Between the Two Approaches

The choice between vertex-based and per-pixel lighting depends on the specific

requirements of the application, the desired level of visual fidelity, and the

available hardware resources. Vertex-based lighting remains useful in scenarios

where simplicity and speed are more important than fine visual details, such as

mobile games or applications with low-poly models. In contrast, per-pixel lighting

is favored in applications where high-quality visuals are essential, such as modern

video games, CGI in movies, or virtual reality experiences.

The evolution from vertex-based to per-pixel lighting reflects a broader trend in

computer graphics towards achieving photorealism [15]. As hardware capabilities,

including CPUs and GPUs, have advanced, it has become feasible to employ more

complex and computationally demanding techniques like per-pixel lighting, which

offer significant improvements in visual quality. Today, many graphics engines

dynamically adjust the level of detail, using a combination of vertex-based and per-

pixel lighting techniques to optimize performance while maintaining high-quality

visuals.

Figure 3. Vertex vs per-pixel lighting

48 P. Mileff

In this paper our objective is to apply per-pixel lighting in the rendering process.

3. Per-pixel lightning for Multi-object models

The field of lighting and its modeling within computer visualization already

requires a more complex environment. In such cases, a minimal graphics engine

(possibly as part of a game engine) is usually created, which is capable of

performing the following functions in a structured form:

● load different models,

● store their data in an appropriate internal structure,

● have some approach or structure to describe the "virtual world",

● handle multiple cameras, which can even be movable (e.g., FPS camera),

● handle basic shaders,

● describe lights and their parameters with an internal object structure,

● have a (simple) mathematical library,

● possibly include additional utility components with various support

services.

We can see that a significant amount of work is required to create even a test

environment where, by modifying a few lines of code, we are able to test a new

setting and visually observe it.

4.1 The process of applying lighting

Naturally, the practical implementation of lighting depends on the API being used,

which currently means OpenGL, Vulkan, or DirectX. We can also include

software-implemented lighting solutions here. However, regardless of which

graphics API we use, illuminating the virtual world requires a lot of preparation.

First and foremost, we need the geometric information that makes up the virtual

world (buildings, objects, vegetation, etc.), which we most commonly load from

one or more model files. Although there are many different model descriptor

structures/formats (Max, Blend, gITF, Obj, FBX, ASE, etc.), they all contain the

basic geometry required for lighting. If the application goes beyond a world

embedded in the sandbox of the programming environment, some sort of world

description structure is usually applied, which also positions the models in space

and defines the light sources (along with parameters) that illuminate the virtual

world. The preparation phase of the geometric data is considered complete once

they are uploaded to the GPU memory.

The rendering process requires the presence of numerous modules/elements, which

will not be covered in this article. Typically, this includes loading shaders,

managing and switching between them.

In practice, lighting can be implemented in various ways. Certain parts (e.g.,

matrices) can be calculated on the CPU side or even on the GPU side. This paper

will not cover those details. Once all the necessary elements for operation are

available, the rendering process within the rendering loop is as follows:

Calculate projection, view and model matrix

 for loop - model.object.size

 Activate light shader

 for loop - numberOfLights

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 49

 transfer light parameters to GPU shader:

- position, constant linear, quadratic

attenuation, ambient, diffuse, specular, etc

 end for

Set object texture(s)

Set object’s other parameters

 draw object i.

 Stop light shader

 end for

This pseudo code assumes that all the objects in the scene are affected by the same

type of lights, because the code uses the save light shader for all objects. In practice

of course different types of light sources can require other types of shader.

4.1 The importance of the normal vectors

The visual effect of a light shining on a surface depends on the properties of the

surface and of the light. But it also depends to a great extent on the angle at which

the light strikes the surface. The angle is essential to specular reflection and also

affects diffuse reflection. That's why a curved, lit surface looks different at

different points, even if its surface is a uniform color. To calculate this angle, we

need to know the direction in which the surface is facing. That direction is

specified by a vector that is perpendicular to the surface. Another word for

"perpendicular" is "normal," and a non-zero vector that is perpendicular to a

surface at a given point is called a normal vector to that surface.

It is therefore important that the normal vectors are calculated correctly to ensure

that the lighting provides the expected visual results. Normal vectors are typically

provided in two ways. Very often, the normal vectors are stored together with the

model file on the storage medium. In this case, the consistency of the data is

ensured by the modeling software used. The graphics engine's only task here is to

read these data and apply them.

Alternatively, the normal vectors can be calculated during the model's loading

process. While this approach is indispensable during development, in finished

games, storing the normals together with the model is preferred because, for larger

models, calculating and transforming normals can take several seconds. This could

significantly impact the gaming experience.

Basically, two types of normal vectors are typically distinguished:

● Face normal: this vector is a face (usually triangle) level vector, which

is a perpendicular unit normal vector to the face. The vector's direction

is determined by the order in which the vertices are defined and by

whether the coordinate system is right- or left-handed. The face normal

points away from the front side of the face. One face has one normal

vector.

● Vertex normal: Vertex normals (sometimes called pseudo-normals)

are values stored at each vertex that are most commonly used by a

renderer to determine the reflection of lighting or shading models, such

as phong shading.

4. Normal Mapping

In computer visualization, increasing graphical realism has always played an

important role. This is particularly emphasized in real-time software and games, as

it is essential to achieve a level of graphical quality that is appropriate for the era in

50 P. Mileff

real-time, compared to offline rendering. One straightforward approach to

achieving this is to increase the number of polygons in the virtual world and the

models. While this approach is correct and applicable, increasing the vertex count

puts a significant burden (especially on early) GPUs: significantly more polygons

pass through the graphics pipeline, requiring more polygons to be clipped,

rasterized, etc [12].

Another approach that is actually advisable to apply alongside increasing the

polygon count is to use larger, higher-resolution textures. However, when viewing

surfaces up close, as when we are against a wall in a game, this approach does not

result in drastic improvement. This is because, in reality, surfaces are not smooth;

they have numerous holes, depressions, or protrusions, which appear in different

shades and colors due to the varying angles at which light hits them.

By combining these two approaches, we could model every small surface

imperfection of a wall with a vertex mesh, onto which we apply a higher quality

texture. However, today’s GPUs are not yet capable of handling this; while the

result would be visually appealing, it would be slow in terms of performance. A

typical example could be a brick wall. Such a wall has a rather rough surface and is

certainly not completely smooth: it contains recessed cement sections and

numerous smaller holes and cracks. If we view such a surface with the usual

rendering, without effects, the sense of depth of the wall disappears.

As a result, other alternative solutions for making surfaces more realistic have

developed. These solutions generally work in image space and use additional

textures to provide some level of extra detail to an otherwise flat 2D polygon.

Several solutions have emerged in the literature (Bump mapping, Displacement

mapping, Normal mapping, Parallax mapping) that successfully add “depth” to the

2D image. In this article, we will focus on normal mapping, but what is presented

can also be applied to the other methods.

4.1 Normal mapping in practice

When using classic per-pixel lighting, the intensity of light is calculated at the pixel

level in the fragment shader. This is done using vertex-level normals. According to

the barycentric coordinate system formed by the three vertices, we can linearly

interpolate the normals within the shader, resulting in pixel-level normals. This

achieves a nice, smooth light diffusion across the surface; however, the model does

not interact with the surface material properties, depressions, and cracks. This is

particularly noticeable in the deep grooves between bricks, as the surface remains

simply smooth.

Therefore, the industry needed a solution that could inform the lighting system

about the details of the surface's depths. It is not sufficient to interpolate the

normals solely within the triangle. A solution is needed that provides true pixel-

level normals. With this technique, the surface can be made much more complex.

Figure 4. Comparison of surface normals and per-fragment normals [4]

With this solution, we can achieve a visual effect that gives the surface a sense of

depth due to the unique light reflections. The technique is essentially a trick that

provides the viewer with a much more realistic experience. This approach is

collectively referred to as normal or bump mapping.

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 51

To implement normal mapping, we need per-pixel normals. A straightforward

approach is to use a two-dimensional texture to store the perturbation of the surface

normals, similar to a diffuse texture. Since normal vectors can be geometrically

interpreted and textures store color information, we need to map the vectors to

specific colors in some way.

Colors consist of r, g, b components. We can use these components to store the x, y,

z components of the normals. Since the value range of normal vectors is between -1

and 1, the first step is to transform this to the [0,1] range.

// transforms from [-1,1] to [0,1]

vec3 rgb_normal = normal * 0.5 - 0.5;

This approach enables us to store the normals of a surface on a per-pixel basis in a

2D texture. The following example showcases the normal map of a brick wall:

Figure 5. Normal values stored in an RGB texture

It is evident that the normal map has a bluish tint. This is because almost all

normals point outward from the surface in the positive z direction (0, 0, 1), which

corresponds to the blue color. Color variations can be observed where the surface

deviates from the typical smoothness. At these points, the normals diverge from the

positive z direction, and these areas will provide the viewer with a sense of depth.

Note the top of the brick, which receives a greenish hue almost everywhere. This is

because, at these points, the normals increasingly point in the positive y direction

(0, 1, 0), which maps to the green color.

4.2 Tangent Space

The tangent space is a space that is locally defined as an orthogonal system relative

to the surface of a triangle. Normals are specified in this reference coordinate

system relatively. We can think of this local space as the space of the normal map

vectors, where each normal is defined to point in the positive z direction. Using a

special matrix that defines the tangent space, the normal vectors defined in the

local space can be transformed into the world or camera space according to the

final orientation of the given surface.

This matrix is called the TBN matrix, whose components are the tangent,

bitangent, and normal vectors. The vectors form an orthogonal system, meaning

they are perpendicular to each other. The normal vector points outward from the

surface, while the right and forward-pointing vectors represent the tangent and

bitangent. The following figure illustrates the relationship between the three

vectors:

52 P. Mileff

Figure 6. Tangent space described by tangent, bitangent and normal

vectors

While the calculation of the normal vector is relatively straightforward, the

calculation of the tangent and bitangent vectors is not self-evident. We know that

the tangent vector is perpendicular to the normal vector. However, many such

vectors can be defined:

Figure 7. An arbitrary number of tangent vectors can be defined

alongside the normal vector indicated in blue

Theoretically, any perpendicular vector can be used as a tangent vector, but it is

advisable to be consistent with adjacent faces; otherwise, the edges between the

faces will look unattractive during shading. The accepted solution is to direct the

tangent vector in the direction indicated by the texture coordinates. Once the

tangent vector is determined, the bitangent can be easily calculated. The figure

below illustrates this.

Figure 8. The orientation of the tangent vector always

corresponds to the direction of the texture coordinates

In the figure, the texture coordinate differences of the triangle's edge E2 are

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 53

denoted by ΔU2 and ΔV2. Their direction corresponds to the directions of the

tangent (T) and bitangent (B) vectors. Based on this, both edges (E1, E2) can be

expressed as a linear combination of the T and B vectors:

E1=ΔU1T + ΔV1B

E2=ΔU2T + ΔV2B

Based on this:

(E1x,E1y,E1z) = ΔU1(Tx,Ty,Tz) + ΔV1(Bx,By,Bz),

(E2x,E2y,E2z) = ΔU2(Tx,Ty,Tz) + ΔV2(Bx,By,Bz)

The value of E can be calculated from the position difference of two vectors, while

ΔU and ΔV are the differences in the texture coordinates. Thus, we have two

unknowns (T and B) and two equations. Therefore, the problem is solvable. We

can express the problem differently, in the form of matrix multiplication:

Writing the equations in this form greatly facilitates the solution of the T and B

vectors. If we multiply both sides by the inverse of the ΔUΔV matrix, we arrive at

the following:

This allows us to solve the system of equations for T and B. For this, we need to

compute the inverse of the texture coordinate matrix as follows: The resulting

system of equations provides the calculation of the T and B vectors.

The following sample example demonstrates the calculation of the T and B vectors

in practice for a triangle:

// Edges of the triangle : position delta

vec3 deltaPos1 = v1 - v0;

vec3 deltaPos2 = v2 - v0;

// UV delta

vec2 deltaUV1 = uv1 - uv0;

vec2 deltaUV2 = uv2 - uv0;

// calculate tangent and bitangent

float r = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV1.y * deltaUV2.x);

vec3 tangent = (deltaPos1 * deltaUV2.y - deltaPos2 * deltaUV1.y) * r;

vec3 bitangent = (deltaPos2 * deltaUV1.x - deltaPos1 * deltaUV2.x) * r;

// Normalize results

normalize(tangent);

normalize(bitangent);

54 P. Mileff

Since a triangle is always a planar shape, we need a tangent/bitangent pair,

meaning that each vertex of the triangle will have one corresponding pair. In the

following, we will demonstrate the results of the implemented lighting model on a

relatively more complex sample model, on a head [1]. Every illustration rendering

scene, test case run in our self made platform independent 3D engine. The engine

was implemented in C++ and uses OpenGL/GLSL for GPU related programming.

We use two light sources for better demonstration results.

Figure 9. Head rendering with face level normal/tangent/bitangent

attributes. The result is similar to flat shading

It is evident that the result does not meet the expectations; it resembles flat shading.

Several errors can also be detected on the model, which occur because in this case

we intentionally applied face-level vertex attributes (normal vector, tangent,

bitangent) for the triangles to illustrate the problem. In the case of a more complex

model, where most of the displayed surfaces are curved, the face-level normal

cannot provide satisfactory results.

5. Lighting correction

5.1 Vertex attributes smoothing

The rendering result presented in Figure 9 is not satisfactory because the normal

vectors of adjacent triangles that make up the model are “far” apart in direction,

leading to noticeable light refraction during lighting calculations. To achieve

satisfactory lighting results, we need to switch to using vertex-level normal vectors.

Vertex-level normals mean that we can define the values of normal vectors for each

vertex, which can be interpolated within the triangle during rasterization thanks to

the barycentric coordinate system defined inside the triangle.

One effective solution to reduce the “error” caused by the refraction of light

between surfaces with different orientations is to smooth the normals of triangles

that share common vertices.

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 55

This method is depicted in the diagram below, which presents two surfaces, S1 and

S2, viewed edge-on from above. The normal vectors for S1 and S2 are indicated in

blue, while the vertex normal vector is highlighted in red. The angle formed

between the vertex normal vector and the surface normal of S1 is identical to the

angle between the vertex normal and the surface normal of S2. When these two

surfaces are illuminated and shaded using Gouraud shading, the result is a smooth,

rounded edge between them. The following illustration displays the two surfaces

(S1 and S2) along with their corresponding normal vectors and the vertex normal

vector:

Figure 10. The red arrow indicates the vertex normal vector shared

by the two surfaces (S1, S2)

If the vertex normal leans toward one of the faces with which it is associated, it

causes the light intensity to increase or decrease for points on that surface,

depending on the angle it makes with the light source (Figure 10, right image). The

vertex normal leans toward S1, causing it to have a smaller angle with the light

source than if the vertex normal had equal angles with the surface normals.

Although we have specifically focused on normal vectors in this case, we must not

forget that normal mapping was also applied alongside the lighting model in this

example. The tangent and bitangent vectors used for the tangent space also appear

as vertex attributes, so the smoothing must also be applied to the vectors in the

tangent space.

56 P. Mileff

Figure 11. While smoothing vertex attributes greatly

improves the results, additional problems/glitches can still be

observed in the outcome

5.2 Model level smoothing

The errors observed during rendering, such as the appearance of different “line

breaks” on various areas of the model, clearly indicate that further enhancements

are necessary. The problem arises because the model was not created as a single set

of vertices, but rather as multiple different parts crafted as separate objects. In

practice, there can be several reasons for implementing a more complex model in

this way. It could be a decomposition based on some logical ordering principle or

simply because it was easier to create the final shape this way.

While the previously introduced vertex attribute smoothing approach works well,

an algorithm needs to be developed that can take into account the different objects

during attribute smoothing. The algorithm should also be extended to neighboring

objects that share common vertices. The following sample code demonstrates such

an approach:

void ComputeAndSmoothVertexAttributes(t3DModel model) {

 CVector3 vVector1, vVector2, vNormal, vPoly[3];

 pModel.numOfAllVertex = 0;

 for (index = 0; index < model.numOfObjects; index++) {

 t3DObject pObject = model.pObject[index];

 model.numOfAllVertex += pObject.numOfFaces*3;

 CVector3 pTempNormals = new CVector3 [pObject.numOfFaces];

 pObject.pNormals = new CVector3 [pObject.numOfVertices];

 pObject.pTangents = new CVector3 [pObject.numOfVertices];

 pObject.pBitangents = new CVector3 [pObject.numOfVertices];

 for (i = 0; i < pObject.numOfFaces; i++) {

 vPoly[0] = pObject.pVerts[pObject.pFaces[i].vertIndex[0]];

 vPoly[1] = pObject.pVerts[pObject.pFaces[i].vertIndex[1]];

 vPoly[2] = pObject.pVerts[pObject.pFaces[i].vertIndex[2]];

 // Calculate the face normals

 vVector1 = Vector(vPoly[0], vPoly[2]);

 vVector2 = Vector(vPoly[2], vPoly[1]);

 vNormal = Cross(vVector1, vVector2);

 vNormal = Normalize(vNormal);

 pTempNormals[i] = vNormal;

 }

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 57

 CVector3 vSum(0.0, 0.0, 0.0);

 CVector3 vTagentSum(0.0, 0.0, 0.0);

 CVector3 vBiTagentSum(0.0, 0.0, 0.0);

 CVector3 vZero = vSum;

 int shared = 0;

 for (i = 0; i < pObject.numOfVertices; i++) {

 CVector3 vvertex = pObject.pVerts[i];

 for (subindex = 0; subindex < model.numOfObjects; subindex++) {

 t3DObject pModelObject = model.pObject[subindex];

 for (int j = 0; j < pModelObject.numOfFaces; j++) {

CVector3 v1 =

pModelObject.pVerts[pModelObject.pFaces[j].vertIndex[0]];

CVector3 v2 =

pModelObject.pVerts[pModelObject.pFaces[j].vertIndex[1]];

CVector3 v3 =

pModelObject.pVerts[pModelObject.pFaces[j].vertIndex[2]];

if (vvertex == v1 || vvertex == v2 || vvertex == v3) {

 vSum = AddVector(vSum, pModelObject.pFaces[j].normal);

 vTagentSum = AddVector(vTagentSum, pModelObject.pFaces[j].tangent);

 vBiTagentSum = AddVector(vBiTagentSum,

pModelObject.pFaces[j].bitangent);

 shared++;

 }

 }

 }

 // Get the normal by dividing the sum by the shared

 // Negate the shared so it has the normals pointing out

 pObject.pNormals[i] = DivideVectorByScaler(vSum, shared);

 pObject.pNormals[i] = Normalize(pObject.pNormals[i]);

 pObject.pTangents[i] = DivideVectorByScaler(vTagentSum, shared);

 pObject.pTangents[i] = Normalize(pObject.pTangents[i]);

 pObject.pBitangents[i] = DivideVectorByScaler(vBiTagentSum, shared);

 pObject.pBitangents[i] = Normalize(pObject.pBitangents[i]);

 vSum = vZero; // Reset the sum

 vTagentSum = vZero; // Reset the tangent sum

 vBiTagentSum = vZero; // Reset the bitangent sum

 shared = 0; // Reset the shared

 }

 }

The following image shows the result of the algorithm. The generated vertex

attributes are now correctly calculated, taking into account the vertices that are

shared across the object boundaries.

Figure 12. Multi-object model with smoothing of vertex

attributes between objects

58 P. Mileff

5.3 Tangent space orthogonality

It is necessary to mention one final addition to the presented solution, which can

further enhance image quality with a slight increase in performance requirements.

When working with larger shapes, a vertex can be part of multiple faces. We

already know that if we do not smooth or average the tangent vectors, the result is

often unsatisfactory. However, the smoothing can have the side effect of causing

the new TBN vectors to lose their perpendicularity to each other during the

averaging process, meaning the resulting TBN matrix will no longer be orthogonal.

Although this is less noticeable in the visual result, it is advisable to take this small

detail into account.

To address this issue, we can apply the Gram-Schmidt mathematical procedure

[14], which allows us to (re)orthogonalize the TBN vectors so that they are

perpendicular to each other. This can be done in two ways: after calculating and

averaging the TBN vectors or within the vertex shader. The Gram-Schmidt solution

is as follows:

Figure 13. Geometric illustration of the Gram-Schmidt

orthogonalization procedure

In the example, the n and t vectors are nearly perpendicular to each other. To

orthogonalize, we simply need to “push” the t vector in the direction of -n by the

amount of the scalar product of n and t (dot(n, t)). That is:

t = normalize(t - n * dot(n, t));

Performed in the vertex shader:

vec3 T = normalize(vec3(modelMatrix * vec4(tangent, 0.0)));

vec3 N = normalize(vec3(modelMatrix * vec4(normal, 0.0)));

T = normalize(T - dot(T, N) * N); // Re-orthogonalization

vec3 B = cross(T, N); // Bittangent vector calculation

mat3 TBN = mat3(T, B, N)

5.4 Coordinate system rotation

In the case of symmetric models, it may occur that the direction of the UV

coordinate orientation is incorrect, which will also result in a wrong orientation for

the tangent vector. Checking this is very simple. The TBN vectors must define a

right-handed coordinate system. For example, the cross product of the n and t

vectors should yield an orientation equal to b. To mathematically verify this, the

scalar product can be used, stating that vectors A and B have the same orientation if

their scalar product is greater than zero. Therefore, dot(A, B) > 0. For the TBN

vectors, we need to check the result of dot(cross(n, t), b):

PER-PIXEL LIGHTING FOR MULTI-OBJECT MODELS 59

if (dot(cross(n, t), b) < 0.0f) {

 t = t * -1.0f;

 }

By performing this check for each vertex, we can correct any errors arising from

incorrect UV orientations.

6. Conclusion

Real-time lighting modeling plays an important role in computer visualization. The

rapid advancement of hardware over the years has allowed for the development of

numerous different solutions. While only very limited lighting models could be

applied in the early years, today we can enhance image quality with various visual

effects, creating a more detailed environment. This article focused on per-pixel

lighting for multi-object models. To make the surfaces more lifelike, we applied

normal mapping. Achieving the final result required the combined application of

several techniques. An important aspect is that, in the case of multi-object models,

different objects should always be examined together, and vertex attributes should

be calculated and transformed accordingly. This helps eliminate visual problems

that may arise at the boundaries of the objects. The presented procedures can be

applied even for complex models.

References

[1] 3D Head model: https://www.zbrushcentral.com, 2024

[2] Jason Gregory: Game Engine Architecture, A K Peters/CRC Press; 3rd edition, 2018

[3] Tomas Akenine-Moller, Eric Haines, Naty Hoffman: Real-Time Rendering,4th Edition, A

K Peters/CRC Press; 2018

[4] Normal Mapping: https://learnopengl.com/Advanced-Lighting/Normal-Mapping, 2024

[5] Matt Pharr, Wenzel Jakob, Greg Humphreys, Physically Based Rendering: From Theory to

Implementation, The MIT Press; 4th edition, 2023

[6] Wolfgang Enge, ShaderX7: Advanced Rendering Techniques, Charles River Media; 1st

edition, 2009

[7] Kyle Halladay, Practical Shader Development: Vertex and Fragment Shaders for Game

Developers, Apress; 1st ed. edition, 2019

[8] David Wolff, OpenGL 4 Shading Language Cookbook - Third Edition: Build high-quality,

real-time 3D graphics with OpenGL 4.6, GLSL 4.6 and C++17, Packt Publishing; 3rd ed.

edition, 2018

[9] Péter Mileff, Judit Dudra(2022), The Past and the Future of Computer Visualization,

Production Systems and Information Engineering, Volume 10, No 1, pp. 16-29., 2022.

[10] Eric Lengyel, Foundations of Game Engine Development, Volume 2: Rendering, Terathon

Software LLC, 2019

[11] Frank Luna, Introduction to 3D Game Programming with DirectX 12, Mercury Learning

and Information; Illustrated edition, 2016

[12] Miroslav Dimitrijević, Jelena Letić, Ratko Obradovic: LIGHT AND SHADOW IN 3D

MODELING, Machine Design, Vol.5(2013) No.3, 2012, DOI: 50709(3):1821-1259

[13] Thorn, A. 3D Lighting and Materials. In: Moving from Unity to Godot. Apress, Berkeley,

CA. https://doi.org/10.1007/978-1-4842-5908-5_5, 2020

[14] Stephen Andrilli, David Hecker, Elementary Linear Algebra (Fourth Edition), 2010,

https://doi.org/10.1016/B978-0-12-374751-8.00011-1

[15] Tom McReynolds, David Blythe, Advanced Graphics Programming Using OpenGL,

Morgan Kaufmann, 2005.

https://www.zbrushcentral.com/
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://doi.org/10.1007/978-1-4842-5908-5_5
https://doi.org/10.1016/B978-0-12-374751-8.00011-1

