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Abstract:  Deep Generative Models (DGMs) have emerged as powerful tools 
for generating diverse and realistic data across various domains. This paper 
presents a comprehensive systematic review of existing DGMs, discovering 
their methodologies, architectures, and applications. We delve into the 
fundamental concepts of Generative Adversarial Networks (GANs) and 
Variational Autoencoders (VAEs), highlighting their respective strengths and 
weaknesses. Furthermore, we provide a detailed case study focusing on the 
utilization of GANs and VAEs for generating images of portrait art. By 
employing a dataset of portrait artworks, we demonstrate the capabilities of 
these DGMs in capturing the latent representation to generate new art’s. 
Through a comparative analysis of the generated results, we evaluate the 
likelihood and the inception score achieved by each model. By diving into 
theoretical insights with practical experimentation, this paper offers valuable 
insights into DGMs and their potential applications. The findings and 
discussions presented contribute to a deeper understanding of deep generative 
modeling techniques and pave the way for future advancements the field. 
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1. Introduction 
 

 

In recent years, the advent of Deep Generative Models (DGMs) [1] has revolutionized the field 

of artificial intelligence and machine learning. These models, have demonstrated remarkable 

capabilities in generating data that closely resemble samples from the underlying distribution 

[2]. This ability holds immense promise across various applications, ranging from image 

synthesis, text generation and graph generation to drug discovery and data augmentation [3, 4, 

5]. 

The primary objective of this paper is to conduct a review of existing deep generative models, 

with a particular focus on understanding their methodologies, architectures, and applications.  

Key emphasis will be placed on two prominent paradigms in deep generative modeling: 

Generative Adversarial Networks (GANs) [6] and Variational Autoencoders (VAEs) [7]. These 

two models are widely used, each offering distinct advantages and trade-offs related to data 

generation. 

Deep generative models represent a class of neural networks comprising numerous hidden layers 

[8] trained to approximate complex, multidimensional probability distributions [9]. Their 

fundamental objective is to learn and approximate elusive or computationally infeasible 

probability distributions from a limited set of independent and identically distributed samples 
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[10]. Upon successful training, these models can assess the likelihood of a given sample and 

generate new samples resembling those from the underlying distribution [11]. While these 

challenges have long been central to the realms of probability and statistics, their resolution 

remains computationally daunting, particularly in high-dimensional spaces [12]. 

 

Despite significant progress and notable successes, the field of generative modeling grapples 

with several unresolved issues. There are mainly three mathematical challenges first is training 

deep generative models poses an ill-posed problem due to the impossibility of uniquely 

identifying a probability distribution from a finite sample set [13, 14]. Consequently, the model's 

performance heavily relies on hyper-parameters such as network design [15], training objectives, 

regularization techniques, and training algorithms. 

Second limitation is evaluating the similarity between samples generated by the model and those 

from the target distribution necessitates either inverting the generator or comparing the 

generated sample distribution to the dataset [16]. Both approaches present distinct challenges. 

Inverting a neural network-based generator is difficult, especially given its inherent nonlinearity. 

Moreover, quantifying distribution similarity leads to complex two-sample test problems, 

exacerbated by the absence of prior assumptions on the distributions [17]. 

Last struggle is that many DGM training methods assume approximating the target distribution 

by transforming a simpler known distribution (e.g., Gaussian) in a latent space of a defined 

dimension [18]. However, determining this latent space dimension often proves infeasible, 

leaving it as a crucial yet challenging hyper-parameter [19]. An erroneous estimate may 

compromise data approximation or render the generator non-injective, impeding effective 

training [20]. 

In essence, this paper endeavors to provide a comprehensive overview of deep generative 

modeling techniques while offering practical insights into their real-world applications. By 

synthesizing theoretical knowledge with empirical experimentation, we aim to contribute to the 

trending field of generative modeling and inspire future research endeavors in this domain. 

The forthcoming section focus on the theoretical behind data generation, discovering the 

principles and frameworks that guide the creation of novel datasets. Subsequently, the 

methodology segment will expound on the dataset employed in this study, alongside a detailed 

examination of the two models deployed for the generation of new portrait artworks. The result 

section is dedicated to presenting the outcomes of the applied models, displaying the efficacy 

and potential of the generative techniques. The paper ends with a conclusion that synthesizes the 

findings, reflects on the implications of the study, and offers avenues for future research in the 

realm of artistic data generation.   
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2. Literature review  
 

Generative artificial intelligence (AI) first emerged in the 1960s with rudimentary applications 

like chatbots. However, it was not until 2014, marked by the advent of generative adversarial 

networks (GANs) [21], a type of machine learning algorithm, that generative AI achieved the 

capability to produce remarkably authentic images, videos, and audio of real individuals. 

This breakthrough has started a wave of opportunities, including enhanced movie dubbing and 

the creation of immersive educational content. Yet, it has also raised significant concerns, 

particularly surrounding the proliferation of deepfakes—digitally manipulated images or 

videos—and the potential for malicious cyberattacks on businesses. These attacks might involve 

deceptively realistic requests impersonating an employee's superior. 

In addition to GANs, two recent advancements have been instrumental in propelling generative 

AI into the mainstream: transformers and the groundbreaking language models they facilitated. 

Transformers represent a novel approach to machine learning [22], enabling researchers to train 

increasingly large models without the need to pre-label all data. Consequently, these models can 

be trained on vast amounts of text data, yielding responses with greater complexity and nuance 

[23]. 

Moreover, transformers introduced the concept of attention, allowing models to comprehend 

connections between words not only within individual sentences but also across entire 

documents, including pages, chapters, and books. This capability extends beyond textual data; 

transformers can also analyze diverse data types such as code, proteins, chemicals, and DNA by 

leveraging their capacity to track intricate connections [24, 25]. 

 

2.1. Overview of Generative Models  

 

Generative modeling aims at capturing the essence of complex, as probability distributions 

defined over high-dimensional spaces    [26]. These distributions can exhibit intricate twisted 

structures, including multimodality and disjoint support, presenting significant challenges for 

conventional statistical techniques. Unlike traditional statistical inference, which seeks explicit 

mathematical expressions for probabilities, generative modeling leverages a different approach. 

                                                                          

The primary objective is to develop a generator capable of synthesizing data that closely 

resembles samples drawn from a distribution   supported in    to points in     [27]. This 

process counts on utilizing a finite yet potentially extensive set of independent and identically 

distributed samples from the target distribution   , collectively termed as the training data. 

These samples serve as the foundation for training the generator, empowering it to capture the 

underlying characteristics of the distribution and generate novel data points that adhere to its 

inherent structure [28]. 

In Figure 1, demonstrate a deep generative model    trained to map samples from a simple 

distribution , which resemble to the real distribution   finding a function that quantifies the 

discrepancy between the generated samples and the original examples is the key obstacle to 

training generative models.  

 

Figure 1 : Mapping from a simple distribution     a variable x 
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A fundamental challenge in training generative models lies in finding an objective function that 

effectively measures the difference between the generated samples and the original examples 

[29]. Specifically, when there are no direct correspondences between data samples and latent 

variables, as is often the case, this task becomes even more daunting. The goal is to train a deep 

generative model, denoted as   , to transform samples from a simple distribution,   (Right), into 

a more complex distribution       (middle), resembling the true distribution X (left). 

Given that the mapping from a latent variable z to an observed variable x is often unknown, z is 

commonly termed the latent variable, and the space it inhabits is referred to as the latent space, 

denoted as   . In our discussion, we adopt the assumption that    follows a univariate Gaussian 

distribution in    [30]. This choice have been made for convenience, and does not limit the 

generality of the approach; any known distribution that allows sampling from    and, in some 

cases, computing the probability density function      can be utilized [31].  

It's crucial to acknowledge that the dimensionality of the latent space, denoted as  , may differ 

from that of the data space, denoted as  . For instance, in the context of high-resolution images 

composed of millions of pixels, the inherent structure of the images is not accurately represented 

in this high-dimensional space. Instead, there exists a concealed manifold of typically unknown 

dimension where the essential features of the images reside. This adds another layer of 

complexity to the problem [32]. Assuming that we have knowledge of the generator function  , 

we can generate new data points by sampling   from    and computing       in many practical 

scenarios, such as generating deep fakes or in Bayesian statistics, the sole objective is to produce 

new samples. Additionally, the generator can be employed to calculate the likelihood or 

evidence of a specific sample   through the process of marginalization. 

 

2.2. Generative Models and Their Application  

 

Generative models come in various forms, each with its unique approach to understanding and 

generating data. Here is a more comprehensive list of some of the most prominent types and 

thier applications: 

 
Table 1 : Generative models and their applications 

Generative Model Description Application 

Bayesian Networks 

Graphical models representing 

probabilistic relationships among 

variables. 

Medical diagnosis, Causal 

relationship analysis 

Diffusion Models 
Models describing how things spread 

or evolve over time. 

Rumor spreading analysis, 

Virus spread prediction 

Generative 

Adversarial 

Networks (GANs) 

Two neural networks (generator and 

discriminator) trained together for 

data generation. 

Realistic image synthesis, 

Style transfer, Data 

augmentation 

Variational 

Autoencoders 

(VAEs) 

Autoencoders that produce and 

decode compressed representations of 

data. 

Image generation, Anomaly 

detection, Data compression 

Restricted 

Boltzmann 

Machines (RBMs) 

Neural networks learning a 

probability distribution over inputs. 

Collaborative filtering, 

Feature learning, 

Dimensionality reduction 

Pixel Recurrent 

Neural Networks 

(PixelRNNs) 

Models generating images pixel by 

pixel. 

Text generation, Image 

completion, Density 

estimation 

Markov Chains 
Models predicting future states based 

on the current state. 
Text generation 

Normalizing Flows 
Series of invertible transformations 

applied to probability distributions. 

Density estimation, Image 

synthesis, Anomaly detection 

 

 

. 
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3. Methodology 
 

In this study, we employed two generative models, Generative Adversarial Networks (GANs) 

and Variational Autoencoders (VAEs), to generate new data from portrait art images. Their 

adversarial training process characterizes GANs, where a generator network learns to produce 

realistic samples while a discriminator network distinguishes between real and generated 

samples. On the other hand, VAEs operate by learning a latent representation of input data and 

generating new samples by sampling from this learned distribution. The following section dive 

in the details of the methodology used 

 
3.1. Dataset (oil painted portraits): 

As a high-dimensional example in which the data’s intrinsic dimensionality is clearly less than n. 

We consider the portraits dataset shown in figure 2, the dataset consists of color-valued digital 

images; each will be resized to 128x128 pixels and showing a portrait. The dataset provides 

4117 images. To train the generator, we do not require labels; however, the first obstacle to 

setting up the DGM training is that the intrinsic dimension of the images Dataset is unknown, 

which renders choosing the dimension of the latent space non-trivial. While each image contains 

n = 16,384 pixels, the support of   will likely lie in a subset of a much lower dimension. In 

addition, since the images are grouped into unknown different classes, one can expect the 

support to be disjoint with a substantial distance between the different clusters. 

 

In Figure 2 is the Illustration of the portraits image generation process, the intrinsic dimension of 

the dataset (right) is unknown but assumed to be much less than the number of pixels per image, 

n = 16,384. In our example, we define the latent variable to be distributed according to the q = 2-

dimensional standard normal distribution (left), the generator cannot be assumed invertible. This 

complicates the density estimation and the training process. 

 

3.2. Variational Autoencoders: 

 

In most practical scenarios, assuming equal dimensions for the latent space and the data space is 

not feasible. This poses a challenge for directly applying flow models, as the generator lacks 

inevitability, potentially resulting in unbounded or ill-defined KL divergence. To circumvent this 

constraint, Variational Autoencoders (VAEs) [33, 34, 35] offer a widely adopted solution. VAEs 

typically employ a latent space of significantly lower dimensionality compared to the data space, 

denoted as          additionally; VAEs provide enhanced control over the latent space 

dimensionality, as discussed subsequently. Since the generator    is not invertible, computing 

the negative log-likelihood loss directly is unattainable. Recall that the likelihood of a sample x 

drawn from    (also termed its evidence) implied by the generator is denoted as     . It is worth 

noting that employing Bayes's rule allows for the re-expression of the likelihood in the following 

way:  

Figure 2 : from a space distribution to a 3 dimensional tensor 
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We train the generator for the art generation using the VAE approach. Recall that we defined the 

latent space to be two dimensional. Since the image intensities are in [0, 1], we measure the 

reconstruction quality using the Bernoulli likelihood [x]. We use the same architecture of the 

neural network used to compute the mean and covariance of the approximate posterior as in the 

excellent VAE tutorial [36], but note that our generator is different. For a given art image x we 

use two convolution layers for feature extraction 

 

               
   

      
   

  

               
   

         
   

  

 

Here,     
   

and     
   

 are convolution operators with 4 × 4 stencils and strides of two, that is, they 

reduce the number of pixels by a factor of two in each axis. The first layer has 32 hidden 

channels and the second layer has 64 hidden channels. The bias vectors     
   

 and     
   

 apply 

constant shifts to each channel. Given the feature     , we compute the mean and the diagonal of 

the covariance of the approximate posterior,   (z|x) 

 

3.3. Generative Adversarial Networks: 

In Generative Adversarial Networks (GANs), we train the model's parameters     by 

minimizing a loss function that quantifies the difference between the generated samples        
and real data (X). Unlike other methods like VAEs, GANs compare distributions directly in data 

space. They are termed likelihood-free models because they do not rely on sample likelihood or 

lower bounds, and they do not infer latent variables. GANs' popularity is growing due to 

promising results [37, 38], and several excellent works that go beyond this work [39, 40, 41]. 

One challenge in GAN training is defining an effective loss function that measures the 

difference between generated and real samples without known correspondences. Standard 

approaches involve using a discriminator network, leading to a challenging optimization 

problem resembling a two-player game between the generator and discriminator. 

We continue the art generation and seek to train the generator along with a discriminator whose 

architecture is similar to the one used in Deep Convolutional GAN (DCGAN) [42]. To be 

specific, we define the discriminator using two convolution layers and one fully connected layer: 

that is, given the input feature         , we predict the probability 

That x is sampled from the true dataset using 

 

                 
   

      
   

   

                 
   

         
   

   

                               

 

Here,     
   

 and     
   

 are convolution operators,      is a vector,     
   

 ,     
   

,      are bias 

terms,   is a batch normalization layer, and σReLU is the leaky ReLU activation. 

In training, we perform gradients approximated using minibatches of size 64 and using the 

ADAM scheme. We use fixed learning rates of 0.0003 and, as proposed in [42], a momentum of 

0.5. We observed that the training performance is highly dependent on these parameter choices 

and that, for instance, changes in the batch size can quickly lead to complete failure of the 

training. We perform a fixed number of 100 training epochs. 
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4. Results 
 

4.1. Visual inspection: 

 

In comparing the outputs of two distinct models, a visual inspection reveals intriguing nuances 

between the results generated by Variational Autoencoder (VAE) and Generative Adversarial 

Network (GAN) architectures with the dataset of oil-painted portraits. The VAE output exudes a 

certain fidelity to the original data, capturing subtle details with a touch of realism, occasionally 

lacking in boldness and imaginative touch. On the contrary, the GAN's creations boast a striking 

dynamism, infusing the portraits with vivid colors and expressive strokes, a sometimes at the 

expense of accuracy in finer details. The VAE's approach leans towards precision, faithfully 

recreating features, while the GAN's method leans towards creativity, often diffuse the portraits 

with a captivating sense of emotion and narrative. This visual inspection underscores the diverse 

artistic interpretations these models offer 

 

 
 

Figure 3 : 18 Images generated (VAE versus GAN) 

 

4.1. Log-Likelihood: 

Average log-likelihood is widely considered as the default measure for quantifying generative 

image modeling performance. Consider images                   with a discrete probability 

distribution    , uniform noise            , and noisy data y = x+u. If p refers to the noisy 

data density and q refers to the model density. 

The following table shows the value of the likelihood of some generated image by the GAN and 

the VAE 

 
Table 2 Log-Likelihood of VAE and GAN for the generated images 

 GAN Model VAE Model 

Generated Image 1 LL -5.64 0.73 

Generated Image 2 LL -5.15 1.09 

Generated Image 3 LL -5.34 1.27 

Generated Image 4 LL -5.24 0.81 

Generated Image 5 LL -4.68 1.50 

Generated Image 6 LL -4.79 1.19 

 

The log-likelihood values for generated images by both GAN and VAE models serve as 

measures of how well these models capture the data distribution. Higher values indicate a better 

match with the true data distribution. Comparing these values allows us to assess the relative 

performance of the models, aiding in model selection. However, it is crucial to consider other 

factors like visual quality and computational efficiency alongside log-likelihood values for 

comprehensive model evaluation and decision-making. 
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5. Conclusion 
 

In conclusion, this study offers a comprehensive exploration of deep generative models, 

focusing on their methodologies, applications, and challenges. Through a detailed case study on 

portrait art generation using Generative Adversarial Networks (GANs) and Variational 

Autoencoders (VAEs), we have demonstrated their potential in capturing and generating realistic 

data.  

Our investigation not only sheds light on the technical intricacies of these models but also 

highlights their practical implications in creative endeavors such as art generation. By 

synthesizing theoretical insights with practical experimentation, this research contributes to the 

broader understanding of deep generative modeling techniques. The findings presented here not 

only expand our knowledge base but also inspire future research and innovation in the field of 

artificial intelligence and machine learning. With further refinement and exploration, these 

generative models hold promise for transformative applications across various domains, from 

entertainment and design to healthcare and beyond, ultimately shaping the future of AI-driven 

creativity and problem solving. 

As machine learning, especially deep learning, continues to advance, the training of more 

sophisticated generative models becomes increasingly feasible. However, numerous unanswered 

questions and challenges persist, ensuring ongoing research activity in the realm of deep 

generative modeling. Looking ahead, we aim to identify some avenues for future exploration 

that extend beyond the scope of our current paper. 

Central to deep generative modeling is the task of effectively comparing complex, high-

dimensional probability distributions. This challenge has long been a cornerstone of statistical 

theory, and leveraging recent advancements in generative modeling to address it represents a 

promising avenue for future investigation. Bridging the gap between theoretical insights and 

practical implementation is crucial for enhancing the reliability of DGM training and mitigating 

the substantial computational burdens associated with it. Our paper has highlighted specific 

challenges such as the sampling issue in Variational Autoencoders (VAEs) and the 

implementation of the Lipschitz constraint in training Wasserstein Generative Adversarial 

Networks (WGANs). 

While many existing DGM approaches rely on black-box neural networks as generators, there 

remains a notable absence of models that integrate domain-specific knowledge. This limitation 

proves particularly significant in scientific contexts, where tailored models could offer 

substantial benefits. Addressing this gap presents an exciting avenue for future research, one that 

holds the potential to unlock new possibilities and applications across diverse domains.  
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